Effects of Biochar on Container Substrate Properties and Growth of Plants—A Review
Abstract
:1. Introduction
2. Biochar Production
2.1. Biochar Production Methods
2.2. Biochar Feedstocks
3. Effects of Biochar on Container Substrates
3.1. Physical Properties
3.1.1. Bulk Density
3.1.2. Container Capacity, Air Space and Total Porosity
3.2. Chemical Properties
3.2.1. pH
3.2.2. Electrical Conductivity
3.2.3. Cation Exchange Capacity
3.3. Effects on the Microbial Activities
4. Effects of Biochar on Plant Growth in Container Substrates
4.1. Different Plant Species
4.2. Different Biochar and Biochar Percentage in Container Substrates
4.3. Other Substrate Components Mixed with Biochar in Container Substrates
5. Effect of Potentially Toxic Contaminants in Biochar on Plant Growth
6. Discussion
Author Contributions
Conflicts of Interest
References
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Hansen, V.; Hauggaard-Nielsen, H.; Petersen, C.T.; Mikkelsen, T.N.; Müller-Stöver, D. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 2016, 161, 1–9. [Google Scholar] [CrossRef]
- Johannes, L.; Stephen, J. Biochar for environmental management: An introduction. In Biochar for Environmental Management-Science and Technology; Earthscan: London, UK, 2009; pp. 1–10. [Google Scholar]
- Vaughn, S.F.; Kenar, J.A.; Eller, F.J.; Moser, B.R.; Jackson, M.A.; Peterson, S.C. Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Ind. Crop. Prod. 2015, 66, 44–51. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Kenar, J.A.; Thompson, A.R.; Peterson, S.C. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crop. Prod. 2013, 51, 437–443. [Google Scholar] [CrossRef]
- Yu, F.; Steele, P.H.; Gu, M.; Zhao, Y. Using Biochar as Container Substrate for Plant Growth. U.S. Patent 9,359,267, 7 June 2016. [Google Scholar]
- Dumroese, R.K.; Heiskanen, J.; Englund, K.; Tervahauta, A. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy 2011, 35, 2018–2027. [Google Scholar] [CrossRef]
- Northup, J. Biochar as a Replacement for Perlite in Greenhouse Soilless Substrates. Master’s Thesis, Iowa State Univversity, Ames, IA, USA, 2013. [Google Scholar]
- Landis, T.D.; Morgan, N. Growing Media Alternatives for Forest and Native Plant Nurseries. In National Proceedings: Forest and Conservation Nursery Associations-2008. Proceedings RMRS-P-58; Dumroese, R.K., Riley, L.E., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2009; pp. 26–31. [Google Scholar]
- Landis, T.D. Growing media. Contain. Grow. Media 1990, 2, 41–85. [Google Scholar]
- Bohlin, C.; Holmberg, P. Peat: Dominating growing medium in Swedish horticulture. Acta Hortic. 2004, 644, 177–181. [Google Scholar] [CrossRef]
- Fascella, G. Growing substrates alternative to peat for ornamental plants. In Soilless Culture-Use of Substrates for the Production of Quality Horticultural Crops; InTech: London, UK, 2015. [Google Scholar]
- Rankin, T.; Strachan, I.; Strack, M. Carbon dioxide and methane exchange at a post-extraction, unrestored peatland. Ecol. Eng. 2018, 122, 241–251. [Google Scholar] [CrossRef]
- Carlile, W.; Waller, P. Peat, politics and pressure groups. Chron. Hortic. 2013, 53, 10–16. [Google Scholar]
- Carlile, W.; Cattivello, C.; Zaccheo, P. Organic growing media: Constituents and properties. Vadose Zone J. 2015, 14. [Google Scholar] [CrossRef]
- Wright, R.D.; Browder, J.F. Chipped pine logs: A potential substrate for greenhouse and nursery crops. HortScience 2005, 40, 1513–1515. [Google Scholar] [CrossRef]
- Laird, D.A. The charcoal vision: A win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 2008, 100, 178–181. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, X.; Li, S.; Wang, H.; Wang, L.; Cao, J.; Zhang, L. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Sci. Hortic. 2012, 143, 15–18. [Google Scholar] [CrossRef]
