Composting Spent Mushroom Substrate from Agaricus bisporus and Pleurotus ostreatus Production as a Growing Media Component for Baby Leaf Lettuce Cultivation under Pythium irregulare Biotic Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. The Composting Process
2.3. Assessment of Composts as a Component of Growing Media for Red Baby Leaf Lettuce Cultivation and as a Suppressive Growing Media under P. irregulare Biotic Stress
2.4. Assessment of Composts Inoculated with T. harzianum as a Component of Growing Media and a Suppressive Growing Media under P. irregulare Biotic Stress for Red Baby Leaf Lettuce Cultivation
2.5. Chemical and Microbiological Properties
2.6. Statistical Analysis
3. Results
3.1. The Composting Process
3.2. Composts as a Growing Media Component
3.3. Composts as a Component of Suppressive Growing Media against P. irregulare
3.4. Composts Amended with T. harzianum as a Component of Growing Media
3.5. Composts Amended with T. harzianum as a Component of Suppressive Growing Media against P. irregulare: Effects on Red Baby Leaf Lettuce Seed Germination, Growth, and the Suppressiveness Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SMS | spent mushroom substrate |
Ag | SMS of Agaricus bisporus |
Pl | SMS of Pleurotus ostreatus |
AgPl | mix of 70% SMS of Agaricus bisporus and 30% SMS of Pleurotus ostreatus |
References
- Jerzak, M.A.; Śmiglak-Krajewska, M. Globalization of the Market for Vegetable Protein Feed and Its Impact on Sustainable Agricultural Development and Food Security in EU Countries Illustrated by the Example of Poland. Sustainability 2020, 12, 888. [Google Scholar] [CrossRef] [Green Version]
- Phan, C.W.; Sabaratnam, V. Potential Uses of Spent Mushroom Substrate and Its Associated Lignocellulosic Enzymes. Appl. Microbiol. Biotechnol. 2012, 96, 863–873. [Google Scholar] [CrossRef] [PubMed]
- González-Marcos, A.; Alba-Elías, F.; Martínez-de-Pisón, F.J.; Alfonso-Cendón, J.; Castejón-Limas, M. Composting of Spent Mushroom Substrate and Winery Sludge. Compost Sci. Util. 2015, 23, 58–65. [Google Scholar] [CrossRef]
- Lau, K.L.; Tsang, Y.Y.; Chiu, S.W. Use of Spent Mushroom Compost to Bioremediate PAH-Contaminated Samples. Chemosphere 2003, 52, 1539–1546. [Google Scholar] [CrossRef]
- Stewart, D.P.C.; Cameron, K.C.; Cornforth, I.S. Inorganic-N Release from Spent Mushroom Compost under Laboratory and Field Conditions. Soil Biol. Biochem. 1998, 30, 1689–1699. [Google Scholar] [CrossRef]
- García-Delgado, C.; Yunta, F.; Eymar, E. Methodology for Polycyclic Aromatic Hydrocarbons Extraction from Either Fresh or Dry Spent Mushroom Compost and Quantification by High-Performance Liquid Chromatography–Photodiode Array Detection. Commun. Soil Sci. Plant Anal. 2013, 44, 817–825. [Google Scholar] [CrossRef]
- López-González, J.A.; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; Jurado, M.M.; Moreno, J. Dynamics of Bacterial Microbiota during Lignocellulosic Waste Composting: Studies upon Its Structure, Functionality and Biodiversity. Bioresour. Technol. 2015, 175, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.; Monreal, C.; Barea, J.M.; Arriagada, C.; Borie, F.; Cornejo, P. Crop Residue Stabilization and Application to Agricultural and Degraded Soils: A Review. J. Waste Manag. 2015, 42, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Khater, E.S.G. Some physical and chemical properties of compost. Int. J. Waste Resour. 2015, 5, 1–5. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic Substrate for Transplant Production in Organic Nurseries. A Review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef] [Green Version]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; López-Serrano, M.; Egea-Gilabert, C. An Agroindustrial Compost as Alternative to Peat for Production of Baby Leaf Red Lettuce in a Floating System. Sci. Hortic. (Amst.) 2019, 246, 907–915. [Google Scholar] [CrossRef]
