Persistence and Transfer of Foodborne Pathogens to Sunflower and Pea Shoot Microgreens during Production in Soil-Free Cultivation Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture Preparation
2.2. Preparation of Experimental Set-Up and Day 0 Sampling
2.3. Germination and Cultivation of Microgreens on SFCM
2.4. Day 10 SFCM and Microgreen Sampling
2.5. Chemical Analysis of SFCM and Microgreens
2.6. Statistical Analysis
3. Results
3.1. Relative Humidity and Temperature during Microgreen Cultivation
3.2. Pathogen Persistence in Planted and Unplanted SFCM
3.3. Pathogen Concentrations in Microgreens Grown in SFCM
3.4. Chemical Analysis of Planted and Unplanted SFCM
3.5. Chemical Analysis of Harvested Sunflower and Pea Shoot Microgreens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Food & Drug Administration. Draft Guidance for Industry: Reducing Microbial Food Safety Hazards in the Production of Seed for Sprouting. 2019. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-reducing-microbial-food-safety-hazards-production-seed-sprouting (accessed on 20 May 2021).
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef]
- Muchjajib, U.; Muchjajib, S.; Suknikom, S.; Butsai, J. Evaluation of organic media alternatives for the production of microgreens in Thailand. Acta Hortic. 2015, 1102, 157–162. [Google Scholar] [CrossRef]
- Treadwell, D.; Hochmuth, R.; Landrum, L.; Laughlin, W. Microgreens: A New Specialty Crop; University of Florida EDIS Publication #HS1164; University of Florida IFAS Extension: Gainesville, FL, USA, 2016; Available online: https://edis.ifas.ufl.edu/publication/HS1164 (accessed on 20 September 2021).
- Weber, C.F. Nutrient content of cabbage and lettuce microgreens grown on vermicompost and hydroponic growing pads. J. Hortic. 2017, 3, 190. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Cahn, M.; Daugovish, O.; Koike, S.; Natwick, E.; Smith, H.; Subbarao, K.; Takele, E.; Turini, T. Leaf Lettuce Production in California; Publication 7216; University of California Agricultural and Natural Resources Communication Services: Richmond, CA, USA, 2011; Available online: https://anrcatalog.ucanr.edu/pdf/7216.pdf (accessed on 20 September 2021).
- Grahn, C.M.; Benedict, C.; Thornton, T.; Miles, C. Production of baby-leaf salad greens in the spring and fall seasons of Northwest Washington. HortScience 2015, 50, 1467–1471. [Google Scholar] [CrossRef]
- Agrilyst. State of Indoor Farming. 2016. Available online: https://artemisag.com/state-of-indoor-farming-2016/ (accessed on 20 May 2021).
- Agrilyst. State of Indoor Farming. 2017. Available online: https://www.cropscience.bayer.com/sites/cropscience/files/inline-files/stateofindoorfarming-report-2017_0.pdf (accessed on 20 May 2021).
- Misra, G.; Gibson, K.E. Characterization of microgreen growing operations and associated food safety practices. Food Prot. Trends 2021, 41, 56–69. [Google Scholar] [CrossRef]
- Riggio, G.M.; Wang, Q.; Kniel, K.E.; Gibson, K.E. Microgreens—A review of food safety considerations along the farm to fork continuum. Int. J. Food Microbiol. 2019, 290, 76–85. [Google Scholar] [CrossRef]
- Turner, E.R.; Luo, Y.; Buchanan, R.L. Microgreen nutrition, food safety, and shelf life: A review. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef] [Green Version]
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177–208. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Canadian Food Inspection Agency. Food Recall Warning—Goodleaf Brand Daikon Radish Microgreens Recalled due to Listeria Monocytogenes. 28 June 2018. Available online: https://healthycanadians.gc.ca/recall-alert-rappel-avis/inspection/2018/67150r-eng.php (accessed on 20 May 2021).
- Canadian Food Inspection Agency. Updated Food Recall Warning—Evergreen Herbs Brand Pea Shoots Recalled due to Listeria Monocytogenes. 7 June 2018. Available online: https://healthycanadians.gc.ca/recall-alert-rappel-avis/inspection/2018/67012r-eng.php (accessed on 20 May 2021).
- Canadian Food Inspection Agency. Food Recall Warning—GPM Brand Pea Shoots Recalled due to Listeria Monocytogenes. 19 April 2019. Available online: https://inspection.canada.ca/food-recall-warnings-and-allergy-alerts/2019-04-19/eng/1555725095376/1555725097506 (accessed on 20 May 2021).