- Méndez, A.; Cárdenas-Aguiar, E.; Paz-Ferreiro, J.; Plaza, C.; Gascó, G. The effect of sewage sludge biochar on peat-based growing media. Biol. Agric. Hortic. 2017, 33, 40–51. [Google Scholar] [CrossRef]
- Nieto, A.; Gascó, G.; Paz-Ferreiro, J.; Fernández, J.; Plaza, C.; Méndez, A. The effect of pruning waste and biochar addition on brown peat based growing media properties. Sci. Hortic. 2016, 199, 142–148. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci. Hortic. 2014, 176, 70–78. [Google Scholar] [CrossRef]
- Headlee, W.L.; Brewer, C.E.; Hall, R.B. Biochar as a substitute for vermiculite in potting mix for hybrid poplar. Bioenergy Res. 2014, 7, 120–131. [Google Scholar] [CrossRef]
- Gvero, P.M.; Papuga, S.; Mujanic, I.; Vaskovic, S. Pyrolysis as a key process in biomass combustion and thermochemical conversion. Therm. Sci. 2016, 20, 1209–1222. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Hansen, V.; Müller-Stöver, D.; Ahrenfeldt, J.; Holm, J.K.; Henriksen, U.B.; Hauggaard-Nielsen, H. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenergy 2015, 72, 300–308. [Google Scholar] [CrossRef]
- Bruun, E.W.; Hauggaard-Nielsen, H.; Ibrahim, N.; Egsgaard, H.; Ambus, P.; Jensen, P.A.; Dam-Johansen, K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 2011, 35, 1182–1189. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Kalderis, D.; Kotti, M.; Méndez, A.; Gascó, G. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 2014, 5, 477–483. [Google Scholar] [CrossRef]
- Wiedner, K.; Rumpel, C.; Steiner, C.; Pozzi, A.; Maas, R.; Glaser, B. Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 2013, 59, 264–278. [Google Scholar] [CrossRef]
- Zheng, W.; Sharma, B.; Rajagopalan, N. Using biochar as a soil amendment for sustainable agriculture. 2010. Available online: http://hdl.handle.net/2142/25503 (accessed on 31 January 2019).
- Roos, C.J. Clean Heat and Power Using Biomass Gasification for Industrial and Agricultural Projects; Northwest CHP Application Center: Olympia, WA, USA, 2010. [Google Scholar]
- Bridgwater, A.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem. 1999, 30, 1479–1493. [Google Scholar] [CrossRef]
- Ahmed, I.; Gupta, A. Syngas yield during pyrolysis and steam gasification of paper. Appl. Energy 2009, 86, 1813–1821. [Google Scholar] [CrossRef]
- Fuchs, M.R.; Garcia-Perez, M.; Small, P.; Flora, G. Campfire Lessons: Breaking down the Combustion Process to Understand Biochar Production and Characterization. Available online: https://www.biochar-journal.org/en/ct/47 (accessed on 31 January 2019).
- Panwar, N.; Kothari, R.; Tyagi, V. Thermo chemical conversion of biomass–eco friendly energy routes. Renew. Sustain. Energy Rev. 2012, 16, 1801–1816. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wu, Y.; Zheng, M. A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. J. Hazard. Mater. 2014, 280, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.A.; Sulaiman, F.; Abdullah, N. Influence of washing medium pre-treatment on pyrolysis yields and product characteristics of palm kernel shell. J. Phys. Sci. 2016, 27, 53–75. [Google Scholar]
- Jenkins, B.; Bakker, R.; Wei, J. On the properties of washed straw. Biomass Bioenergy 1996, 10, 177–200. [Google Scholar] [CrossRef]
- Boateng, A.; Mullen, C. Fast pyrolysis of biomass thermally pretreated by torrefaction. J. Anal. Appl. Pyrolysis 2013, 100, 95–102. [Google Scholar] [CrossRef]
- Reckamp, J.M.; Garrido, R.A.; Satrio, J.A. Selective pyrolysis of paper mill sludge by using pretreatment processes to enhance the quality of bio-oil and biochar products. Biomass Bioenergy 2014, 71, 235–244. [Google Scholar] [CrossRef]
