Timing of a Short-Term Reduction in Temperature and Irradiance Affects Growth and Flowering of Four Annual Bedding Plants
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- United States Department of Agriculture. 2012 Census of Agriculture: Census of Horticultural Specialties (2014). AC–12–SS–3. 2015. Available online: https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Census_of_Horticulture_Specialties/HORTIC.pdf (accessed on 19 November 2018).
- Runkle, E.; Both, A.J. Greenhouse Energy Conservation Strategies; Extension Bulletin E–3160; Michigan State University: East Lansing, MI, USA, 2011. [Google Scholar]
- Liu, B.; Heins, R.D. Is plant quality related to the ratio of radiant energy to thermal energy? Acta Hortic. 1997, 435, 171–182. [Google Scholar] [CrossRef]
- Dieleman, J.A.; Meinen, E. Interacting effects of temperature integration and light intensity on growth and development of single-stemmed cut rose plants. Sci. Hortic. 2007, 113, 182–187. [Google Scholar] [CrossRef]
- Dennis, J.H.; Lopez, R.G.; Behe, B.K.; Hall, C.R.; Yue, C.; Campbell, B.J. Sustainable production practices by greenhouse and nursery plant growers. HortScience 2010, 45, 1232–1237. [Google Scholar] [CrossRef]
- Hall, T.J.; Dennis, J.H.; Lopez, R.G.; Marshall, M.I. Factors affecting growers’ willingness to adopt sustainable floriculture practices. HortScience 2009, 44, 1346–1351. [Google Scholar] [CrossRef]
- Currey, C.J.; Lopez, R.G.; Mattson, N.S. Finishing bedding plants: A comparison of an unheated high tunnel versus a heated greenhouse in two geographic locations. HortTechnology 2014, 24, 527–534. [Google Scholar] [CrossRef]
- Olberg, M.W.; Lopez, R.G. Growth and development of poinsettia (Euphorbia pulcherrima) finished under reduced air temperature and bench-top root-zone heating. Sci. Hortic. 2016, 210, 197–204. [Google Scholar] [CrossRef]
- Camberato, D.M.; Lopez, R.G.; Krug, B.A. Development of Euphorbia pulcherrima under reduced finish temperatures. HortScience 2012, 47, 745–750. [Google Scholar] [CrossRef]
- Dieleman, J.A.; Meinen, E.; Marcelis, L.F.M.; de Zwart, H.F.; van Henten, E.J. Optimisation of CO2 and temperature in terms of crop growth and energy use. Acta Hortic. 2005, 691, 149–154. [Google Scholar] [CrossRef]
- Rijsdijk, A.A.; Vogelezang, J.V.M. Temperature integration on a 24-hour base: A more efficient climate control strategy. Acta Hortic. 2000, 519, 163–169. [Google Scholar] [CrossRef]
- Buwalda, F.; Rijsdijk, A.A.; Vogelezang, J.V.M.; Hattendorf, A.; Batta, L.G.G. An energy efficient heating strategy for cut rose production based on crop tolerance to temperature fluctuations. Acta Hortic. 1999, 507, 117–125. [Google Scholar] [CrossRef]