- Canadian Food Inspection Agency. Food Recall Warning—Sprouts Alive Brand and Sunsprout Brand Micro-Greens Alfalfa Recalled Due to Salmonella. 19 September 2020. Available online: https://inspection.canada.ca/food-recall-warnings-and-allergy-alerts/2020-09-19/eng/1600566035595/1600566042478 (accessed on 20 May 2021).
- United States Food & Drug Administration; Osage Gardens Inc. Recalls Osage Gardens Organic 2oz Micro Greens Because of Possible Health Risk. 7 October 2016. Available online: http://wayback.archive-it.org/7993/20180126102042/https://www.fda.gov/Safety/Recalls/ucm524638.htm (accessed on 20 May 2021).
- United States Food & Drug Administration. Chlorofields Recalls Asian Microgreens Because of Possible Health Risk. 23 March 2017. Available online: http://wayback.archive-it.org/7993/20180126101801/https://www.fda.gov/Safety/Recalls/ucm548250.htm (accessed on 20 May 2021).
- United States Food & Drug Administration. Greenbelt Greenhouse Ltd Recalls Greenbelt Microgreens Brand Microgreens Because of Possible Health Risk. 25 April 2018. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/greenbelt-greenhouse-ltd-recalls-greenbelt-microgreens-brand-microgreens-because-possible-health (accessed on 20 May 2021).
- Bernstein, N.; Sela, S.; Pinto, R.; Ioffe, M. Evidence for internalization of Escherichia coli into the aerial parts of maize via the root system. J. Food Prot. 2016, 70, 471–475. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, D.; Chen, J. Fate of Salmonella enterica and enterohemorrhagic Escherichia coli on vegetable seeds contaminated by direct contact with artificially inoculated soil during germination. J. Food Prot. 2020, 83, 1218–1226. [Google Scholar] [CrossRef]
- Deering, A.J.; Mauer, L.J.; Pruitt, R.E. Internalization of E. coli O157:H7 and Salmonella spp. in plants: A review. Food Res. Int. 2012, 45, 567–575. [Google Scholar] [CrossRef]
- DiCaprio, E.; Purgianto, A.; Li, J. Effects of abiotic and biotic stresses on the internalization and dissemination of human norovirus surrogates in growing romaine lettuce. Appl. Environ. Microbiol. 2015, 81, 4791–4800. [Google Scholar] [CrossRef] [Green Version]
- Erickson, M.C.; Webb, C.C.; Diaz-Perez, J.C.; Phatak, S.C.; Silvoy, J.J.; Davey, L.; Payton, A.S.; Liao, J.; Ma, L.; Doyle, M.P. Infrequent internalization of Escherichia coli O157: H7 into field-grown leafy greens. J. Food Prot. 2010, 73, 500–506. [Google Scholar] [CrossRef]
- Erickson, M.C. Internalization of fresh produce by foodborne pathogens. Annu. Rev. Food Sci. Technol. 2012, 3, 283–310. [Google Scholar] [CrossRef]
- Erickson, M.C.; Liao, J.Y.; Payton, A.S.; Cook, P.W.; Den Bakker, H.C.; Bautista, J.; Pérez, J.C.D. Pre-harvest internalization and surface survival of Salmonella and Escherichia coli O157:H7 sprayed onto different lettuce cultivars under field and growth chamber conditions. Int. J. Food Microbiol. 2019, 291, 197–204. [Google Scholar] [CrossRef]
- Gao, G.; DiCaprio, E.; Chambers, H.; Li, J.; Yang, Z. Internalization and dissemination of human norovirus and Tulane virus in fresh produce is plant dependent. Food Microbiol. 2017, 69, 25–32. [Google Scholar] [CrossRef]
- Hirneisen, K.A.; Sharma, M.; Kniel, K.E. Human enteric pathogen internalization by root uptake into food crops. Foodborne Pathog. Dis. 2012, 9, 396–405. [Google Scholar] [CrossRef]
- Nduhiu, G.; Gicheru, M.M.; Gathura, P.B.; Karanja, N.K.; Githinji, W.T.; Nordin, A. Internalization of enteropathogenic human bacteria in lettuce and coriander plant tissue. ISABB J. Heal. Environ. Sci. 2018, 5, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Warriner, K.; Ibrahim, F.; Waites, W.M.; Dickinson, M.; Wright, C. Internalization of human pathogens within growing salad vegetables. Biotechnol. Genet. Eng. Rev. 2003, 20, 117–136. [Google Scholar] [CrossRef]
- Zhang, Y.; Sallach, J.B.; Hodges, L.; Snow, D.D.; Bartelt-Hunt, S.L.; Eskridge, K.M.; Li, X. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation. Environ. Pollut. 2016, 208, 523–531. [Google Scholar] [CrossRef]