- Chu, G.; Zhao, J.; Huang, Y.; Zhou, D.; Liu, Y.; Wu, M.; Peng, H.; Zhao, Q.; Pan, B.; Steinberg, C.E. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environ. Pollut. 2018, 240, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xiong, Y. Washing pretreatment with light bio-oil and its effect on pyrolysis products of bio-oil and biochar. RSC Adv. 2016, 6, 5270–5277. [Google Scholar] [CrossRef]
- Hina, K.; Bishop, P.; Arbestain, M.C.; Calvelo-Pereira, R.; Maciá-Agulló, J.A.; Hindmarsh, J.; Hanly, J.; Macìas, F.; Hedley, M. Producing biochars with enhanced surface activity through alkaline pretreatment of feedstocks. Soil Res. 2010, 48, 606–617. [Google Scholar] [CrossRef]
- Kołtowski, M.; Oleszczuk, P. Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecol. Eng. 2015, 75, 79–85. [Google Scholar] [CrossRef]
- McCabe, K.G.; Currey, C.J.; Schrader, J.A.; Grewell, D.; Behrens, J.; Graves, W.R. Pelletized soy-based bioplastic fertilizers for container-crop production. HortScience 2016, 51, 1417–1426. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M. Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Sci. Agric. 2018, 75, 304–312. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M.; Fernández de Córdova, P.; Cebolla-Cornejo, J. Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. J. Sci. Food Agric. 2017, 97, 3675–3684. [Google Scholar] [CrossRef] [PubMed]
- Webber, C.L., III; White, P.M., Jr.; Spaunhorst, D.J.; Lima, I.M.; Petrie, E.C. Sugarcane biochar as an amendment for greenhouse growing media for the production of cucurbit seedlings. J. Agric. Sci. 2018, 10, 104. [Google Scholar] [CrossRef]
- Locke, J.C.; Altland, J.E.; Ford, C.W. Gasified rice hull biochar affects nutrition and growth of horticultural crops in container substrates. J. Environ. Hortic. 2013, 31, 195–202. [Google Scholar]
- Cho, M.S.; Meng, L.; Song, J.-H.; Han, S.H.; Bae, K.; Park, B.B. The effects of biochars on the growth of Zelkova serrata seedlings in a containerized seedling production system. For. Sci. Technol. 2017, 13, 25–30. [Google Scholar] [CrossRef]
- Housley, C.; Kachenko, A.; Singh, B. Effects of Eucalyptus saligna biochar-amended media on the growth of Acmena smithii, Viola var. Hybrida, and Viola× wittrockiana. 2015, 90, 187–194. J. Hortic. Sci. Biotechnol. 2015, 90, 187–194. [Google Scholar] [CrossRef]
- Sáez, J.; Belda, R.; Bernal, M.; Fornes, F. Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Ind. Crop. Prod. 2016, 94, 97–106. [Google Scholar] [CrossRef]
- Dispenza, V.; De Pasquale, C.; Fascella, G.; Mammano, M.M.; Alonzo, G. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants. Span. J. Agric. Res. 2017, 14, 0908. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, G.; Starman, T.; Volder, A.; Gu, M. Poinsettia growth and development response to container root substrate with biochar. Horticulturae 2018, 4, 1. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, G.; Starman, T.; Gu, M. Growth and development of easter lily in response to container substrate with biochar. J. Hortic. Sci. Biotechnol. 2018, 94, 80–86. [Google Scholar] [CrossRef]
- Choi, H.-S.; Zhao, Y.; Dou, H.; Cai, X.; Gu, M.; Yu, F. Effects of biochar mixtures with pine-bark based substrates on growth and development of horticultural crops. Hortic. Environ. Biotechnol. 2018, 59, 345–354. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Dunlop, S.J.; Arbestain, M.C.; Bishop, P.A.; Wargent, J.J. Closing the loop: Use of biochar produced from tomato crop green waste as a substrate for soilless, hydroponic tomato production. HortScience 2015, 50, 1572–1581. [Google Scholar] [CrossRef]