- Elings, A.; de Zwart, H.F.; Janse, J.; Marcelis, L.F.M.; Buwalda, F. Multiple-day temperature settings on the basis of the assimilate balance: A simulation study. Acta Hortic. 2006, 718, 219–226. [Google Scholar] [CrossRef]
- Lund, J.B.; Andreassen, A.; Ottosen, C.-O.; Aaslyng, J.M. Effect of a dynamic climate on energy consumption and production of Hibiscus rosa-sinensis L. in greenhouses. HortScience 2006, 41, 384–388. [Google Scholar] [CrossRef]
- Ottosen, C.-O.; Rosenqvist, E.; Aaslyng, J.M.; Jakobsen, L. Dynamic climate control in combination with average temperature control saves energy in ornamentals. Acta Hortic 2005, 691, 133–140. [Google Scholar] [CrossRef]
- Aaslyng, J.M.; Ehler, N.; Karlsen, P.; Rosenqvist, E. IntelliGrow: A component-based climate control system for decreasing greenhouse energy consumption. Acta Hortic. 1999, 507, 35–41. [Google Scholar] [CrossRef]
- Heins, R.D.; Liu, B.; Runkle, E.S. Regulation of crop growth and development based on environmental factors. Acta Hortic. 2000, 511, 15–24. [Google Scholar] [CrossRef]
- Fink, M. Effects of short-term temperature fluctuations on plant growth and conclusions for short-term temperature optimization in greenhouses. Acta Hortic. 1993, 328, 147–154. [Google Scholar] [CrossRef]
- De Koning, A.N.M. Long-term temperature integration of tomato. Growth and development under alternating temperature regimes. Scientia Hortic. 1990, 45, 117–127. [Google Scholar] [CrossRef]
- Liebig, H.-P. Temperature integration by kohlrabi growth. Acta Hortic. 1988, 230, 371–380. [Google Scholar] [CrossRef]
- Dieleman, J.A.; Meinen, E.; Dueck, T.A. Effects of temperature integration on growth and development of roses. Acta Hortic. 2005, 691, 51–58. [Google Scholar] [CrossRef]
- Kӧrner, O.; Challa, H. Temperature integration and process-based humidity control in chrysanthemum. Comput. Electron. Agric. 2004, 43, 1–21. [Google Scholar] [CrossRef]
- Boldt, J.K.; Gesick, E.Y.; Meyer, M.H.; Erwin, J.E. Alternative periodic energy-efficient light and temperature strategies for herbaceous ornamental production. HortScience 2011, 46, S354. [Google Scholar]
- Boldt, J.K. Short-term reductions in irradiance and temperature minimally affect growth and development of five floriculture species. HortScience 2018, 53, 33–37. [Google Scholar] [CrossRef]
- Blanchard, M.G.; Runkle, E.S. Quantifying the thermal flowering rates of eighteen species of annual bedding plants. Scientia Hortic. 2011, 128, 30–37. [Google Scholar] [CrossRef]
- Vaid, T.M.; Runkle, E.S. Developing flowering rate models in response to mean temperature for common annual ornamental crops. Scientia Hortic. 2013, 161, 15–23. [Google Scholar] [CrossRef]
