Evaluation of the Crop Water Stress Index as an Indicator for the Diagnosis of Grapevine Water Deficiency in Greenhouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Observation Indicators
2.3.1. Meteorological Factors
2.3.2. Soil Moisture Content
2.3.3. Leaf Temperature and Leaf-Air Temperature Difference
2.3.4. Canopy Cover and Fruit Diameter
2.3.5. Determination of Plant Physiological Indicators
2.4. Concept of CWSI and Its Calculation Based on the Idso Method
2.5. Data Analysis
3. Results and Discussions
3.1. Diagnosis of Grapevine Water Deficiency Based on the Leaf-Air Temperature Difference
3.1.1. Daily Changes in the Leaf-Air Temperature Difference before and after Irrigation
3.1.2. Relationship between Tc-Ta and Meteorological Factors
3.1.3. Relationship between Tc-Ta and Plant Water Status Indicators
3.2. Diagnosis of Grapevine Water Deficiency Based on the CWSI
3.2.1. Daily Changes in the CWSI under Different Weather Conditions
3.2.2. NWSB and CWSI
3.2.3. Relations between the CWSI and Canopy Cover, Fruit Diameter and SPAD
3.2.4. Relationship between the CWSI and the Plant Water Status Indicators
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zha, Q.; Xi, X.; He, Y.; Jiang, A. Transcriptomic analysis of the leaves of two grapevine cultivars under high-temperature stress. Sci. Hortic. 2020, 265, 109265. [Google Scholar] [CrossRef]
- Pellegrino, A.; Lebon, E.; Simonneau, T.; Wery, J. Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Aust. J. Grape Wine Res. 2005, 11, 306–315. [Google Scholar] [CrossRef]
- Ezzhaouani, A.; Valancogne, C.; Pieri, P.; Amalak, T.; Gaudillère, J.P. Water economy by Italia grapevines under different irrigation treatments in a Mediterranean climate. J. Int. Sci. Vigne Vin 2007, 41, 131–140. [Google Scholar]
- Alves, I.; Pereira, L.S. Non-water-stressed baselines for irrigation scheduling with infrared thermometers: A new approach. Irrig. Sci. 2000, 19, 101–106. [Google Scholar] [CrossRef]
- Cohen, Y.; Alchanatis, V.; Meron, M.; Saranga, Y.; Tsipris, J. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 2005, 56, 1843–1852. [Google Scholar] [CrossRef] [Green Version]
- Cohen, Y.; Alchanatis, V.; Prigojin, A.; Levi, A.; Soroker, V.; Cohen, Y. Use of aerial thermal imaging to estimate water status of palm trees. Precis. Agric. 2012, 13, 123–140. [Google Scholar] [CrossRef]
- Egea, G.; Padilla-Díaz, C.M.; Martinez-Guanter, J.; Fernández, J.E.; Perez-Ruiz, M. Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agric. Water Manag. 2017, 187, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Ballester, C.; Jiménez-Bello, M.; Castel, J.; Intrigliolo, D. Usefulness of thermo graphy for plant water stress detection in citrus and persimmon trees. Agric. For. Meteorol. 2013, 168, 120–129. [Google Scholar] [CrossRef]
- Roh, M.; Nam, Y.; Cho, M.; Yu, I.; Choi, G.; Kim, T. Environmental control in greenhouse based on phytomonitoring-leaf temperature as a factor controlling greenhouse environments. Acta Hortic. 2007, 761, 71–76. [Google Scholar] [CrossRef]
- Langton, F.; Horridge, J.; Hamer, P. Effects of the glasshouse environment on leaf temperature of pot chrysanthemum and dieffenbachia. Acta Hortic. 2000, 534, 75–84. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, R.D.; Reginato, R.J.; Hatfield, J.L. Normalizing the stres-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Kanemasu, E.; Steiner, J.; Biere, A.; Worman, F.; Stone, J. Irrigation in the Great Plains. Agric. Water Manag. 1983, 7, 157–178. [Google Scholar] [CrossRef]