- Pane, C.; Spaccini, R.; Piccolo, A.; Scala, F.; Bonanomi, G. Compost Amendments Enhance Peat Suppressiveness to Pythium Ultimum, Rhizoctonia Solani and Sclerotinia Minor. Biol. Control 2011, 56, 115–124. [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Moral, R. Spent Mushroom Substrates as Component of Growing Media for Germination and Growth of Horticultural Plants. Bioresour. Technol. 2009, 100, 4227–4232. [Google Scholar] [CrossRef] [PubMed]
- Paula, F.S.; Tatti, E.; Abram, F.; Wilson, J.; O’Flaherty, V. Stabilisation of Spent Mushroom Substrate for Application as a Plant Growth-Promoting Organic Amendment. J. Environ. Manag. 2017, 196, 476–486. [Google Scholar] [CrossRef]
- Blaya, J.; Lloret, E.; Ros, M.; Pascual, J.A. Identification of Predictor Parameters to Determine Agro-Industrial Compost Suppressiveness against Fusarium Oxysporum and Phytophthora Capsici Diseases in Muskmelon and Pepper Seedlings. J. Sci. Food Agric. 2015, 95, 1482–1490. [Google Scholar] [CrossRef]
- Benhamou, N.; Chet, I. Cellular and Molecular Mechanisms Involved in the Interaction between Trichoderma Harzianum and Pythium Ultimum. Appl. Environ. Microbiol. 1997, 63, 2095–2099. [Google Scholar] [CrossRef] [Green Version]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced Systemic Resistance and Plant Responses to Fungal Biocontrol Agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Zohar-Perez, C.; Chernin, L.; Chet, I.; Nussinovitch, A. Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation. Radiat. Res. 2003, 1, 198–204. [Google Scholar] [CrossRef]
- Paredes, C.; Roig, A.; Bernal, M.P.; Sánchez-Monedero, M.A.; Cegarra, J. Evolution of Organic Matter and Nitrogen during Co-Composting of Olive Mill Wastewater with Solid Organic Wastes. Biol. Fertil. Soils 2000, 32, 222–227. [Google Scholar] [CrossRef]
- Veeken, A.H.M.; Blok, W.J.; Curci, F.; Coenen, G.C.M.; Termorshuizen, A.J.; Hamelers, H.V.M. Improving Quality of Composted Biowaste to Enhance Disease Suppressiveness of Compost-Amended, Peat-Based Potting Mixes. Soil Biol. Biochem. 2005, 37, 2131–2140. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Antón, A.; Raidl, S.; Ros, M.; Pascual, J.A. Quantification of the Biocontrol Agent Trichoderma Harzianum with Real-Time TaqMan PCR and Its Potential Extrapolation to the Hyphal Biomass. Bioresour. Technol. 2010, 101, 2888–2891. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.A.; Paredes, C.; Marhuenda-Egea, F.C.; Pérez-Espinosa, A.; Bernal, M.P.; Moral, R. Co-Composting of Distillery Wastes with Animal Manures: Carbon and Nitrogen Transformations in the Evaluation of Compost Stability. Chemosphere 2008, 72, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of Animal Manures and Chemical Criteria for Compost Maturity Assessment. A Review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Liang, F.; Yu, A.; Li, B.; Yang, L. Evaluation of Stability and Maturity during Forced-Aeration Composting of Chicken Manure and Sawdust at Different C/N Ratios. Chemosphere 2010, 78, 614–619. [Google Scholar] [CrossRef]
- Paredes, C.; Medina, E.; Moral, R.; Pérez-Murcia, M.D.; Moreno-Caselles, J.; Bustamante, M.A.; Cecilia, J.A. Characterization of the Different Organic Matter Fractions of Spent Mushroom Substrate. Commun. Soil Sci. Plant Anal. 2009, 40, 150–161. [Google Scholar] [CrossRef]
- Bernal, M.P.; Sánchez-Monedero, M.A.; Paredes, C.; Roig, A. Carbon Mineralization from Organic Wastes at Different Composting Stages during Their Incubation with Soil. Agric. Ecosyst. Environ. 1998, 69, 175–189. [Google Scholar] [CrossRef]
- Farrell, M.; Jones, D.L. Critical Evaluation of Municipal Solid Waste Composting and Potential Compost Markets. Bioresour. Technol. 2009, 100, 4301–4310. [Google Scholar] [CrossRef] [PubMed]
- Noguera, P.; Abad, M.; Puchades, R.; Maquieira, A.; Noguera, V. Influence of Particle Size on Physical and Chemical Properties of Coconut Coir Dust as Container Medium. Commun. Soil Sci. Plant. Anal. 2003, 34, 593–605. [Google Scholar] [CrossRef]
- Debertoldi, M.; Vallini, G.; Pera, A. The Biology of Composting: A Review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Real Decreto 506/2013, de 28 de Junio, Sobre Productos Fertilizantes; Ministerio de la Presidencia: Madrid, Spain, 2013.
