Techniques for Reducing the Abundance of Spring–Summer Flush Shoots in Southern Spanish Orange Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Treatment Application and Shoot Evaluation
2.3. Fruit Production and Quality in 2020
2.4. Statistical Analysis
3. Results
3.1. Effect of Treatments on Shoot Flushing in 2018
3.2. Effect of Treatments in Shoot Flushing in 2019
3.3. Fruit Production and Quality in 2020
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization (FAO) of the United Nations. 2021. Available online: http://www.fao.org/faostat/es/#home (accessed on 12 October 2021).
- World Population Growth. 2021. Available online: https://ourworldindata.org/world-population-growth (accessed on 8 October 2021).
- Le Mouël, C.; Forslund, A. How can we feed the world in 2050? A review of the responses from global scenario studies. Eur. Rev. Agric. Econ. 2017, 44, 541–591. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Romero-Rodríguez, E.; Hervalejo, A. Intensificación del cultivo de cítricos. Vida Rural 2020, 480, 38–42. [Google Scholar]
- Sauer, M. Growth of orange shoots. Aust. J. Agric. Res. 1951, 2, 105–117. [Google Scholar] [CrossRef]
- Garcia-Marí, F.; Granda, C.; Zaraagoza, S.; Agustí, M. Impact of Phyllocnistis citrella (Lepidoptera: Gracillariidae) on leaf area development and yield of mature citrus trees in the Mediterranean area. J. Econ. Entomol. 2002, 95, 966–974. [Google Scholar] [CrossRef]
- Hall, D.G.; Albrigo, L.G. Estimating the relative abundance of flush shoots in Citrus with implications on monitoring insects associated with flush. HortScience 2007, 42, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Agustí, M.; Martínez-Fuentes, A.; Mesejo, C.; Juan, M.; Almela, V. Cuajado y desarrollo de los frutos cítricos. General. Valencia. Cons. D′ Agricutura Peixca I Aliment. 2003, 80, 52–58. [Google Scholar]
- Phillips, R.L.; Tucker, D.P.H. Chemical inhibition of sprouting of pruned lemon trees. HortScience 1974, 9, 199–200. [Google Scholar]
- Lundberg, E.C.; Smith, T.S. A possible sprout inhibitor for Florida citrus. Proc. Fla. State Hortic. Sco. 1974, 87, 20–22. [Google Scholar]
- Velázquez, B.; Fernández, E. The influence of mechanical pruning in cost reduction, production of fruit, and biomass waste in Citrus orchards. Appl. Eng. Agric. 2010, 26, 531–540. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Porras Castillo, I.; Torregrosa, A. Effect of mechanical pruning on the yield and quality of ‘Fortune’ mandarins. Span. J. Agric. Res. 2014, 12, 952–959. [Google Scholar] [CrossRef]
- Browning, H.W.; McGovern, R.J.; Jackson, L.K.; Calvert, D.V.; Wardowski, W.F. Florida Citrus Diagnostic Guide; Florida Science Source Inc.: Lake Alfred, FL, USA, 1995. [Google Scholar]
- Graham, J.H.; Gottwald, T.R.; Cubero, J.; Achor, D.S. Xanthomonas axonopodis pv. citri: Factors affecting successful eradication of citrus canker. Mol. Plant Pathol. 2004, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- USDA. United States Department of Agriculture, Foreign Agricultural Service. 2021. Available online: https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/pests-and-diseases/citrus/citrus-canker (accessed on 29 April 2021).
- Roistacher, C.N.; Bar-Joseph, M. Aphid transmission of citrus tristeza virus: A review. Phytophylactica 1987, 19, 163–167. [Google Scholar]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Gottwald, T.R.; Bassanezi, R.B.; Paulo, S. Citrus Huanglongbing: The pathogen and its impact. Plant Health Prog. 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Fayos, A. Reducción del periodo de la brotación de verano-otoño en naranjos Washington Navel-Foyos mediante estrés hídrico. Consecuencias para el control de Phyllocnistis citrella, Stainton. Levante Agrícola Rev. Int. Cítricos 1996, 335, 148–153. [Google Scholar]
- Margaix, C.; Garrido, A. Influencia de la irrigación en la dinámica poblacional de Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Boletín Sanid. Veg.-Plagas 2003, 29, 149–158. [Google Scholar]
- MAPA. 2021. Available online: https://www.mapa.gob.es (accessed on 18 November 2021).