- Nair, A.; Carpenter, B. Biochar rate and transplant tray cell number have implications on pepper growth during transplant production. HortTechnology 2016, 26, 713–719. [Google Scholar] [CrossRef]
- Huang, L. Effects of Biochar and Composts on Substrates Properties and Container-Grown Basil (Ocimum basilicum) and Tomato (Solanum lycopersicum). Master’s Thesis, Texas A&M University, College Station, TX, USA, 2018. [Google Scholar]
- Margenot, A.J.; Griffin, D.E.; Alves, B.S.; Rippner, D.A.; Li, C.; Parikh, S.J. Substitution of peat moss with softwood biochar for soil-free marigold growth. Ind. Crop. Prod. 2018, 112, 160–169. [Google Scholar] [CrossRef]
- Bedussi, F.; Zaccheo, P.; Crippa, L. Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification. Biol. Fertil. Soils 2015, 51, 625–635. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.-E.; Ahmed, M.B.M.; Vu, N.T.; Farooq, M.; Kim, I.S.; Kim, H.S.; Vithanage, M.; Usman, A.R.A.; Al-Wabel, M. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. J. Clean. Prod. 2017, 156, 581–588. [Google Scholar] [CrossRef]
- Nartey, E.G.; Amoah, P.; Ofosu-Budu, G.K.; Muspratt, A.; kumar Pradhan, S. Effects of co-composting of faecal sludge and agricultural wastes on tomato transplant and growth. Int. J. Recycl. Org. Waste Agric. 2017, 6, 23–36. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. Gasified rice hull biochar is a source of phosphorus and potassium for container-grown plants. J. Environ. Hortic. 2013, 31, 138–144. [Google Scholar]
- Altland, J.E.; Locke, J.C. High rates of gasified rice hull biochar affect geranium and tomato growth in a soilless substrate. J. Plant Nutr. 2017, 40, 1816–1828. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Dinelli, F.D.; Jackson, M.A.; Vaughan, M.M.; Peterson, S.C. Biochar-organic amendment mixtures added to simulated golf greens under reduced chemical fertilization increase creeping bentgrass growth. Ind. Crop. Prod. 2018, 111, 667–672. [Google Scholar] [CrossRef]
- Jahromi, N.B.; Walker, F.; Fulcher, A.; Altland, J.; Wright, W.C. Growth response, mineral nutrition, and water utilization of container-grown woody ornamentals grown in biochar-amended pine bark. HortScience 2018, 53, 347–353. [Google Scholar] [CrossRef]
- Fan, R.; Luo, J.; Yan, S.; Zhou, Y.; Zhang, Z. Effects of biochar and super absorbent polymer on substrate properties and water spinach growth. Pedosphere 2015, 25, 737–748. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Eller, F.J.; Evangelista, R.L.; Moser, B.R.; Lee, E.; Wagner, R.E.; Peterson, S.C. Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media. Ind. Crop. Prod. 2015, 65, 467–471. [Google Scholar] [CrossRef]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy substrates need physicals too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef]
- Noguera, P.; Abad, M.; Puchades, R.; Maquieira, A.; Noguera, V. Influence of particle size on physical and chemical properties of coconut coir dust as container medium. Commun. Soil Sci. Plant Anal. 2003, 34, 593–605. [Google Scholar] [CrossRef]
- Fonteno, W.; Hardin, C.; Brewster, J. Procedures for Determining Physical Properties of Horticultural Substrates Using the NCSU Porometer; Horticultural Substrates Laboratory, North Carolina State University: Raleigh, NC, USA, 1995. [Google Scholar]
- Méndez, A.; Paz-Ferreiro, J.; Gil, E.; Gascó, G. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci. Hortic. 2015, 193, 225–230. [Google Scholar] [CrossRef]
- Initiative, I.B. Frequently Asked Questions about Biochar. Available online: https://biochar-international.org/faqs/#1521824701674-1093ca88-fd85 (accessed on 31 January 2019).