- Noble, R.; Roberts, S.J. Eradication of Plant Pathogens and Nematodes during Composting: A Review. Plant Pathol. 2004, 53, 548–568. [Google Scholar] [CrossRef]
- Alabouvette, C.; Olivain, C.; Steinberg, C. Biological Control of Plant Diseases: The European Situation. Eur. J. Plant. Pathol. 2006, 114, 329–341. [Google Scholar] [CrossRef]
- Castaño, R.; Borrero, C.; Avilés, M. Organic Matter Fractions by SP-MAS 13C NMR and Microbial Communities Involved in the Suppression of Fusarium Wilt in Organic Growth Media. Biol. Control. 2011, 58, 286–293. [Google Scholar] [CrossRef]
- Kumbhar, A.S. Assessment of Growth Promotion and Disease Suppressing Ability of Spent Mushroom Substrate. Master Thesis, Dr. Panjabrao Deshmukh Krishi Vidyapeeth University, Akola, India, June 2012. [Google Scholar]
- Blaya, J.; López-Mondéjar, R.; Lloret, E.; Pascual, J.A.; Ros, M. Changes Induced by Trichoderma Harzianum in Suppressive Compost Controlling Fusarium Wilt. Pestic. Biochem. Physiol. 2013, 107, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Cedeño, M.A.; Farnet, A.M.; Ferré, E.; Savoie, J.M. Variations of Lignocellulosic Activities in Dual Cultures of Pleurotus Ostreatus and Trichoderma Longibrachiatum on Unsterilized Wheat Straw. Mycologia 2004, 96, 712–719. [Google Scholar] [CrossRef]
- Colavolpe, M.B.; Mejía, S.J.; Albertó, E. Efficiency of treatments for controlling Trichoderma spp. during spawning in cultivation of lignicolous mushrooms. Braz. J. Microbiol. 2014, 45, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
Temperature °C | pH | EC | C/N | TOC | TN | P | K | S | Ca | Mg | Na | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mS/cm | g/100 g | ||||||||||||
Agaricus bisporus composting pile (Pile Ag) | |||||||||||||
I (0) y | 41.8 ± 0.21 | 7.01 ± 0.42 | 6.44 ± 0.15 | 16.60 | 37.9 ± 0.1 | 2.28 ± 0.02 | 0.43 ± 0.01 | 1.78 ± 0.06 | 2.24 ± 0.03 | 4.97 ± 0.02 | 0.69 ± 0.01 | 0.25 ± 0.01 | 1.07 ± 0.01 |
T (20) | 48.3 ± 0.16 | 7.51 ± 0.33 | 6.61 ± 0.07 | 15.10 | 35.2 ± 0.1 | 2.32 ± 0.03 | 0.52 ± 0.03 | 1.84 ± 0.10 | 2.64 ± 0.17 | 5.71 ± 0.38 | 0.74 ± 0.05 | 0.28 ± 0.01 | 1.48 ± 0.04 |
E (35) | 54.3 ± 0.17 | 7.54 ± 0.22 | 7.96 ± 0.10 | 13.10 | 35.0 ± 0.1 | 2.66 ± 0.01 | 0.62 ± 0.00 | 2.61 ± 0.03 | 3.43 ± 0.02 | 7.65 ± 0.12 | 0.97 ± 0.02 | 0.34 ± 0.01 | 1.78 ± 0.03 |
