Impact of Grafting on Watermelon Fruit Maturity and Quality
Abstract
:1. Introduction
2. Factors Affecting Time of Harvest
3. Effect of Grafting on Fruit Quality
3.1. Hollow Heart and Hard Seed Formation
3.2. Flesh Firmness
3.3. Total Soluble Solids
3.4. Fruit pH and Titratable Acidity
3.5. Lycopene Content
3.6. Citrulline
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; Galarza, S.L.Ó.; Maroto, J.V.; Lee, S.G.; Huh, Y.C.; Miguel, A.; King, S.R.; Cohen, R.; et al. Cucurbit grafting. Crit. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Leonardi, C.; Bie, Z. Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. 2010, 127, 147–155. [Google Scholar] [CrossRef]
- Flores, F.B.; Sanchez-Bel, P.; Estan, M.T.; Martinez-Rodriguez, M.M.; Moyano, E.; Morales, B.; Bolarín, M.C. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 2010, 125, 211–217. [Google Scholar] [CrossRef]
- Kumar, P.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Kalunke, R.M.; Colla, G. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front. Plant Sci. 2015, 6, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouphael, Y.; Rea, E.; Cardarelli, M.; Bitterlich, M.; Schwarz, D.; Colla, G. Can adverse effects of acidity and aluminum toxicity be alleviated by appropriate rootstock selection in cucumber? Front. Plant Sci. 2016, 7, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, A.; Maroto, J.V.; Bautista, A.S.; Baixauli, C.; Cebolla, V.; Pascual, B.; Lopez, S.; Guardiola, J.L. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Sci. Hortic. 2004, 103, 9–17. [Google Scholar] [CrossRef]
- Cohen, R.; Dombrovsky, A.; Louws, F.J. Grafting as agrotechnology for reducing disease damage. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CAB International: Oxford, UK, 2017; pp. 155–170. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef] [Green Version]
- Louws, F.J.; Rivard, C.L.; Kubota, C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic. 2010, 127, 127–146. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Imtiaz, M.; Kong, Q.; Cheng, F.; Ahmed, W.; Huang, Y.; Bie, Z. Grafting: A technique to modify ion accumulation in horticultural crops. Front. Plant Sci. 2016, 7, 1457. [Google Scholar] [CrossRef] [Green Version]
- Aloni, B.; Cohen, R.; Karni, L.; Aktas, H.; Edelstein, M. Hormonal signaling in rootstock-scion interactions. Sci. Hortic. 2010, 127, 119–126. [Google Scholar] [CrossRef]
- Pulgar, G.; Villora, G.; Moreno, D.A.; Romero, L. Improving the mineral nutrition in grafted watermelon plants: Nitrogen metabolism. Biol. Plant. 2000, 43, 607–609. [Google Scholar] [CrossRef]
- Sakata, Y.; Ohara, T.; Sugiyama, M. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hort. 2007, 731, 159–170. [Google Scholar] [CrossRef]
- Satoh, S. Inhibition of flowering of cucumber grafted on rooted squash stocks. Physiol. Plant. 1996, 97, 440–444. [Google Scholar] [CrossRef]
- Yamasaki, A.; Yamashita, M.; Furuya, S. Mineral concentrations and cytokinin activity in the xylem exudate of grafted watermelons as affected by rootstocks and crop load. J. Jpn. Soc. Hortic. Sci. 1994, 62, 817–826. [Google Scholar] [CrossRef]
- Devi, P.; Perkins-Veazie, P.; Miles, C.A. Rootstock and plastic mulch effect on watermelon flowering and fruit maturity in a Verticillium dahliae infested field. HortScience 2020, 55, 1438–1445. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.; Schwarz, D. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [CrossRef]
- Kader, A.A. Flavor quality of fruits and vegetables. Perspective. J. Sci. Food Agric. 2008, 88, 1863–1868. [Google Scholar] [CrossRef]
- Kroggel, M.; Kubota, C. 2017 Potential Yield Increase by Grafting for Watermelon Production in Arizona; College of Agriculture, University of Arizona: Tucson, AZ, USA, 2017; Available online: https://repository.arizona.edu/bitstream/handle/10150/625432/az1732-2017_0.pdf?sequence=1&isAllowed=y (accessed on 20 April 2019).
