Enhance Growth and Flower Quality of Chrysanthemum indicum L. with Application of Plant Growth Retardants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up and Plant Material
- ‘Smola White’: medium–compact growing potted chrysanthemum with an eight-week response time, producing 11 cm (diameter) filled, white decorative inflorescences, resistant to white rust and to thrips.
- ‘Arber’: medium–compact growing potted variety with greenish-white, ball type inflorescences, 13 cm in diameter, with response time of nine weeks.
- ‘Vienna White’: middle–compact growing, mostly can be found as cut flower, but with application of retardants could be used also as potted chrysanthemum, response time nine weeks, producing ball form type inflorescences with a diameter of 15 cm.
2.2. Retardants Application
2.3. Measurements and Treatments
2.4. Statistical Analysis
3. Results
3.1. The pH and EC of the Peat
3.2. Leaves Number Influenced by the Retardants
3.3. Length and Width of Leaves under the Effect of Retardants
3.4. Distance between the Internodes under the Effect of Retardants
3.5. Chrysanthemum Shoots under the Effect of Retardants
3.6. Inflorescences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Huylenbroeck, J. Status of floriculture in Europe. In Protocols for In Vitro Propagation of Ornamental Plants; Humana Press: Totowa, NJ, USA, 2010; pp. 365–376. [Google Scholar] [CrossRef]
- Wani, M.A.; Nazki, I.T.; Din, A.; Iqbal, S.; Wani, S.A.; Khan, F.U. Floriculture sustainability initiative: The dawn of new era. In Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2018; Volume 27, pp. 91–127. [Google Scholar] [CrossRef]
- Van Rijswick, C. World floriculture map 2015. In Gearing Up for Stronger Competition; Rabobank Industry Note: Utrecht, The Netherlands, 2015; p. 475. [Google Scholar]
- Adebayo, I.A.; Pam, V.K.; Arsad, H.; Samian, M.R. The Global Floriculture Industry: Status and Future Prospects. In The Global Floriculture Industry; Apple Academic Press: New Jersey, NJ, USA, 2020; pp. 1–14. [Google Scholar]
- Darras, A.I. Implementation of sustainable practices to ornamental plant cultivation worldwide: A critical review. Agronomy 2020, 10, 1570. [Google Scholar] [CrossRef]
- Anderson, N.O. Chrysanthemum. In Flower Breeding and Genetics; Springer: Dordrecht, The Netherlands, 2007; pp. 389–437. [Google Scholar] [CrossRef]
- Li, T.S.C. Chinese and Related North. American Herbs: Phytopharmacology and Therapeutic Values; CRC Press: Boca Raton, FL, USA, 2002; p. 598. [Google Scholar] [CrossRef]
- Youssef, F.S.; Eid, S.Y.; Alshammari, E.; Ashour, M.L.; Wink, M.; El-Readi, M.Z. Chrysanthemum indicum and Chrysanthemum morifolium: Chemical Composition of Their Essential Oils and Their Potential Use as Natural Preservatives with Antimicrobial and Antioxidant Activities. Foods 2020, 9, 1460. [Google Scholar] [CrossRef]
- Cheng, W.; Li, J.; You, T.; Hu, C. Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linne. J. Ethnopharmacol. 2005, 101, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W.; Zandi, P.; Cheng, Q. A review of Chrysanthemum, the eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences. Appl. Ecol. Environ. Res. 2019, 17, 13355–13369. [Google Scholar] [CrossRef]
- Shao, Y.; Sun, Y.; Li, D.; Chen, Y. Chrysanthemum indicum L.: A Comprehensive Review of its Botany, Phytochemistry and Pharmacology. Am. J. Chin. Med. 2020, 48, 871–897. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.Y.; Nepali, S.; Lee, H.Y.; Hwang, S.W.; Choi, S.Y.; Yeon, J.M.; Song, B.J.; Kim, D.K.; Lee, Y.M. Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp. Ther. Med. 2018, 15, 5070–5076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, J.Z.; Lin, Z.X.; Yuan, Q.J.; Li, Y.C.; Liang, J.L.; Zhan, J.Y.X.; Xie, Y.L.; Su, Z.R.; Liu, Y.H. Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnén against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis. J. Ethnopharmacol. 2019, 234, 44–56. [Google Scholar] [CrossRef]