M (90) | 50.4 ± 0.12 | 7.65 ± 0.12 | 8.19 ± 0.05 | 11.40 | 33.4 ± 0.1 | 2.92 ± 0.00 | 0.61 ± 0.02 | 2.40 ± 0.02 | 2.89 ± 0.11 | 6.50 ± 0.13 | 0.97 ± 0.00 | 0.36 ± 0.01 | 1.78 ± 0.06 |
F (130) | 32.2 ± 0.11 | 7.62 ± 0.23 | 7.67 ± 0.10 | 10.90 | 29.5 ± 0.1 | 2.69 ± 0.01 | 0.64 ± 0.03 | 2.30 ± 0.11 | 2.81 ± 0.15 | 6.01 ± 0.23 | 0.92 ± 0.00 | 0.28 ± 0.02 | 1.90 ± 0.09 |
Pleurotus ostreatus composting pile (Pile Pl) | |||||||||||||
I (0) | 37.5 ± 0.09 | 6.03 ± 0.22 | 5.66 ± 0.44 | 50.50 | 41.0 ± 0.4 | 0.81 ± 0.05 | 0.08 ± 0.00 | 1.51 ± 0.03 | 0.49 ± 0.01 | 1.71 ± 0.03 | 0.24 ± 0.01 | 0.08 ± 0.00 | 1.14 ± 0.03 |
T (20) | 43.6 ± 0.12 | 7.73 ± 0.12 | 5.42 ± 0.19 | 33.50 | 38.8 ± 0.2 | 1.16 ± 0.01 | 0.10 ± 0.01 | 1.67 ± 0.11 | 0.51 ± 2.04 | 2.04 ± 0.11 | 0.26 ± 0.02 | 0.11 ± 0.01 | 1.37 ± 0.01 |
E (35) | 47.8 ± 0.09 | 7.87 ± 0.23 | 5.15 ± 0.10 | 33.70 | 39.1 ± 0.1 | 1.16 ± 0.01 | 0.10 ± 0.01 | 2.33 ± 0.04 | 0.69 ± 0.00 | 2.37 ± 0.03 | 0.31 ± 0.01 | 0.14 ± 0.00 | 1.64 ± 0.01 |
M (90) | 45.3 ± 0.11 | 8.12 ± 0.08 | 5.46 ± 0.09 | 26.00 | 38.1 ± 0.1 | 1.47 ± 0.01 | 0.14 ± 0.00 | 2.42 ± 0.02 | 0.74 ± 0.01 | 2.67 ± 0.08 | 0.41 ± 0.01 | 0.18 ± 0.00 | 1.78 ± 0.02 |
F (130) | 33.1 ± 0.21 | 7.88 ± 0.21 | 7.11 ± 0.86 | 17.90 | 32.8 ±0.3 | 1.84 ± 0.00 | 0.42 ± 0.02 | 2.35 ± 0.21 | 1.89 ± 0.34 | 4.48 ± 0.30 | 0.62 ± 0.06 | 0.22 ± 0.02 | 2.37 ± 259 |
70%. A. bisporus and 30% P. ostreatus composting pile (Pile AgPl) | |||||||||||||
I (0) | 47.3 ± 0.11 | 7.49 ± 0.25 | 6.09 ± 0.15 | 23.50 | 39.0 ± 0.2 | 1.66 ± 0.05 | 0.27 ± 0.01 | 1.68 ± 0.05 | 1.25 ± 0.03 | 3.13 ± 0.08 | 0.46 ± 0.01 | 0.13 ± 0.00 | 1.10 ± 0.04 |
T (20) | 50.2 ± 0.09 | 7.49 ± 0.11 | 7.81 ± 0.11 | 19.20 | 34.7 ± 0.1 | 1.81 ± 0.02 | 0.20 ± 0.03 | 1.84 ± 0.23 | 1.13 ± 0.13 | 2.8 ± 0.32 | 0.33 ± 0.04 | 0.19 ± 0.02 | 1.21 ± 0.16 |
E (35) | 53.6 ± 0.14 | 7.3 ± 0.13 | 8.01 ± 0.03 | 13.50 | 34.6 ± 0.1 | 2.56 ± 0.00 | 0.55 ± 0.02 | 3.01 ± 0.11 | 2.74 ± 0.11 | 6.66 ± 0.30 | 0.87 ± 0.03 | 0.31 ± 0.01 | 2.61 ± 0.09 |
M (90) | 50.5 ± 0.15 | 7.69 ± 0.24 | 8.13 ± 0.24 | 11.70 | 32.8 ± 0.2 | 2.79 ± 0.01 | 0.49 ± 0.00 | 3.1 ± 0.11 | 2.25 ± 0.02 | 5.91 ± 0.07 | 0.85 ± 0.04 | 0.34 ± 0.02 | 2.02 ± 0.07 |
F (130) | 31.4 ± 0.11 | 7.57 ± 0.09 | 7.56 ± 0.53 | 12.00 | 30.2 ± 0.5 | 2.52 ± 0.03 | 0.46 ± 0.00 | 2.45 ± 0.00 | 2.96 ± 0.32 | 4.42 ± 0.05 | 0.66 ± 0.01 | 0.22 ± 0.00 | 2.70 ± 0.24 |