- Devi, P.; Lukas, S.; Miles, C. Fruit maturity and quality of splice-grafted and one-cotyledon grafted watermelon. HortScience 2020, 55, 1090–1098. [Google Scholar] [CrossRef]
- Lee, J.M. Cultivation of grafted vegetables i. current status, grafting methods, and benefits. HortScience 1994, 29, 235–239. [Google Scholar] [CrossRef]
- Masuda, M.; Gomi, K. Mineral absorption and oxygen consumption in grafted and non-grafted cucumbers. J. Jpn. Soc. Hortic. Sci. 1984, 52, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Soteriou, G.A.; Kyriacou, M.C.; Siomos, A.S.; Gerasopoulos, D. Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem. 2014, 165, 282–289. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. United States Standards for Grades of Watermelons; Agricultural Marketing Service, U.S. Department of Agriculture: Washington, DC, USA, 2006. Available online: https://www.ams.usda.gov/sites/default/files/media/Watermelon_Standard%5B1%5D.pdf (accessed on 3 April 2019).
- Bruton, B.D.; Fish, W.W.; Roberts, W.; Popham, T.W. The influence of rootstock selection on fruit quality attributes of watermelon. Open Food Sci. J. 2009, 3, 15–34. [Google Scholar] [CrossRef]
- Proietti, S.; Rouphael, Y.; Colla, G.; Cardarelli, M.; de Agazio, M.; Zacchini, M.; Rea, E.; Moscatello, S.; Battistelli, A. Fruit quality of mini-watermelon as affected by grafting and irrigation regimens. J. Sci. Food Agric. 2008, 88, 1107–1114. [Google Scholar] [CrossRef]
- Wang, Q.; Men, L.; Gao, L.; Tian, Y. Effect of grafting and gypsum application on cucumber (Cucumis sativus L.) growth under saline water irrigation. Agric. Water Manag. 2017, 188, 79–90. [Google Scholar] [CrossRef]
- Kakizaki, T.; Kitashiba, H.; Zou, Z.; Li, F.; Fukino, N.; Ohara, T.; Nishio, T.; Ishida, M. A 2-oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish. Plant Physiol. 2017, 173, 1583–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, R.; Burger, Y.; Horev, C. Introducing grafted cucurbits to modern agriculture: The Israeli experience. Plant Dis. 2007, 91, 916–923. [Google Scholar] [CrossRef] [Green Version]
- Dabirian, S.; Inglis, D.; Miles, C. Grafting watermelon and using plastic mulch to control verticillium wilt caused by Verticillium dahliae in Washington. HortScience 2017, 52, 349–356. [Google Scholar] [CrossRef]
- Davis, R.A.; Perkins-Veazie, P. Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genet. Coop. Rpt. 2005, 28–29, 39–41. Available online: https://www.researchgate.net/publication/285707492_Rootstock_effects_on_plant_vigor_and_watermelon_fruit_quality (accessed on 15 July 2019).
- Wimer, J.A.; Miles, C.A.; Inglis, D.A. Evaluating grafted watermelon for verticillium wilt severity, yield, and fruit quality in Washington State. HortScience 2015, 50, 1332–1337. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Kondylis, A.; Passam, H.C. Fruit yield and quality of watermelon in relation to grafting. J. Food Agric. Environ. 2007, 5, 178–179. [Google Scholar]
- Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 2010, 127, 172–179. [Google Scholar] [CrossRef]
- Alan, O.; Zdemir, N.; Nen, Y. Effect of grafting on watermelon plant growth, yield and quality. J. Agron. 2007, 6, 362–365. [Google Scholar] [CrossRef] [Green Version]
- Candir, E.; Yetişir, H.; Karaca, F.; Ustun, D. Phytochemical characteristics of grafted watermelon on different bottle gourds (Lagenaria siceraria) collected from the Mediterranean region of Turkey. Turk. J. Agric. 2013, 37, 443–456. [Google Scholar] [CrossRef]
- Huitrón, M.V.; Ricárdez, M.; Dianez, F.; Camacho, F. Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience 2009, 44, 1838–1841. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; Soteriou, G.A.; Rouphael, Y.; Siomos, A.S.; Gerasopoulos, D. Configuration of watermelon fruit quality in response to rootstock-mediated harvest maturity and postharvest storage. J. Sci. Food Agric. 2016, 96, 2400–2409. [Google Scholar] [CrossRef]
- Johnson, G. 2014 These Beautiful Watermelon Patterns are Driving Everyone Crazy. Available online: https://www.boredpanda.com/weird-watermelons-beautiful-hollow-heart/ (accessed on 22 August 2018).
- Trandel, M.A.; Perkins-Veazie, P.; Schultheis, J.; Gunter, C.; Johannes, E. Grafting watermelon onto interspecific hybrid squash reduces hollow heart disorder. In II International Symposium on Vegetable Grafting; ISHS: Charlotte, NC, USA, 2019; Available online: https://www.researchgate.net/publication/336880681_Grafting_watermelon_to_interspecific_hybrid_rootstock_reduces_hollow_heart_disorder (accessed on 2 March 2018).