- Sangma, P.M.; Dhiman, S.R.; Thakur, P.; Gupta, Y.C. Effect of covering materials on off-season cut flower production in chrysanthemum (Dendrathema grandiflora). Indian J. Agric. Sci. 2016, 86, 522–526. [Google Scholar]
- Souri, M.K.; Goodarzizadeh, S.; Ahmadi, M.; Hatamian, M. Characteristics of postharvest quality of chrysanthemum cut flowers under pretreatment with nitrogenous compounds. Acta Sci. Pol. Hortorum Cultus 2018, 17, 83–90. [Google Scholar] [CrossRef]
- Sajjad, Y.; Jaskani, M.J.; Asif, M.; Qasim, M. Application of plant growth regulators in ornamental plants: A review. Pak. J. Agric. Sci. 2017, 54, 327–333. [Google Scholar] [CrossRef]
- Choudhari, R.; Kulkarni, B.S.; Shiragur, M. Growth, flowering and quality of cut Chrysanthemum (Dendranthema grandiflora Tzevelev.) cv. Yellow Gold, as influenced by different growth regulators. Int. J. Chem. Stud. 2018, 6, 1458–1460. [Google Scholar]
- Bons, H.K.; Kaur, M. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: A review. J. Hortic. Sci. Biotechnol. 2020, 95, 137–146. [Google Scholar] [CrossRef]
- Rademacher, W. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Biol. 2000, 51, 501–531. [Google Scholar] [CrossRef] [Green Version]
- Megersa, H.G.; Lemma, D.T.; Banjawu, D.T. Effects of plant growth retardants and pot sizes on the height of potting ornamental plants: A Short Review. J. Hortic. 2018, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.A.; Gilley, A.; Sankhla, N.; Davis, T.D. Triazoles as plant growth regulators and stress protectants. Hortic. Rev. 2000, 24, 55–138. [Google Scholar]
- Rostami, S.; Azhdarpoor, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.D.; Curry, E.A.; Steffens, G.L. Chemical regulation of vegetative growth. Crit. Rev. Plant Sci. 1991, 10, 151–188. [Google Scholar] [CrossRef]
- Desta, B.; Amare, G. Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agric. 2021, 8, 1–15. [Google Scholar] [CrossRef]
- Ahmade, E. Effect of Pinching and Paclobutrazol on Growth and Flowering of Garland Chrysanthemum (Chrysanthemum coronarium L.). SJAR 2019, 6, 409–419. [Google Scholar]
- Elisheba, B.P.; Sudhagar, R. Growth manipulation in ornamental sunflower (Helianthus annuus) cv. Ring of Fire as a bedding plant. Crop Res. 2021, 56, 30–36. [Google Scholar]
- Liang, F.B.; Yang, C.X.; Sui, L.L.; Xu, S.Z.; Yao, H.S.; Zhang, W.F. Flumetralin and dimethyl piperidinium chloride alter light distribution in cotton canopies by optimizing the spatial configuration of leaves and bolls. J. Integr. Agric. 2020, 19, 1777–1788. [Google Scholar] [CrossRef]
- Cordeiro, C.F.D.S.; Santos, I.F.; Mello, P.R.D.; Echer, F.R. Cotton root growth response to mepiquat chloride application in early reproductive stages are cultivar dependent. Crop Sci. 2021, 61, 1–9. [Google Scholar] [CrossRef]
- Polat, T.; Özer, H.; Öztürk, E.; Sefaoğlu, F. Effects of mepiquat chloride applications on non-oilseed sunflower. Turk. J. Agric. For. 2017, 41, 472–479. [Google Scholar] [CrossRef]
- dos Santos, J.A.; Matsumoto, S.N.; Trazzi, P.A.; Ramos, P.A.S.; de Oliveira, L.S.; Campoe, O.C. Morphophysiological changes by mepiquat chloride application in Eucalyptus clones. Trees 2021, 35, 189–198. [Google Scholar] [CrossRef]
- Nir, I.D.O.; Moshelion, M.; Weiss, D. The Arabidopsis GIBBERELLIN METHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant Cell Environ. 2014, 37, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Nir, I.; Shohat, H.; Panizel, I.; Olszewski, N.; Aharoni, A.; Weiss, D. The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. Plant Cell 2017, 29, 3186–3197. [Google Scholar] [CrossRef] [Green Version]
- Kwok, I.M.Y.; Loeffler, R.T. The biochemical mode of action of some newer azole fungicides. Pestic. Sci. 1993, 39, 1–11. [Google Scholar] [CrossRef]
- Hartwig, T.; Corvalan, C.; Best, N.B.; Budka, J.S.; Zhu, J.Y.; Choe, S.; Schulz, B. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS ONE 2012, 7, e36625. [Google Scholar] [CrossRef] [Green Version]