- William, S.B.; Mack, H.J. The possible use of the crop water stress index as an indicator of evapotranspiration deficits and yield reduıctions in sweet corn. J. Am. Soc. Hortic. Sci. 1989, 114, 542–546. [Google Scholar]
- Wanjura, D.F.; Upchurch, D.R.; Mahan, J.R. Automated irrigation based on threshold canopy tempearture. Am. Soc. Agric. Eng. 1992, 35, 145–152. [Google Scholar]
- Yazar, A.; Howell, T.A.; Dusek, D.A.; Copeland, K.S. Evaluation of crop water stress index for LEPA irrigated corn. Irrig. Sci. 1999, 18, 171–180. [Google Scholar] [CrossRef]
- O’Shaughnessy, S.A.; Evett, S.R.; Colaizzi, P.D.; Howell, T.A. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agric. Water Manag. 2012, 107, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Köksal, E.S.; Üstün, H.; İlbeyi, A. Threshold values of leaf water potential and crop water stress index as an indicator of irrigation time for dwarf green beans. J. Agric. 2010, 24, 25–36. [Google Scholar]
- Köksal, E.S. Determination of the Effects of different irrigation level on sugarbeet yield, quality and physiology using infrared thermometer and spectroradiometer. Int. J. Mater Form. 2014, 7, 317–335. [Google Scholar]
- Argyrokastritis, I.G.; Papastylianou, P.; Alexandris, S. Leaf Water Potential and Crop Water Stress Index Variation for Full and Deficit Irrigated Cotton in Mediterranean Conditions. Agric. Agric. Sci. Procedia 2015, 4, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Veysi, S.; Naseri, A.A.; Hamzeh, S.; Bartholomeus, H. A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agric. Water Manag. 2017, 189, 70–86. [Google Scholar] [CrossRef]
- Han, M.; Zhang, H.; Dejonge, K.C.; Comas, L.H.; Gleason, S.M. Comparison of three crop water stress index models with sap flow measurements in maize. Agric. Water Manag. 2018, 203, 366–375. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.J.; Idso, S.B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Nielsen, D.C. Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI). Field Crop. Res. 1990, 23, 103–116. [Google Scholar] [CrossRef]
- Emekli, Y.; Bastug, R.; Buyuktas, D.; Emekli, N.Y. Evaluation of a crop water stress index for irrigation scheduling of bermudagrass. Agric. Water Manag. 2007, 90, 205–212. [Google Scholar] [CrossRef]
- Stegman, E.C.; Soderlund, M. Irrigation Scheduling of Spring Wheat Using Infrared Thermometry. Trans. Chin. Soc. Agric. Eng. 1992, 35, 143–152. [Google Scholar] [CrossRef]
- Alderfasi, A.A.; Nielsen, D.C. Use of crop water stress index for monitoring water status and scheduling irrigation in wheat. Agric. Water Manag. 2001, 47, 69–75. [Google Scholar] [CrossRef]
- Erdem, Y.; Arin, L.; Erdem, T.; Polat, S.; Deveci, M.; Okursoy, H.; Gültaş, H.T. Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agric. Water Manag. 2010, 98, 148–156. [Google Scholar] [CrossRef]
- Jackson, S.H. Relationships between normalized leaf water potential and crop water stress index values for acala cotton. Agric. Water Manag. 1991, 20, 109–118. [Google Scholar] [CrossRef]
- Allen, R. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar] [CrossRef]
- Jackson, R.D.; Kustas, W.P.; Choudhury, B.J. A reexamination of the crop water stress index. Irrig. Sci. 1988, 9, 309–317. [Google Scholar] [CrossRef]
- Sepaskhah, A.; Kashefipour, S. Relationships between leaf water potential, CWSI, yield and fruit quality of sweet lime under drip irrigation. Agric. Water Manag. 1994, 25, 13–21. [Google Scholar] [CrossRef]