- Kano, Y. Relationship between the occurrence of hollowing in watermelon and the size and the number of fruit cells and intercellular air spaces. J. Jpn. Soc. Hortic. Sci. 1993, 62, 103–112. [Google Scholar] [CrossRef]
- Johnson, G. 2015 Research Finds Potential Cause of Hollow Heart Disorder in Watermelon. Available online: https://phys.org/news/2015-06-potential-hollow-heart-disorder-watermelons.html (accessed on 22 August 2018).
- Maynard, D.N. 1992 Growing Seedless Watermelon Univ. FL. Coop. Ext. Serv. Fact Sheet HS687. Available online: http://edis.ifas.ufl.edu/CV006 (accessed on 2 December 2019).
- Trandel, M.A. Cell Wall Polysaccharides in Grafted and Non-Grafted ‘Liberty’ Watermelon with Hollow Heart. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2020. Available online: https://www.lib.ncsu.edu/resolver/1840.20/38167 (accessed on 12 September 2020).
- Hodge, L. Growing Seedless (Triploid) Watermelon; Neb Guide; University of Nebraska–Lincoln Ext.: Lincoln, NE, USA, 1994; Available online: https://extensionpublications.unl.edu/assets/pdf/g1755.pdf (accessed on 20 April 2019).
- Kyriacou, M.; Soteriou, G. Quality and postharvest performance of watermelon fruit in response to grafting on interspecific cucurbit rootstocks. J. Food Qual. 2015, 38, 21–29. [Google Scholar] [CrossRef]
- Paroussi, G.; Bletsos, F.; Bardas, G.A.; Kouvelos, J.A.; Klonari, A. Control of fusarium and verticillium wilt of watermelon by grafting and its effect on fruit yield and quality. Proc. IIIrd Balkan Symp. Veg. and Potatoes. Acta Hortic. (ISHS) 2007, 729, 281–285. [Google Scholar] [CrossRef]
- Yetisir, H.; Sari, N.; Y¨ucel, S. Rootstock resistance to fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica 2003, 31, 163–169. [Google Scholar] [CrossRef]
- Alan, O.; Sen, F.; Duzyaman, E. The effectiveness of growth cycles on improving fruit quality for grafted watermelon combinations. Food Sci. Technol. 2018, 38, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Buller, S.; Inglis, D.; Miles, C. Plant growth, fruit yield and quality, and tolerance to verticillium wilt of grafted watermelon and tomato in field production in the Pacific Northwest. HortScience 2013, 48, 1–7. [Google Scholar] [CrossRef]
- Karaca, F.; Yetişir, H.; Solmaz, I.; Çandır, E.; Kurt, S.; Sari, N.; Guler, Z. Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: Plant growth, yield and quality. Turk. J. Agric. For. 2012, 36, 167–177. Available online: https://journals.tubitak.gov.tr/agriculture/issues/tar-12-36-2/tar-36-2-4-1101-1716.pdf (accessed on 20 July 2018).
- Soteriou, G.A.; Kyriacou, M.C. Rootstock-mediated effects on watermelon field performance and fruit quality characteristics. Int. J. Veg. Sci. 2015, 21, 344–362. [Google Scholar] [CrossRef]
- Liu, R.Q.; Zhang, H.M.; Xu, J.H. Effects of rootstocks on growth and fruit quality of grafted watermelon. J. Shanghai Jiaotong Univ. Agric. Sci. 2003, 21, 289–294. [Google Scholar]
- Fallik, E.; Ziv, C. How rootstock/scion combinations affect watermelon fruit quality after harvest? J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef]
- Soteriou, G.A.; Siomos, A.S.; Gerasopoulos, D.; Rouphael, Y.; Georhiadou, S.; Kyriacou, M.C. Biochemical and histological contrition to texture changes in watermelon fruit modulated by grafting. Food Chem. 2017, 237, 133–140. [Google Scholar] [CrossRef]
- Saftner, R.; Abbott, J.A.; Lester, G.; Vinyard, B. Sensory and analytical comparison of orange-fleshed honeydew to cantaloupe and green-fleshed honeydew for fresh-cut chunks. Postharvest Biol. Technol. 2006, 42, 150–160. [Google Scholar] [CrossRef]
- Cushman, E.K.; Huan, J. Performance of four triploid watermelon cultivars grafted onto five rootstock genotypes: Yield and fruit quality under commercial growing conditions. Acta Hortic. 2008, 782, 335–342. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Massa, D.; Salerno, A.; Rea, E. Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J. Hortic. Sci. Biotechnol. 2006, 81, 146–152. [Google Scholar] [CrossRef]
- Chouka, A.; Jebari, H. Effect of grafting on watermelon vegetative and root development, production and fruit quality. Acta Hortic. 1999, 492, 85–94. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Khah, E.M.; Passam, H.C. Evaluation of rootstocks for watermelon grafting with reference to plant development, yield and fruit quality. Int. J. Plant Prod. 2012, 6, 481–492. [Google Scholar] [CrossRef]