- Bajguz, A.; Hayat, S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 2009, 47, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nolan, T.M.; Vukašinović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 2020, 32, 295–318. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yang, J.; Pan, H.; Pearson, B.J. Dwarfing Effects of Chlormequat Chloride and Uniconazole on Potted Baby Primrose. HortTechnology 2020, 30, 536–543. [Google Scholar] [CrossRef]
- Shevchuk, O.A.; Kravets, O.O.; Shevchuk, V.V.; Khodanitska, O.O.; Tkachuk, O.O.; Golunova, L.A.; Polyvanyi, S.V.; Knyazyuk, O.V.; Zavalnyuk, O.L. Features of leaf mesostructure organization under plant growth regulators treatment on broad bean plants. Mod. Phytomorphol. 2020, 14, 104–106. [Google Scholar]
- Singh, J.; Kumar, J.; Nigam, R.; Singh, R.; Kumar, A.; Singh, H. Influence of growth retardant and inorganic fertilizers on vegetative growth of Chrysanthemum (Dendranthema grandiflora Ramat). Int. J. Agric. Inv. 2018, 3, 25–33. [Google Scholar] [CrossRef]
- Burrows, G.E.; Boag, T.S.; Stewart, W.P. Changes in leaf, stem, and root anatomy of Chrysanthemum cv. Lillian Hoek following paclobutrazol application. J. Plant Growth Regul. 1992, 11, 189–194. [Google Scholar] [CrossRef]
- Karlović, K.; Vršek, I.; Šindrak, Z.; Židovec, V. Influence of growth regulators on the height and number of inflorescence shoots in the Chrysanthemum cultivar ‘Revert’. Agric. Conspec. Sci. 2004, 69, 63–66. [Google Scholar]
- El-Sheibany, O.M.; El-Malki, N.A.; Barras-Ali, A. Effect of application of growth retardant ALAR on some foliage characters of local cultivar of Chrysanthemum. J. Sci. Appl. 2007, 1, 15–20. [Google Scholar]
- Zakrzewski, P.; Anita Schroeter-Zakrzewska, A. Growth retardants in the cultivation of Chrysanthemum Χ grandiflorum (Raman.) Kitam.’Leticia Time Yellow’. Folia Hortic. 2011, 23, 139–143. [Google Scholar] [CrossRef] [Green Version]
- El-Malki, N.A.; Barras–Ali, A. Effect of Growth Retardant ALARR on Some Anatomical and Chemical Changes in local Cultivar of Chrysanthemum morifolium. SJUB 2015, 1, 64. [Google Scholar]
- Suman, M.; Sangma, P.D.; Meghawal, D.R.; Sahu, O.P. Effect of plant growth regulators on fruit crops. J. Pharmacogn. Phytochem. 2017, 6, 331–337. [Google Scholar]
- Qureshi, I.A.; Gulzar, S.; Dar, A.R.; Rehman, R.U.; Tahir, I. Effect of growth retardants on the growth and flowering of Chrysanthemum morifolium cv. Flirt. Indian J. Agric. Res. 2018, 52, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sujin, G.S.; Arivazhagan, E.; Sudhagar, R.; Muraleedharan, A. Studies on Influence of Growth Retardants on Flower Crops. Pract. Res. 2020, 2, 51. [Google Scholar]
- Abrol, A.; Dhiman, S.R.; Sharma, P.; Sharma, M. Effect of growth regulators on potted chrysanthemum under different photoperiodic conditions. J. Hill Agric. 2018, 9, 165–170. [Google Scholar] [CrossRef]
- Abrol, A.; Dhiman, S.R.; Sharma, P. Effect of cultivars, growth regulators and photoperiods on production of potted chrysanthemum, Dendranthema grandiflora Tzvelev. Int. J. Farm Sci. 2018, 8, 66–72. [Google Scholar] [CrossRef]
- Bidave, S.R.; Munde, G.R. Effect of growth retardants on vegetative and flowering characters of okra (Abelmoschus Esculentus L.) CV. PBN-OK-1. J. Life Sci. 2020, 17, 59–62. [Google Scholar]
- Ellis, G.D.; Knowles, L.O.; Knowles, N.R. Increasing the Production Efficiency of Potato with Plant Growth Retardants. Am. J. Potato Res. 2020, 97, 88–101. [Google Scholar] [CrossRef]
- Youssef, A.S.M. Effect of Some Growth Retardants and Pinching on Growth, Flowering and Chemical Composition of Tabernaemontana Coronaria Plant. Ann. Agric. Sci. 2020, 58, 1023–1038. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Y.; Wang, L.F.; Wang, M.; Zhao, M.; Tian, Y.; Li, Y.F. Transcriptome profiling of the elongating internode of cotton (Gossypium hirsutum L.) seedlings in response to mepiquat chloride. Front. Plant Sci. 2020, 10, 1751. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yin, Y.; Jing, X.; Wang, M.; Zhao, M.; Yu, J.; Qiu, Z.; Li, Y.F. Profiling of MicroRNAs Involved in Mepiquat Chloride-Mediated Inhibition of Internode Elongation in Cotton (Gossypium hirsutum L.) Seedlings. Front. Plant Sci. 2021, 12, 255. [Google Scholar] [CrossRef]