- Ahi, Y.; Orta, H.; Gündüz, A.; Gültaş, H.T. The Canopy Temperature Response to Vapor Pressure Deficit of Grapevine cv. Semillon and Razaki. Agric. Agric. Sci. Procedia 2015, 4, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Leuzinger, S.; Körner, C. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric. For. Meteorol. 2007, 146, 29–37. [Google Scholar] [CrossRef]
- Khorsandi, A.; Hemmat, A.; Mireei, S.A.; Amirfattahi, R.; Ehsanzadeh, P. Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agric. Water Manag. 2018, 204, 222–233. [Google Scholar] [CrossRef]
- Stričević, R.; Čaki, E. Relationships between available soil water and indicators of plant water status of sweet sorghum to be applied in irrigation scheduling. Irrig. Sci. 1997, 18, 17–21. [Google Scholar] [CrossRef]
- King, B.; Shellie, K. Wine grape cultivar influence on the performance of models that predict the lower threshold canopy temperature of a water stress index. Comput. Electron. Agric. 2018, 145, 122–129. [Google Scholar] [CrossRef]
- Jensen, H.E.; Svendsen, H.; Jensen, S.E.; Mogensen, V.O. Canopy-air temperature of crops grown under different irrigation refimes in a temperate humid climate. Irrig. Sci. 1990, 11, 181–188. [Google Scholar] [CrossRef]
- González-Dugo, V.; Zarco-Tejada, P.J.; Fereres, E. Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agric. For. Meteorol. 2014, 94–104. [Google Scholar] [CrossRef]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Gardner, B.R.; Nielsen, D.C.; Shock, C.C. Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation. J. Prod. Agric. 1992, 5, 466–475. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Faraj, A.; Meyer, G.E.; Horst, G.L. A crop water stress index for tall fescue (Festuca arundinacea Schreb.) irrigation decision-making—A traditional method. Comput. Electron. Agric. 2001, 31, 107–124. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Zarco-Tejada, P.J. Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrig. Sci. 2015, 33, 81–93. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Sezen, S.M.; Yazar, A.; Daşgan, Y.; Yucel, S.; Akyıldız, A.; Tekin, S.; Akhoundnejad, Y. Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agric. Water Manag. 2014, 143, 59–70. [Google Scholar] [CrossRef]
- Çolak, Y.B.; Yazar, A. Evaluation of crop water stress index on Royal table grape variety under partial root drying and conventional deficit irrigation regimes in the Mediterranean Region. Sci. Hortic. 2017, 224, 384–394. [Google Scholar] [CrossRef]
- Yuan, G.; Luo, Y.; Sun, X.; Tang, D. Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agric. Water Manag. 2004, 64, 29–40. [Google Scholar] [CrossRef]
- Chen, J.; Lin, L.; Lu, G. An index of soil drought intensity and degree: An application on corn and a comparison with CWSI. Agric. Water Manag. 2010, 97, 865–871. [Google Scholar] [CrossRef]
- Sala, O.; Lauenroth, W.; Parton, W. Plant recovery following prolonged drought in a shortgrass steppe. Agric. Meteorol. 1982, 27, 49–58. [Google Scholar] [CrossRef]
- Bellvert, J.; Girona, J. The use of multispectral and thermal images as a tool for irrigation scheduling in vineyards. Options Mediterr. Ser. B. Stud. Res. 2012, 67, 131–137. [Google Scholar]
- Yazar, A.; Tangolar, S.; Sezen, S.M.; Colak, Y.B.; Gencel, B.; Ekbic, H.B.; Sabır, A. New Approaches in Vineyard Irrigation Management: Determining Optimal Irrigation Time Using Leaf Water Potential for High Quality Yield Under Mediterranean Conditions; Project No: TOVAG-1060747; Turk. Science and Research Council (TUBITAK): Ankara, Turkey, 2010; p. 100.