- Zheng, J.; Allard, S.; Reynolds, S.; Millner, P.; Arce, G.; Blodgett, R.J.; Brown, E.W. Colonization and internalization of Salmonella enterica in tomato plants. Appl. Environ. Microbiol. 2013, 79, 2494–2502. [Google Scholar] [CrossRef] [Green Version]
- DiCaprio, E.; Ma, Y.; Purgianto, A.; Hughes, J.; Li, J. Internalization and dissemination of human norovirus and animal caliciviruses in hydroponically grown romaine lettuce. Appl. Environ. Microbiol. 2012, 78, 6143–6152. [Google Scholar] [CrossRef] [Green Version]
- Franz, E.; Visser, A.V.; Van Diepeningen, A.D.; Klerks, M.M.; Termorshuizen, A.J.; van Bruggen, A.H.C. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Food Microbiol. 2007, 24, 106–112. [Google Scholar] [CrossRef]
- Macarisin, D.; Patel, J.; Sharma, V.K. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil. Int. J. Food Microbiol. 2014, 173, 48–53. [Google Scholar] [CrossRef]
- Moriarty, M.J.; Semmens, K.; Bissonnette, G.K.; Jaczynski, J. Inactivation with UV-radiation and internalization assessment of coliforms and Escherichia coli in aquaponically grown lettuce. LWT-Food Sci. Technol. 2018, 89, 624–630. [Google Scholar] [CrossRef]
- Moriarty, M.J.; Semmens, K.; Bissonnette, G.K.; Jaczynski, J. Internalization assessment of E. coli O157:H7 in hydroponically grown lettuce. LWT-Food Sci. Technol. 2019, 100, 183–188. [Google Scholar] [CrossRef]
- Sharma, M.; Ingram, D.T.; Patel, J.R.; Millner, P.D.; Wang, X.; Hull, A.E.; Donnenberg, M.S. A novel approach to investigate the uptake and internalization of Escherichia coli O157:H7 in spinach cultivated in soil and hydroponic medium. J. Food Prot. 2009, 72, 1513–1520. [Google Scholar] [CrossRef]
- Carducci, A.; Caponi, E.; Ciurli, A.; Verani, M. Possible internalization of an enterovirus in hydroponically grown lettuce. Int. J. Environ. Res. Public Health 2015, 12, 8214–8227. [Google Scholar] [CrossRef] [Green Version]
- Riggio, G.M.; Jones, S.J.; Gibson, K.E. Risk of human pathogen internalization in leafy vegetables during lab-scale hydroponic cultivation. Horticulturae 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- United States Centers for Disease Control and Prevention. Salmonella Outbreak Linked to BrightFarms Packaged Salad Greens. 6 October 2021. Available online: https://www.cdc.gov/salmonella/typhimurium-07-21/index.html (accessed on 25 October 2021).
- Reed, E.; Ferreira, C.M.; Bell, R.; Brown, E.W.; Zheng, J. Plant-microbe and abiotic factors influencing Salmonella survival and growth on alfalfa sprouts and Swiss chard microgreens. Appl. Environ. Microbiol. 2018, 84, e02814–e02817. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Nou, X.; Luo, Y.; Wang, Q. Comparison of the growth of Escherichia coli O157:H7 and O104:H4 during sprouting and microgreen production from contaminated radish seeds. Food Microbiol. 2014, 44, 60–63. [Google Scholar] [CrossRef]
- Xiao, Z.; Bauchan, G.; Nichols-Russell, L.; Luo, Y.; Wang, Q.; Nou, X. Proliferation of Escherichia coli O157:H7 in soil-substitute and hydroponic microgreen production systems. J. Food Prot. 2015, 78, 1785–1790. [Google Scholar] [CrossRef] [Green Version]
- Işik, H.; Topalcengiz, Z.; Güner, S.; Aksoy, A. Generic and Shiga toxin-producing Escherichia coli (O157:H7) contamination of lettuce and radish microgreens grown in peat moss and perlite. Food Control 2020, 111, 107079. [Google Scholar] [CrossRef]
- Wright, K.M.; Holden, N.J. Quantification and colonisation dynamics of Escherichia coli O157:H7 inoculation of microgreens species and plant growth substrates. Int. J. Food Microbiol. 2018, 273, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Kniel, K.E. Survival and transfer of murine norovirus within a hydroponic system during kale and mustard microgreen harvesting. Appl. Environ. Microbiol. 2016, 82, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Misra, G.; Gibson, K.E. Survival of Salmonella enterica subsp. enterica serovar Javiana and Listeria monocytogenes is dependent on type of soil-free microgreen cultivation matrix. J. Appl. Microbiol. 2020, 129, 1720–1732. [Google Scholar] [CrossRef]