- Khodadad, C.L.; Zimmerman, A.R.; Green, S.J.; Uthandi, S.; Foster, J.S. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol. Biochem. 2011, 43, 385–392. [Google Scholar] [CrossRef]
- Lima, I.; Steiner, C.; Das, K. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Li, X.; Shen, Q.; Zhang, D.; Mei, X.; Ran, W.; Xu, Y.; Yu, G. Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13c nmr correlation spectroscopy. PLoS ONE 2013, 8, e65949. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lawrinenko, M.; Laird, D.A. Anion exchange capacity of biochar. Green Chem. 2015, 17, 4628–4636. [Google Scholar] [CrossRef]
- Altland, J.; Locke, J. Biochar affects macronutrient leaching from a soilless substrate. HortScience 2012, 47, 1136–1140. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Saito, M. Charcoal as a micro-habitat for VA mycorrhizal fungi, and its practical implication. Agric. Ecosyst. Environ. 1990, 29, 341–344. [Google Scholar] [CrossRef]
- Ezawa, T.; Yamamoto, K.; Yoshida, S. Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Sci. Plant Nutr. 2002, 48, 897–900. [Google Scholar] [CrossRef]
- Dubchak, S.; Ogar, A.; Mietelski, J.; Turnau, K. Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span. J. Agric. Res. 2010, 8, 103–108. [Google Scholar] [CrossRef]
- Conversa, G.; Bonasia, A.; Lazzizera, C.; Elia, A. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of pelargonium (Pelargonium zonale L.) plants. Front. Plant Sci. 2015, 6, 429. [Google Scholar] [CrossRef] [PubMed]
- Masiello, C.A.; Chen, Y.; Gao, X.; Liu, S.; Cheng, H.-Y.; Bennett, M.R.; Rudgers, J.A.; Wagner, D.S.; Zygourakis, K.; Silberg, J.J. Biochar and microbial signaling: Production conditions determine effects on microbial communication. Environ. Sci. Technol. 2013, 47, 11496–11503. [Google Scholar] [CrossRef] [PubMed]
- Belda, R.M.; Lidón, A.; Fornes, F. Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Ind. Crop. Prod. 2016, 94, 132–142. [Google Scholar] [CrossRef]
- Gu, M.; Li, Q.; Steele, P.H.; Niu, G.; Yu, F. Growth of ‘fireworks’ gomphrena grown in substrates amended with biochar. J. Food Agric. Environ. 2013, 11, 819–821. [Google Scholar]
- Ain Najwa, K.; Wan Zaliha, W.; Yusnita, H.; Zuraida, A. Effect of different soilless growing media and biochar on growth, yield and postharvest quality of lowland cherry tomato (Solanum lycopersicum var. Cerasiforme). Trans. Malaysian Soc. Plant Physiol. 2014, 22, 53–57. [Google Scholar]
- Abubakari, A.-H.; Atuah, L.; Banful, B.K. Growth and yield response of lettuce to irrigation and growth media from composted sawdust and rice husk. J. Plant Nutr. 2018, 41, 221–232. [Google Scholar] [CrossRef]
- Somtrakoon, K.; Chouychai, W. Phytotoxicity of single and combined polycyclic aromatic hydrocarbons toward economic crops. Russ. J. Plant Physiol. 2013, 60, 139–148. [Google Scholar] [CrossRef]
- Huang, X.-D.; Zeiler, L.F.; Dixon, D.G.; Greenberg, B.M. Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (canola) and Cucumbis sativus (cucumber) in simulated solar radiation. Ecotoxicol. Environ. Saf. 1996, 35, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Hanano, A.; Almousally, I.; Shaban, M.; Moursel, N.; Shahadeh, A.; Alhajji, E. Differential tissue accumulation of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin in Arabidopsis thaliana affects plant chronology, lipid metabolism and seed yield. Bmc Plant Biol. 2015, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Ahmad, P.; Gadgil, K.; Sharma, S. Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod. 2012, 3, 65–76. [Google Scholar]
- Peralta, J.; Gardea-Torresdey, J.; Tiemann, K.; Gomez, E.; Arteaga, S.; Rascon, E.; Parsons, J. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol. 2001, 66, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Lievens, C.; Carleer, R.; Cornelissen, T.; Yperman, J. Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part. Fuel 2009, 88, 1417–1425. [Google Scholar] [CrossRef]
- Bridle, T.; Pritchard, D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol. 2004, 50, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Saroha, A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour. Technol. 2014, 162, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Buss, W.; Graham, M.C.; Shepherd, J.G.; Mašek, O. Risks and benefits of marginal biomass-derived biochars for plant growth. Sci. Total Environ. 2016, 569, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Shackley, S.; Sohi, S.; Brownsort, P.; Carter, S.; Cook, J.; Cunningham, C.; Gaunt, J.; Hammond, J.; Ibarrola, R.; Mašek, O. An Assessment of the Benefits and Issues Associated with the Application of Biochar to Soil; Department for Environment, Food and Rural Affairs, UK Government: London, UK, 2010.