- Yetisir, H.; Sari, N. Effect of different rootstock on plant growth, yield and quality of watermelon. Austral. J. Expt. Agric. 2003, 43, 1269–1274. [Google Scholar] [CrossRef]
- López-Galarza, S.; Batista, A.S.; Perez, D.M.; Miquel, A.; Baixauli, C.; Pascual, B.; Maroto, J.V.; Guardiola, J.L. Effects of grafting and cytokinin-induced fruit setting on colour and sugar-content traits in glasshouse-grown triploid watermelon. J. Hortic. Sci. Biotechnol. 2004, 79, 971–976. [Google Scholar] [CrossRef]
- Turhan, A.; Ozman, N.; Kuscu, H.; Serbeci, M.S.; Seniz, V. Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Hortic. Environ. Biotechnol. 2012, 53, 336–341. [Google Scholar] [CrossRef]
- Corey, A.K.; Schlimme, D.V. Relationship of rind gloss and groundspot color to flesh quality of watermelon fruits during maturation. Sci. Hortic. 1988, 211–218. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Davis, A.R.; Roberts, W. Carotenoid content of 50 watermelon cultivars. J. Agric. Food Chem. 2006, 54, 2593–2597. [Google Scholar] [CrossRef]
- Mao, L.; Jeong, J.; Que, F.; Huber, D.J. Physiological properties of fresh-cut watermelon (Citrullus lanatus) in response to 1-methylcyclopropene and post-processing calcium application. J. Sci. Food. Agric. 2006, 86, 46–53. [Google Scholar] [CrossRef]
- Naz, A.; Butt, M.S.; Sultan, M.T.; Qayyum, M.M.; Niaz, R.S. Watermelon lycopene and allied health claims. EXCLI J. 2014, 13, 650–660. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K. Carotenoid changes of intact watermelon after storage. J. Agric. Food Chem. 2006, 54, 5868–5874. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Yuan, J.; Gao, L.; Liu, P.; Cao, L.; Huang, Y.; Zhao, L.; Lv, H.; Bie, Z. Transcriptional regulation of lycopene metabolism mediated by rootstock during the ripening of grafted watermelons. Food Chem. 2017, 214, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Perkins-Veazie, P.; Collins, J.K.; Pair, S.D.; Roberts, W. Lycopene content differs among red-fleshed watermelon cultivars. J. Sci. Food Agric. 2001, 81, 983–987. [Google Scholar] [CrossRef]
- Figueroa, A.; Sanchez-Gonzalez, M.A.; Perkins-Veazie, P.M.; Arjmandi, B.H. Effects of watermelon supplementation on aortic blood pressure and wave reflection in individuals with prehypertension: A pilot study. Am. J. Hypertens. 2011, 24, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.; Sanchez-Gonzalez, M.A.; Wong, A.; Arjmandi, B.H. Watermelon extract supplementation reduces ankle blood pressure and carotid augmentation index in obese adults with prehypertension or hypertension. Am. J. Hypertens. 2012, 25, 640–643. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Shi, J.; Zheng, Z.; Nawaz, M.A.; Chen, C.; Cheng, F.; Kong, Q.; Bie, Z.; Huang, Y. NMR-based fruit metabonomic analysis of watermelon grafted onto different rootstocks under two potassium levels. Sci. Hortic. 2019, 258, 108793. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, C.; Nawaz, M.A.; Jiao, Y.; Zheng, Z.; Shi, X.; Xie, W.; Yu, Y.; Guo, J.; Zhu, S.; et al. Using rootstock to increase watermelon fruit yield and quality at low potassium supply: A comprehensive analysis from agronomic, physiological and transcriptional perspective. Sci. Hortic. 2018, 241, 144–151. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devi, P.; Perkins-Veazie, P.; Miles, C. Impact of Grafting on Watermelon Fruit Maturity and Quality. Horticulturae 2020, 6, 97. https://doi.org/10.3390/horticulturae6040097
Devi P, Perkins-Veazie P, Miles C. Impact of Grafting on Watermelon Fruit Maturity and Quality. Horticulturae. 2020; 6(4):97. https://doi.org/10.3390/horticulturae6040097
Chicago/Turabian StyleDevi, Pinki, Penelope Perkins-Veazie, and Carol Miles. 2020. "Impact of Grafting on Watermelon Fruit Maturity and Quality" Horticulturae 6, no. 4: 97. https://doi.org/10.3390/horticulturae6040097
APA StyleDevi, P., Perkins-Veazie, P., & Miles, C. (2020). Impact of Grafting on Watermelon Fruit Maturity and Quality. Horticulturae, 6(4), 97. https://doi.org/10.3390/horticulturae6040097