- Chandra, D.; Kim, J.G.; Kim, Y.P. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic. Environ. Biotechnol. 2012, 53, 32–40. [Google Scholar] [CrossRef]
- Photchanachai, S.; Tantharapornrerk, N.; Pola, W.; Muangkote, S.; Bayogan, E.R.V. Coconut coir media sterilization method for growing Chinese kale microgreens. Acta Hortic. 2018, 1210, 51–58. [Google Scholar] [CrossRef]
- Mukherjee, N.; Nolan, V.G.; Dunn, J.R.; Banerjee, P. Sources of human infection by Salmonella enterica serotype Javiana: A systematic review. PLoS ONE 2019, 14, e0222108. [Google Scholar] [CrossRef] [Green Version]
- Provin, T. Total carbon and nitrogen and organic carbon via thermal combustion analyses. In Soil Test Methods from the Southeastern United States, Southern Cooperative Series Bulletin; Sikora, F.J., Moore, K.P., Eds.; Southern Extension and Research Activity Information Exchange Group—6: Lexington, KY, USA, 2014; Volume 419, pp. 149–154. [Google Scholar]
- Peters, J.; Wolf, A.; Wolf, N. Ammonium Nitrogen. In Recommended Methods of Manure Analysis; Publ. A3769; University of Wisconsin Ext: Madison, WI, USA, 2003; pp. 25–29. [Google Scholar]
- Zhang, H.; Hardy, D.H.; Mylavarapu, R.; Wang, J.J. Chapter 4.3 Mehlich-3. In Soil Test Methods from the Southeastern United States, Southern Cooperative Series Bulletin; Sikora, F.J., Moore, K.P., Eds.; Southern Extension and Research Activity Information Exchange Group—6: Lexington, KY, USA, 2014; Volume 419, pp. 101–110. [Google Scholar]
- Sikora, F.J.; Kissel, D.E. Soil pH. In Soil Test Methods from the Southeastern United States, Southern Cooperative Series Bulletin; Sikora, F.J., Moore, K.P., Eds.; Southern Extension and Research Activity Information Exchange Group—6: Lexington, KY, USA, 2014; Volume 419, pp. 48–53. [Google Scholar]
- Wang, J.J.; Provin, T.; Zhang, H. Measurement of soil salinity and sodicity. In Soil Test Methods from the Southeastern United States, Southern Cooperative Series Bulletin; Sikora, F.J., Moore, K.P., Eds.; Southern Extension and Research Activity Information Exchange Group—6: Lexington, KY, USA, 2014; Volume 419, pp. 185–193. [Google Scholar]
- Mulvaney, R.L. Nitrogen-inorganic forms. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 1123–1184. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Method 973.18: Fiber (Acid Detergent) and Lignin in Animal Feed. In ANKOM Technology Method 5—Acid Detergent Fiber in Feeds—Filter Bag Technique for A200, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Dankwa, A.S.; Machado, R.M.; Perry, J.J. Sources of food contamination in a closed hydroponic system. Lett. Appl. Microbiol. 2019, 70, 55–62. [Google Scholar] [CrossRef]
- Holden, N.; Pritchard, L.; Toth, I. Colonization outwith the colon: Plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev. 2009, 33, 689–703. [Google Scholar] [CrossRef]
- Boehm, M.J.; Hoitink, H.A.J. Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia. Phytopathology 1992, 82, 259–264. [Google Scholar] [CrossRef]
- Tahvonen, R. The disease suppressiveness of light coloured Sphagnum peat and biocontrol of plant diseases with Streptomyces sp. Acta Hortic. 1993, 342, 37–42. [Google Scholar] [CrossRef]
- Marschner, P.; Crowley, D.; Yang, C.H. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 2004, 261, 199–208. [Google Scholar] [CrossRef]
- Kasozi, N.; Kaiser, H.; Wilhelmi, B. Effect of Bacillus spp. on lettuce growth and root associated bacterial community in a small-scale aquaponics system. Agronomy 2021, 11, 947. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Chitarra, W.; Decastelli, L.; Garibaldi, A.; Gullino, M.L. Potential uptake of Escherichia coli O157:H7 and Listeria monocytogenes from growth substrate into leaves of salad plants and basil grown in soil irrigated with contaminated water. Int. J. Food Microbiol. 2014, 189, 139–145. [Google Scholar] [CrossRef]