- Forner-Giner, M. Ángeles Citrus Tree Named “CIVAC 19”. U.S. Patent US 2020/028864 P1, 10 September 2020. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; FAO Irrigation and Drainage Paper No. 24; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977. [Google Scholar]
- Quiñones, A.; Martínez-Alcántara, B.; Primo-Millo, E.; Legaz, F. Fertilización de los cítricos en riego a goteo (I): N, P y K. Levante Agrícola Rev. Int. Cítricos 2007, 389, 380–385. [Google Scholar]
- Nufarm. 2021. Available online: https://nufarm.com/es/product/clementgros-plus/ (accessed on 15 March 2021).
- Almela, V.; Juan, M.; Lapica, P.; Salvia, J.; Agustí, M. Control de la abscisión del fruto maduro en los cítricos. CV Agrar. 1997, 10, 15–22. [Google Scholar]
- Hervalejo, A.; Suarez, M.; Moreno-Rojas, J.; Arenas-Arenas, F. Overall fruit quality of ‘Lane Late’ orange on sub-standard and semi-dwarfing rootstocks. J. Agric. Sci. Technol. 2020, 22, 235–246. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: With Special Reference to the Biological Sciences; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1960. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; ISBN 3-900051-07-0. Available online: https://www.r-project.org/ (accessed on 15 December 2020).
- de Mendiburu, F. Statistical Procedures for Agricultural Research; Package “Agricolae”, Version 1.4-4; Comprehensive R Archive Network, Institute for Statistics and Mathematics: Vienna, Austria, 2013. [Google Scholar]
- Bataller, J.C.; Porqueres, J.J. El uso de diclorprop-p (CLEMENTGROS PLUS) para evitar la caída del fruto maduro. Levante Agric. 2009, 48, 269–270. [Google Scholar]
- EU Law—EUR-Lex. Access to European Union Law. 2021. Available online: https://eur-lex.europa.eu/homepage.html (accessed on 25 June 2021).
- Aleza, P.; Forner-Giner, M.A.; Del-Pino, Á. El panorama varietal y los nuevos patrones. Análisis de la situación actual. In Una Hoja de Ruta Para la Citricultura Española; García Álvarez-Coque, J.M., Motló, E., Eds.; Cajamar Caja Rural: Almería, Spain, 2020; pp. 151–166. [Google Scholar]
- Forner-Giner, M.A.; Rodriguez-Gamir, J.; Martinez-Alcantara, B.; Quiñones, A.; Iglesias, D.J.; Primo-Millo, E.; Forner, J. Performance of Navel orange trees grafted onto two new dwarfing rootstocks (Forner-Alcaide 517 and Forner-Alcaide 418). Sci. Hortic. 2014, 179, 376–387. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Romero-Rodríguez, E.; Calero-Velázquez, R.; Hervalejo, A. Comportamiento agronómico de distintas variedades y patrones de cítricos en condiciones de súper-alta densidad en el Valle del Guadalquivir. Levante Agrícola 2020, 453, 101–107. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Kathage, J.; Castañera, P.; Alonso-Prados, J.L.; Gómez-Barbero, M.; Rodríguez-Cerezo, E. The impact of restrictions on neonicotinoid and fipronil insecticides on pest management in maize, oilseed rape and sunflower in eight European Union regions. Pest Manag. Sci. 2018, 74, 88–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siviter, H.; Muth, F. Do novel insecticides pose a threat to beneficial insects? Proc. R. Soc. B Biol. Sci. 2020, 287, 20201265. [Google Scholar] [CrossRef]