- Kirnak, H.; Irik, H.; Unlukara, A. Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Sci. Hortic. 2019, 256, 108608. [Google Scholar] [CrossRef]
- Pou, A.; Diago, M.P.; Medrano, H.; Baluja, J.; Tardaguila, J. Validation of thermal indices for water status identification in grapevine. Agric. Water Manag. 2014, 134, 60–72. [Google Scholar] [CrossRef]
- Turner, N.; Hearn, A.; Begg, J.; Constable, G. Cotton (Gossypium hirsutum L.) Physiological and morphological responses to water deficits and their relationship to yield. Field Crop. Res. 1986, 14, 153–170. [Google Scholar] [CrossRef]
- Aladenola, O.; Madramootoo, C. Effect of different water application on yield and water use of bell pepper under greenhouse conditions. In Proceedings of the NABEC-CSBE/SCGAB 2012 Joint Meeting and Technical Conference Northeast Agricultural & Biological Engineering Conference Canadian Society for Bioengineering, Orillia, ON, USA, 15–18 July 2012. [Google Scholar]
- Orta, A.; Erdem, Y.; Erdem, T. Crop water stress index for watermelon. Sci. Hortic. 2003, 98, 121–130. [Google Scholar] [CrossRef]
- Kramer, P.J. Changing concepts regarding plant water relations. Plant Cell Environ. 1988, 11, 565–568. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [Green Version]
- Berni, J.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Fereres, E.; Villalobos, F. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens. Environ. 2009, 113, 2380–2388. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Gonzalez-Dugo, V.; Fereres, E.; Ustin, S.L.; Zarco-Tejada, P.J. Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards. Remote Sens. 2016, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press: Cambridge, UK, 1993; Volume 142, pp. 381–382. [Google Scholar]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.J.; Nicolás, E.N.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
Cultivation Stage | Ta | Ra | RH | VPD |
---|---|---|---|---|
vegetative stage | 18.8 | 301.0 | 53.8 | 0.33 |
flowering stage | 19.7 | 327.9 | 50.4 | 0.35 |
fruit expansion stage | 22.3 | 421.1 | 51.2 | 0.34 |
coloring mature stage | 25.1 | 362.3 | 55.7 | 0.32 |
Depth (cm) | Textural Analysis | FC (g·g−1) | PWP (g·g−1) | Bulk Density (g·cm−3) | |||
---|---|---|---|---|---|---|---|
Sand (%) | Clay (%) | Silt (%) | Texture Class | ||||
0–40 | 87.54 | 5.27 | 7.19 | Aeolian soil | 13.18 | 2.31 | 1.64 |
40–80 | 70.23 | 19.53 | 10.24 | Sandy loam | 17.45 | 6.38 | 1.46 |
Cultivation Stage | Irrigation Date | Irrigation Amount (m3∙ha) | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
vegetative stage | 3/11 | 293.61 | 234.80 | 176.02 |
3/19 | 293.61 | 234.65 | 175.55 | |
3/27 | 293.60 | 234.60 | 175.34 | |
4/06 | 293.62 | 234.65 | 175.62 | |
Flowering stage | 4/15 | 341.40 | 273.05 | 204.60 |
4/25 | 341.39 | 273.04 | 204.15 | |
Fruit expansion stage | 5/05 | 341.39 | 273.00 | 204.20 |
5/13 | 341.37 | 272.58 | 204.14 | |
5/20 | 341.42 | 272.69 | 204.47 | |
5/27 | 341.41 | 273.10 | 204.34 | |
Coloring mature stage | 6/05 | 293.60 | 234.50 | 175.59 |
6/15 | 293.61 | 234.55 | 176.30 | |
Total irrigation amount | 3810 | 3045 | 2280 |