- Cooley, M.B.; Miller, W.G.; Mandrell, R.E. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157: H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 2003, 69, 4915–4926. [Google Scholar] [CrossRef] [Green Version]
- Cooley, M.B.; Chao, D.; Mandrell, R.E. Escherichia coli O157:H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria. J. Food Prot. 2006, 69, 2329–2335. [Google Scholar] [CrossRef]
- Jablasone, J.; Warriner, K.; Griffiths, M. Interactions of Escherichia coli O157: H7, Salmonella Typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int. J. Food Microbiol. 2005, 99, 7–18. [Google Scholar] [CrossRef]
- Klerks, M.M.; Franz, E.; van Gent-Pelzer, M.; Zijlstra, C.; Van Bruggen, A.H. Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J. 2007, 1, 620–631. [Google Scholar] [CrossRef] [Green Version]
- Kutter, S.; Hartmann, A.; Schmid, M. Colonization of barley (Hordeum vulgare) with Salmonella enterica and Listeria spp. FEMS Microbiol. Ecol. 2006, 56, 262–271. [Google Scholar] [CrossRef]
- Wheatley, R.M.; Poole, P.S. Mechanisms of bacterial attachment to roots. FEMS Microbiol. Rev. 2018, 42, 448–461. [Google Scholar] [CrossRef]
- Ranjard, L.; Richaume, A. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol. 2001, 152, 707–716. [Google Scholar] [CrossRef]
- Wesche, A.M.; Ryser, E.T. Stress adaptation, survival and recovery of foodborne pathogens. In Guide to Foodborne Pathogens, 2nd ed.; Labbé, R.G., García, S., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2013; pp. 422–437. [Google Scholar] [CrossRef]
- Wu, V.C.H.; Fung, D.Y.C. Evaluation of thin agar layer method for recovery of heat-injured foodborne pathogens. J. Food Sci. 2001, 66, 580–583. [Google Scholar] [CrossRef]
- Koseki, S.; Mizuno, Y.; Yamamoto, K. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system. J. Food Protect. 2011, 74, 1536–1542. [Google Scholar] [CrossRef]
Biostrate | Peat | |||
---|---|---|---|---|
Analyte 1, Unit | Sunflower | Pea Shoot | Sunflower | Pea Shoot |
% ADF | 26.16 | 12.43 | 24.79 | 15.12 |
% NDF | 28.95 | 14.52 | 27.96 | 16.43 |
% Nitrogen | 3.56 | 7.65 | 4.21 | 8.31 |
% Carbon | 50.49 | 43.71 | 46.23 | 42.78 |
% P | 0.74 | 0.73 | 0.73 | 0.81 |
% K | 1.18 | 1.83 | 2.15 | 2.43 |
% Ca | 0.101 | <0.001 | 0.430 | 0.162 |
% Mg | 0.42 | 0.22 | 0.80 | 0.34 |
% S | 0.20 | 0.24 | 0.34 | 0.37 |
Na (mg/kg) | 3312 | 663 | 388 | 342 |
Fe (mg/kg) | 46 | 70 | 172 | 122 |
Mn (mg/kg) | 20 | 11 | 120 | 60 |
Zn (mg/kg) | 61 | 52 | 72 | 50 |
Cu (mg/kg) | 21 | 15 | 25 | 13 |
B (mg/kg) | 14 | 10 | 21 | 12 |
NO3-N (mg/kg) | 375 | 125 | 4550 | 1925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Misra, G.M.; Baker, C.A.; Gibson, K.E. Persistence and Transfer of Foodborne Pathogens to Sunflower and Pea Shoot Microgreens during Production in Soil-Free Cultivation Matrix. Horticulturae 2021, 7, 446. https://doi.org/10.3390/horticulturae7110446
Deng W, Misra GM, Baker CA, Gibson KE. Persistence and Transfer of Foodborne Pathogens to Sunflower and Pea Shoot Microgreens during Production in Soil-Free Cultivation Matrix. Horticulturae. 2021; 7(11):446. https://doi.org/10.3390/horticulturae7110446
Chicago/Turabian StyleDeng, Wenjun, Gina M. Misra, Christopher A. Baker, and Kristen E. Gibson. 2021. "Persistence and Transfer of Foodborne Pathogens to Sunflower and Pea Shoot Microgreens during Production in Soil-Free Cultivation Matrix" Horticulturae 7, no. 11: 446. https://doi.org/10.3390/horticulturae7110446
APA StyleDeng, W., Misra, G. M., Baker, C. A., & Gibson, K. E. (2021). Persistence and Transfer of Foodborne Pathogens to Sunflower and Pea Shoot Microgreens during Production in Soil-Free Cultivation Matrix. Horticulturae, 7(11), 446. https://doi.org/10.3390/horticulturae7110446