- LeBude, A.V.; Bilderback, T.E. The Pour-Through Extraction Procedure: A Nutrient Management Tool for Nursery Crops; AG–717–W; NC State University Coop Extension Publication: Raleigh, NC, USA, 2009. [Google Scholar]
- Blanchard, M.G.; Runkle, E.S.; Fisher, P.R. Modeling plant morphology and development of petunia in response to temperature and photosynthetic daily light integral. Scientia Hortic. 2011, 129, 313–320. [Google Scholar] [CrossRef]
- Niu, G.; Heins, R.D.; Cameron, A.C.; Carlson, W.H. Day and night temperatures, daily light integral, and CO2 enrichment affect growth and flower development of pansy (Viola × wittrockiana). J. Am. Soc. Hortic. Sci. 2000, 125, 436–441. [Google Scholar] [CrossRef]
- Munir, M.; Jamil, M.; Baloch, J.; Khattak, K.R. Growth and flowering of Antirrhinum majus L. under varying temperatures. Int. J. Agric. Biol. 2004, 6, 173–178. [Google Scholar]
- Pramuk, L.A.; Runkle, E.S. Modeling growth and development of celosia and impatiens in response to temperature and photosynthetic daily light integral. J. Ame. Soc. Hortic. Sci. 2005, 130, 813–818. [Google Scholar] [CrossRef]
- Warner, R.M.; Erwin, J.E. Prolonged high temperature exposure and daily light integral impact growth and flowering of five herbaceous ornamental species. J. Am. Soc. Hortic. Sci. 2005, 130, 319–325. [Google Scholar] [CrossRef]
- Mattson, N.S.; Erwin, J.E. Temperature affects flower initiation and development rate of Impatiens, Petunia, and Viola. Acta Hortic. 2003, 624, 191–197. [Google Scholar] [CrossRef]
- Kaczperski, M.P.; Carlson, W.H.; Karlsson, M.G. Growth and development of Petunia × hybrida as a function of temperature and irradiance. J. Am. Soc. Hortic. Sci. 1991, 116, 232–237. [Google Scholar] [CrossRef]
- Mattson, N.S.; Erwin, J.E. The impact of photoperiod and irradiance on flowering of several herbaceous ornamentals. Sci. Hortic. 2005, 104, 275–292. [Google Scholar] [CrossRef]
- Winter, K.; Königer, M. Dry matter production and photosynthetic capacity in Gossypium hirsutum L. under conditions of slightly suboptimum leaf temperatures and high levels of irradiance. Oecologia 1991, 87, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Javanmardi, J.; Rahemi, M.; Nasirzadeh, M. Physiological and reproductive responses of tomato and pepper transplants to low-temperature conditioning. Int. J. Veg. Sci. 2013, 19, 294–310. [Google Scholar] [CrossRef]
- Ruiz-Espinoza, F.H.; Murillo-Amador, B.; García-Hernández, J.L.; Fenech-Larios, L.; Rueda-Puente, E.O.; Troyo-Diéguez, E.; Kaya, C.; Beltrán-Morales, A. Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. J. Plant Nutr. 2010, 33, 423–438. [Google Scholar] [CrossRef]
- Currey, C.J.; Erwin, J.E. Photosynthetic daily light integral impacts growth and flowering of several kalanchoe species. HortTechnology 2011, 21, 98–102. [Google Scholar] [CrossRef]