Cultivation Stage | Treatment | Ta | Ra | RH | VPD | Leaf Temperature |
---|---|---|---|---|---|---|
Vegetative stage | T1 | 0.843 ** | 0.651 ** | −0.711 ** | 0.947 ** | 0.824 ** |
T2 | 0.802 ** | 0.708 ** | −0.861 ** | 0.954 ** | 0.764 ** | |
T3 | 0.783 ** | 0.734 ** | −0.716 ** | 0.956 ** | 0.870 ** | |
Flowering stage | T1 | 0.826 ** | 0.641 ** | −0.741 ** | 0.831 ** | 0.453 * |
T2 | 0.879 ** | 0.675 ** | −0.775 ** | 0.839 ** | 0.615 ** | |
T3 | 0.605 ** | 0.531 * | −0.631 * | 0.644 ** | 0.579 ** | |
Fruit expansion stage | T1 | 0.865 ** | 0.607 ** | −0.661 * | 0.864 ** | 0.675 ** |
T2 | 0.885 ** | 0.570 ** | −0.584 ** | 0.862 ** | 0.702 ** | |
T3 | 0.764 ** | 0.537 ** | −0.563 ** | 0.800 ** | 0.636 ** | |
Mature stage | T1 | 0.838 ** | 0.607 ** | −0.621 * | 0.813 ** | 0.545 ** |
T2 | 0.760 ** | 0.599 ** | −0.525 * | 0.665 ** | 0.525 * | |
T3 | 0.627 ** | 0.453 * | −0.545 ** | 0.709 ** | 0.665 ** |
Treatment | Indicator | a | b | c | R2 | P |
---|---|---|---|---|---|---|
T1 | φs | −58.497 | −37.298 | −10.437 | 0.587 | 0.005 |
gs | −12.979 | −2.914 | 0.604 | 0.001 | ||
E | −0.898 | −0.821 | 0.581 | 0.001 | ||
T2 | φs | −19.704 | −22.245 | −9.913 | 0.611 | 0.003 |
gs | −21.694 | −2.225 | 0.600 | 0.001 | ||
E | −0.838 | −1.547 | 0.545 | 0.002 | ||
T3 | φs | −0.670 | −4.340 | −8.596 | 0.511 | 0.014 |
gs | −23.023 | −2.389 | 0.530 | 0.008 | ||
E | −0.628 | −2.450 | 0.623 | < 0.001 |
Months | Mean CWSI | ||
---|---|---|---|
T1 | T2 | T3 | |
March | 0.159 | 0.275 | 0.511 |
April | 0.183 | 0.358 | 0.668 |
May | 0.217 | 0.386 | 0.761 |
June | 0.166 | 0.380 | 0.766 |
Seasonal mean CWSI | 0.181 | 0.350 | 0.677 |
Treatment | Indicator | a | b | c | R2 | P |
---|---|---|---|---|---|---|
T1 | φs | −2.801 | −2.110 | −0.045 | 0.730 | <0.001 |
gs | −1.406 | 0.519 | 0.847 | <0.001 | ||
E | −0.087 | 0.688 | 0.663 | <0.001 | ||
T2 | φs | 0.069 | −0.560 | 0.298 | 0.702 | 0.001 |
gs | −1.612 | 0.696 | 0.708 | <0.001 | ||
E | −0.099 | 0.853 | 0.569 | 0.001 | ||
T3 | φs | −0.095 | −0.699 | −0.069 | 0.565 | 0.007 |
gs | −3.481 | 0.960 | 0.733 | <0.001 | ||
E | −0.103 | 0.945 | 0.711 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ru, C.; Hu, X.; Wang, W.; Ran, H.; Song, T.; Guo, Y. Evaluation of the Crop Water Stress Index as an Indicator for the Diagnosis of Grapevine Water Deficiency in Greenhouses. Horticulturae 2020, 6, 86. https://doi.org/10.3390/horticulturae6040086
Ru C, Hu X, Wang W, Ran H, Song T, Guo Y. Evaluation of the Crop Water Stress Index as an Indicator for the Diagnosis of Grapevine Water Deficiency in Greenhouses. Horticulturae. 2020; 6(4):86. https://doi.org/10.3390/horticulturae6040086
Chicago/Turabian StyleRu, Chen, Xiaotao Hu, Wene Wang, Hui Ran, Tianyuan Song, and Yinyin Guo. 2020. "Evaluation of the Crop Water Stress Index as an Indicator for the Diagnosis of Grapevine Water Deficiency in Greenhouses" Horticulturae 6, no. 4: 86. https://doi.org/10.3390/horticulturae6040086
APA StyleRu, C., Hu, X., Wang, W., Ran, H., Song, T., & Guo, Y. (2020). Evaluation of the Crop Water Stress Index as an Indicator for the Diagnosis of Grapevine Water Deficiency in Greenhouses. Horticulturae, 6(4), 86. https://doi.org/10.3390/horticulturae6040086