Compost | Cu (mg/kg) | Zn (mg/kg) | Cd (mg/kg) | Cr (mg/kg) | Pb (mg/kg) | Ni (mg/kg) |
---|---|---|---|---|---|---|
Ag | 43 ± 2.06 z | 258 a ± 12.93 | <1 ± 0.01 | 7 ± 0.28 | 2 ± 0.11 | 4 ± 0.17 |
Pl | 36 ± 2.43 | 169 b ± 9.00 | <1 ± 0.00 | 9 ± 1.37 | 2 ± 0.16 | 4 ± 0.60 |
AgPl | 41 ± 0.11 | 167 ± 1.4 | <1 ± 0.01 | 9 ± 0.33 | 3 ± 0.10 | 4 ± 0.05 |
Spanish framework y | 400 | 1000 | 3 | 300 | 200 | 100 |
Composts z | P. irregulare Log Copies ITS g−1 | ||
---|---|---|---|
Experiment 1 | |||
Peat | 7.14 a y | ± | 0.12 |
Ag | 6.61 b | ± | 0.02 |
Pl | 6.17 b | ± | 0.08 |
AgPl | 6.73 b | ± | 0.09 |
Experiment 2 | |||
Peat | 6.17 | ± | 0.12 |
Peat + T | 5.73 | ± | 0.11 |
AgPl | 5.90 | ± | 0.09 |
AgPl + T | 5.92 | ± | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, D.; Ros, M.; Carmona, F.; Saez-Tovar, J.A.; Pascual, J.A. Composting Spent Mushroom Substrate from Agaricus bisporus and Pleurotus ostreatus Production as a Growing Media Component for Baby Leaf Lettuce Cultivation under Pythium irregulare Biotic Stress. Horticulturae 2021, 7, 13. https://doi.org/10.3390/horticulturae7020013
Hernández D, Ros M, Carmona F, Saez-Tovar JA, Pascual JA. Composting Spent Mushroom Substrate from Agaricus bisporus and Pleurotus ostreatus Production as a Growing Media Component for Baby Leaf Lettuce Cultivation under Pythium irregulare Biotic Stress. Horticulturae. 2021; 7(2):13. https://doi.org/10.3390/horticulturae7020013
Chicago/Turabian StyleHernández, Daniel, Margarita Ros, Francisco Carmona, José Antonio Saez-Tovar, and Jose Antonio Pascual. 2021. "Composting Spent Mushroom Substrate from Agaricus bisporus and Pleurotus ostreatus Production as a Growing Media Component for Baby Leaf Lettuce Cultivation under Pythium irregulare Biotic Stress" Horticulturae 7, no. 2: 13. https://doi.org/10.3390/horticulturae7020013
APA StyleHernández, D., Ros, M., Carmona, F., Saez-Tovar, J. A., & Pascual, J. A. (2021). Composting Spent Mushroom Substrate from Agaricus bisporus and Pleurotus ostreatus Production as a Growing Media Component for Baby Leaf Lettuce Cultivation under Pythium irregulare Biotic Stress. Horticulturae, 7(2), 13. https://doi.org/10.3390/horticulturae7020013