- Faust, J.E.; Holcombe, V.; Rajapakse, N.C.; Layne, D.R. The effect of daily light integral on bedding plant growth and flowering. HortScience 2005, 40, 645–649. [Google Scholar]
- Adams, S.R.; Pearson, S.; Hadley, P. An analysis of the effects of temperature and light integral on the vegetative growth of pansy cv. Universal Violet (Viola × wittrockiana Gams.). Ann. Bot. 1997, 79, 219–225. [Google Scholar] [CrossRef]
Treatment | Target Mean Temperature (°C) | Mean Temperature (°C) | DLI (mol·m−2·d−1) | ||
---|---|---|---|---|---|
Replication 1 | Replication 2 | Replication 1 | Replication 2 | ||
Ambient | 20.3 | 20.3 ± 1.7 | 20.3 ± 1.7 | 10.7 ± 3.0 | 12.8 ± 3.4 |
Weeks 1–2 cool | 18.2 | 18.3 | 18.7 | 10.2 | 11.6 |
Weeks 3–4 cool | 18.2 | 18.5 | 18.3 | 9.7 | 11.3 |
Weeks 5–6 cool | 18.2 | 18.5 | 18.6 | 9.4 | 10.9 |
Weeks 7–8 cool | 18.2 | 18.5 | 18.4 | 8.9 | 10.7 |
Cool | 11.8 | 12.9 ± 1.1 | 13.2 ± 1.4 | 6.1 ± 1.5 | 6.3 ± 1.9 |
Crop | Treatment | CCI (4 Weeks after Transplant) | CCI (8 Weeks after Transplant) | Height (cm) | Width (cm) | Dry Mass (g) | Flower Number | Days to Flower |
---|---|---|---|---|---|---|---|---|
Impatiens | Ambient | 55.5 ± 3.1 | 56.7 ± 3.4 | 19.9 ± 0.7 | 42.1 ± 1.4 | 14.9 ± 0.6 | 58.2 ± 5.9 | 32 ± 2 |
Weeks 1–2 | 37.9 ± 1.5 | 57.6 ± 2.9 | 18.4 ± 0.9 | 38.4 ± 0.9 | 11.9 ± 0.5 | 34.8 ± 2.6 | 43 ± 2 | |
Weeks 3–4 | 30.2 ± 1.5 | 51.4 ± 2.7 | 16.8 ± 0.8 | 35.8 ± 1.4 | 10.9 ± 0.6 | 22.9 ± 2.2 | 42 ± 2 | |
Weeks 5–6 | 57.4 ± 3.1 | 59.5 ± 3.6 | 18.0 ± 1.0 | 36.2 ± 1.5 | 10.9 ± 0.3 | 28.3 ± 2.6 | 37 ± 3 | |
Weeks 7–8 | 57.1 ± 3.3 | 53.5 ± 4.0 | 16.0 ± 0.9 | 34.3 ± 1.4 | 10.3 ± 0.6 | 26.8 ± 4.6 | 38 ± 2 | |
Continuous | 13.1 ± 1.0 | 34.7 ± 1.4 | 9.9 ± 1.0 | 15.1 ± 0.8 | 1.1 ± 0.1 | 0.3 ± 0.2 | 54 ± 2 | |
ANOVA z | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HSD0.05 y | 10.3 | 13.3 | 2.8 | 4.0 | 2.2 | 14.8 | 8 | |
Pansy | Ambient | 75.4 ± 1.3 | 60.8 ± 4.1 | 12.3 ± 0.6 | 16.6 ± 1.1 | 3.3 ± 0.4 | 11.1 ± 0.9 | 30 ± 1 |
Weeks 1–2 | 61.5 ± 2.8 | 63.5 ± 2.3 | 13.0 ± 0.6 | 17.7 ± 1.2 | 3.6 ± 0.6 | 8.9 ± 0.7 | 38 ± 2 | |
Weeks 3–4 | 54.1 ± 2.5 | 65.3 ± 4.3 | 12.1 ± 0.7 | 17.5 ± 0.9 | 3.7 ± 0.3 | 8.8 ± 1.3 | 38 ± 2 | |
Weeks 5–6 | 71.2 ± 3.2 | 74.7 ± 3.3 | 11.5 ± 0.6 | 17.2 ± 0.9 | 3.9 ± 0.5 | 7.2 ± 1.0 | 37 ± 3 | |
Weeks 7–8 | 65.7 ± 4.2 | 60.6 ± 3.0 | 14.1 ± 0.4 | 18.8 ± 0.9 | 3.4 ± 0.3 | 8.0 ± 0.8 | 33 ± 2 | |
Continuous | 43.1 ± 2.3 | 67.3 ± 3.1 | 11.2 ± 0.8 | 15.3 ± 0.4 | 1.8 ± 0.1 | 0.9 ± 0.2 | 54 ± 1 | |
ANOVA | <0.0001 | 0.0505 | 0.0051 | 0.0211 | <0.0001 | <0.0001 | <0.0001 | |
HSD0.05 | 12.1 | - | 2.3 | 2.9 | 1.1 | 3.6 | 7 | |
Petunia | Ambient | 27.8 ± 1.2 | 38.9 ± 1.7 | 21.8 ± 0.7 | 42.7 ± 1.0 | 15.3 ± 0.9 | 41.7 ± 2.4 | 35 ± 1 |