- Barriada-Pereira, M.; Serôdio, P.; González-Castro, M.J.; Nogueira, J.M.F. Determination of organochlorine pesticides in vegetable matrices by stir bar sorptive extraction with liquid desorption and large volume injection-gas chromatography–mass spectrometry towards compliance with European Union directives. J. Chromatogr. A 2010, 1217, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Catling, H.D. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). 1. The influence of the flushing rhythm of citrus and factors which regulate flushing. J. Entomol. Soc. S. Afr. 1969, 32, 273–290. [Google Scholar]
Treatment | July | September | ||
---|---|---|---|---|
Lane Late/CIVAC19 | Valencia DS/FA517 | Lane Late/CIVAC19 | Valencia DS/FA517 | |
Control | 4.33 ± 0.33 bcd | 3.50 ± 0.22 cdef | 7.50 ± 0.76 a | 5.50 ± 0.34 abc |
Topping | 5.00 ± 1.00 abc | 6.50 ± 0.72 a | 3.17 ± 1.25 cd | 4.00 ± 1.03 bcd |
Dichlorprop-p | 1.83 ± 0.40 f | 2.17 ± 0.60 f | 4.50 ± 1.26 bcd | 2.60 ± 0.60 d |
Triclopyr | 3.00 ± 0.37 def | 4.00 ± 0.68 cde | 5.00 ± 0.89 bcd | 7.50 ± 1.15 a |
Topping + dichlorprop-p | 2.83 ± 0.40 def | 6.00 ± 0.86 ab | 5.67 ± 0.76 ab | 2.83 ± 0.48 d |
Topping + triclopyr | 2.50 ± 0.62 ef | 4.33 ± 0.67 bcd | 3.67 ± 0.49 bcd | 2.67 ± 0.33 d |
p value (Treatment) | <0.001 | <0.001 | ||
p value (Orchard) | 0.002 | 0.001 | ||
p value (Treatment: Orchard) | 0.04 | 0.02 |
Treatment | July | September | ||
---|---|---|---|---|
Lane Late/CIVAC19 | Valencia DS/FA517 | Lane Late/CIVAC19 | Valencia DS/FA517 | |
Control | 3.33 ± 0.71 bcd | 6.29 ± 1.80 ab | 1.60 ± 1.03 ab | 0.33 ± 0.21 bc |
Topping | 7.00 ± 1.72 a | 2.89 ± 0.75 cd | 0.40 ± 0.24 bc | 0.00 ± 0.00 c |
Dichlorprop-p | 1.33 ± 0.53 d | 1.44 ± 0.80 d | 0.20 ± 0.20 bc | 2.17 ± 0.79 a |
Triclopyr | 2.00 ± 0.55 cd | 1.67 ± 0.65 cd | 2.60 ± 1.03 a | 0.17 ± 0.17 c |
Topping + dichlorprop-p | 4.44 ± 1.76 abc | 1.67 ± 0.69 cd | 0.00 ± 0.00 c | 0.33 ± 0.21 bc |
Topping + triclopyr | 3.89 ± 0.99 bcd | 1.56 ± 0.47 d | 0.40 ± 0.24 bc | 0.33 ± 0.21 bc |
p value (Treatment) | 0.003 | 0.01 | ||
p value (Orchard) | 0.04 | 0.03 | ||
p value (Treatment: Orchard) | 0.02 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas-Arenas, F.J.; Arjona-López, J.M.; Romero-Rodríguez, E.; Calero-Velázquez, R.; Hervalejo, A. Techniques for Reducing the Abundance of Spring–Summer Flush Shoots in Southern Spanish Orange Orchards. Horticulturae 2021, 7, 550. https://doi.org/10.3390/horticulturae7120550
Arenas-Arenas FJ, Arjona-López JM, Romero-Rodríguez E, Calero-Velázquez R, Hervalejo A. Techniques for Reducing the Abundance of Spring–Summer Flush Shoots in Southern Spanish Orange Orchards. Horticulturae. 2021; 7(12):550. https://doi.org/10.3390/horticulturae7120550
Chicago/Turabian StyleArenas-Arenas, Francisco J., Juan M. Arjona-López, Estefanía Romero-Rodríguez, Rocío Calero-Velázquez, and Aurea Hervalejo. 2021. "Techniques for Reducing the Abundance of Spring–Summer Flush Shoots in Southern Spanish Orange Orchards" Horticulturae 7, no. 12: 550. https://doi.org/10.3390/horticulturae7120550
APA StyleArenas-Arenas, F. J., Arjona-López, J. M., Romero-Rodríguez, E., Calero-Velázquez, R., & Hervalejo, A. (2021). Techniques for Reducing the Abundance of Spring–Summer Flush Shoots in Southern Spanish Orange Orchards. Horticulturae, 7(12), 550. https://doi.org/10.3390/horticulturae7120550