- Rohith, R. Standardization of Growth Retardants for Production of Potted Bougainvillea. Chem. Sci. Rev. Lett. 2021, 10, 214–220. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, K.; Chahal, H.S. Effect of Mepiquat chloride and detopping on growth and production of green gram (Vigna radiata L. Wilczek). Environ. Conserv. J. 2020, 21, 85–88. [Google Scholar] [CrossRef]
- Pinto, A.C.R.; Rodrigues, T.D.J.D.; Leite, I.C.; Barbosa, J.C. Growth retardants on development and ornamental quality of potted ‘Lilliput’ Zinnia elegans Jacq. Sci. Agric. 2005, 62, 337–345. [Google Scholar] [CrossRef]
- Kumari, S. Effect of growth retardant (CCC) and growth promoter (6-FAP) on seedling growth and chlorophyll content of Coleoptile leaves in pearl millet (Pennisetum glaucum L.) under moisture stress. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2522–2529. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Kumar, K.; Singh, A. Effect of growth retardant and detopping on growth and yield of summer mungbean (Vigna radiata L. Wilczek) under vertisols of Punjab. J. Food Legum. 2020, 33, 64–66. [Google Scholar]
- Malik, K.M.; Wani, A.H.; Nazki, I.T. Effect of growth retardants on growth, flowering and bulb yield of Asiatic Lilium. Int. J. Sci. Res. 2021, 11, 448–452. [Google Scholar] [CrossRef]
- Sunayana, S.; Manjusha, A.M.; Rajagopalan, A.; Madala, A. Effect of growth retardants (Alar and Cycocel) on flower yield and carotenoid content in African marigold (Tagetes erecta L.) varieties. J. Trop. Agric. 2018, 55, 205–208. [Google Scholar]
- Sahu, M.K.; Tirkey, T.; Tamrakar, S.K.; Tiwari, S.P.; Shukla, N.; Varma, L.S.; Shankar, D. Effect of plant growth retardants and their time of application on flower quality attributes of African marigold (Tagetes erecta L.). J. Pharm. Innov. 2021, 10, 932–936. [Google Scholar]
- Rajiv, G. Effect of Plant Growth Retardants on the Growth and Flowering of Nerium (Nerium Oleander L.) Cv. Red. Chem. Sci. Rev. Lett. 2018, 7, 875–879. [Google Scholar]
- Alhajhoj, M.R. Effects of Foliar Application of Plant Growth Regulators on Growth and Flowering Characteristics of Chrysanthemum CV. Paintball. Pak. J. Life Soc. Sci. 2017, 15, 114–119. [Google Scholar]
- Vineeta, P.; Sankar, M.V.; Anuj, K.; Singh, O.P. Effect of plant growth regulators on growth, flowering and flower quality of chrysanthemum (Dendranthema grandiflora Tzvelev). Green Farming 2018, 9, 173–175. [Google Scholar]
- Sahu, J.K.; Tamrakar, S.K.; Lakpale¹, R.; Tirkey, T. Effect of planting geometry and plant growth regulators on growth and flowering of chrysanthemum. Progress. Hortic. 2021, 53, 105–108. [Google Scholar] [CrossRef]
- Vaghasia, M.; Polara, N.D. Effect of plant growth retardants on growth, flowering and yield of chrysanthemum (Chrysanthemum morifolium Ramat.) cv. IIHR-6. MJMBR 2016, 3, 99–104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kentelky, E.; Szekely-Varga, Z.; Bálint, J.; Balog, A. Enhance Growth and Flower Quality of Chrysanthemum indicum L. with Application of Plant Growth Retardants. Horticulturae 2021, 7, 532. https://doi.org/10.3390/horticulturae7120532
Kentelky E, Szekely-Varga Z, Bálint J, Balog A. Enhance Growth and Flower Quality of Chrysanthemum indicum L. with Application of Plant Growth Retardants. Horticulturae. 2021; 7(12):532. https://doi.org/10.3390/horticulturae7120532
Chicago/Turabian StyleKentelky, Endre, Zsolt Szekely-Varga, János Bálint, and Adalbert Balog. 2021. "Enhance Growth and Flower Quality of Chrysanthemum indicum L. with Application of Plant Growth Retardants" Horticulturae 7, no. 12: 532. https://doi.org/10.3390/horticulturae7120532
APA StyleKentelky, E., Szekely-Varga, Z., Bálint, J., & Balog, A. (2021). Enhance Growth and Flower Quality of Chrysanthemum indicum L. with Application of Plant Growth Retardants. Horticulturae, 7(12), 532. https://doi.org/10.3390/horticulturae7120532