Weeks 1–2 | 20.1 ± 1.0 | 34.3 ± 1.5 | 20.7 ± 0.6 | 42.9 ± 1.4 | 13.5 ± 0.4 | 37.6 ± 2.8 | 42 ± 1 | |
Weeks 3–4 | 16.0 ± 0.4 | 35.8 ± 1.2 | 20.6 ± 1.0 | 40.6 ± 0.7 | 14.1 ± 0.5 | 34.1 ± 3.0 | 42 ± 1 | |
Weeks 5–6 | 25.7 ± 1.2 | 34.1 ± 1.4 | 22.1 ± 1.0 | 37.5 ± 1.2 | 11.4 ± 0.8 | 28.0 ± 2.8 | 42 ± 1 | |
Weeks 7–8 | 26.4 ± 1.3 | 30.7 ± 2.4 | 20.7 ± 0.9 | 37.4 ± 1.3 | 10.2 ± 0.7 | 27.2 ± 1.5 | 33 ± 1 | |
Continuous | 18.8 ± 1.2 | 23.1 ± 1.1 | 13.7 ± 0.8 | 23.1 ± 0.7 | 3.3 ± 0.2 | 0.0 ± 0.0 | - | |
ANOVA | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HSD0.05 | 4.6 | 6.6 | 3.5 | 3.8 | 2.1 | 8.1 | 5 | |
Snapdragon | Ambient | 65.2 ± 4.9 | 60.2 ± 3.1 | 18.6 ± 0.7 | 22.5 ± 0.6 | 7.2 ± 0.7 | 61.2 ± 8.3 | 34 ± 1 |
Weeks 1–2 | 66.0 ± 2.0 | 62.4 ± 3.7 | 19.5 ± 0.8 | 23.8 ± 0.6 | 7.1 ± 0.6 | 48.3 ± 5.6 | 41 ± 2 | |
Weeks 3–4 | 62.8 ± 3.3 | 62.2 ± 3.4 | 20.4 ± 0.4 | 23.1 ± 0.7 | 6.2 ± 0.5 | 57.5 ± 3.5 | 40 ± 2 | |
Weeks 5–6 | 62.7 ± 5.2 | 73.3 ± 4.0 | 21.9 ± 1.0 | 23.4 ± 0.7 | 6.4 ± 0.6 | 53.8 ± 5.0 | 38 ± 2 | |
Weeks 7–8 | 63.9 ± 4.6 | 63.5 ± 3.0 | 18.8 ± 0.8 | 22.4 ± 0.6 | 6.0 ± 0.4 | 53.3 ± 4.2 | 34 ± 1 | |
Continuous | 51.2 ± 2.2 | 51.9 ± 2.5 | 22.8 ± 1.0 | 24.1 ± 0.5 | 4.3 ± 0.3 | 0.1 ± 0.1 | 60 ± 2 | |
ANOVA | 0.0199 | 0.0003 | 0.0004 | 0.1822 | <0.0001 | <0.0001 | <0.0001 | |
HSD0.05 | 13.2 | 11.9 | 3.0 | - | 1.5 | 16.7 | 4 |
Treatment | Relative Cumulative Energy Cost z | Relative Cumulative Energy Cost at Flowering y | |||
---|---|---|---|---|---|
Impatiens | Pansy | Petunia | Snapdragon | ||
Ambient | 100% | 100% | 100% | 100% | 100% |
Weeks 1–2 cool | 84% | 103% | 96% | 94% | 95% |
Weeks 3–4 cool | 86% | 101% | 98% | 98% | 93% |
Weeks 5–6 cool | 86% | 99% | 102% | 99% | 97% |
Weeks 7–8 cool | 88% | 117% | 106% | 94% | 100% |
Continuous | 44% | - x | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boldt, J.K.; Altland, J.E. Timing of a Short-Term Reduction in Temperature and Irradiance Affects Growth and Flowering of Four Annual Bedding Plants. Horticulturae 2019, 5, 15. https://doi.org/10.3390/horticulturae5010015
Boldt JK, Altland JE. Timing of a Short-Term Reduction in Temperature and Irradiance Affects Growth and Flowering of Four Annual Bedding Plants. Horticulturae. 2019; 5(1):15. https://doi.org/10.3390/horticulturae5010015
Chicago/Turabian StyleBoldt, Jennifer K., and James E. Altland. 2019. "Timing of a Short-Term Reduction in Temperature and Irradiance Affects Growth and Flowering of Four Annual Bedding Plants" Horticulturae 5, no. 1: 15. https://doi.org/10.3390/horticulturae5010015
APA StyleBoldt, J. K., & Altland, J. E. (2019). Timing of a Short-Term Reduction in Temperature and Irradiance Affects Growth and Flowering of Four Annual Bedding Plants. Horticulturae, 5(1), 15. https://doi.org/10.3390/horticulturae5010015