- McGrath, T.; Sharma, R.; Hajaligol, M. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel 2001, 80, 1787–1797. [Google Scholar] [CrossRef]
- Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 2012, 46, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Reed, D. IBI White Paper—Implications and Risks of Potential Dioxin Presence in Biochar; International Biochar Initiative: Canandaigua, NY, USA, 2012; Available online: https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_White_Paper-Implications_of_Potential_%20Dioxin_in_Biochar.pdf (accessed on 31 January 2019).
- Everaert, K.; Baeyens, J. The formation and emission of dioxins in large scale thermal processes. Chemosphere 2002, 46, 439–448. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Metcalf, J. The Formation of Polyaromatic Hydrocarbons and Dioxins During Pyrolysis: A Review of the Literature with Descriptions of Biomass Composition, Fast Pyrolysis Technologies and Thermochemical Reactions. 2008. Available online: https://research.wsulibs.wsu.edu:8443/xmlui/bitstream/handle/2376/5966/TheFormationOfPolyaromaticHydrocarbonsAndDioxinsDuringPyrolysis.pdf?sequence=1&isAllowed=y (accessed on 31 January 2019).
Biochar Feedstock | Production Temp (°C) | CC (%) | AS (%) | TP (%) | BD (g cm−3) | pH | EC (dS m−1) | CEC (cmol kg−1) | N (%) | C (%) | P (%) | K (%) | Na (%) | Ca (%) | Mg (%) | S (%) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Citrus woodz | n | n | n | n | n | 7.6 | 1.6 | n | 0.6 | 70.6 | 0.0008 | 0.37 | 0.32 | 0.02 | 0.01 | 0.07 | [54] |
Coir (coconut husk fiber) | 450 | 64 | 33 | 97 | 0.14 | 8.2 | 1.0 | 153 | 1.3 | n | 0.17 | 1.89 | 4.83 | 0.33 | 0.73 | n | [21] |
Conifer wood | 450 | n | n | 92 | 0.64 | 8.5 | 0.4 | n | n | n | n | n | n | n | n | n | [53] |
Crab shellz | 200–250 | n | n | n | n | 8.8 | 0.005 | n | 3.6 | 28.7 | 0.03 | 0.61 | 0.04 | 0.18 | 0.08 | n | [50] |
Eucalyptus saligna wood chip | 550 | n | n | n | n | 8.8 | 0.2 | n | 0.3 | 83.6 | 0.02 | 0.24 | n | 2.13 | 0.11 | 0.05 | [51] |
Forest waste | n | n | n | n | n | 9.6 | 0.7 | n | 0.7 | 59.5 | 0.08 | 0.87 | 0.04 | 2.90 | 0.24 | 0.07 | [46,47] |
Green waste | 550 | n | n | n | n | 7.7 | n | 250 | 0.3 | 77.5 | n | n | n | n | n | 0.00 | [58] |
Green waste (willow, pagoda tree and poplar) | n | 27 | 22 | 49 | 0.44 | 8.0 | 0.9 | n | 1.2 | 50.4 | 0.01 | 0.47 | n | n | n | n | [18] |
Green waste (tomato crop) | 550 | n | 28 | n | 0.13 | 10.4 | 3.3 | 524 | n | 55.0 | n | n | n | n | n | n | [59] |
Hardwood pellets | n | n | n | n | 0.38 | 8.0 | 1.1 | n | n | n | 0.0005 | 0.04 | 0.001 | 0.02 | 0.002 | n | [5] |
Holm oak | 650 | 51 | 29 | 80 | 0.32 | 9.3 | 0.5 | n | 0.9 | n | 0.18 | 0.77 | n | 3.76 | 0.40 | n | [52] |
Mixed hardwood (oak, elm, and hickory) | 450 | n | n | n | 0.28 | n | n | n | n | n | 0.29 | 3.59 | 0.02 | 38.28 | 0.97 | n | [60] |
Mixed hardwood | n | 60 | 24 | 85 | 0.15 | 11.2 | 2.0 | n | 0.2 | n | 0.05 | 0.64 | 0.01 | 2.75 | 0.13 | 0.02 | [61] |
Mixed softwood y | 800 | n | n | n | n | 10.9 | 0.5 | 19 | n | n | 0.02 | n | n | n | n | n | [62] |
Oak chip z | 200–250 | n | n | n | n | 5.1 | 0.3 | n | 0.1 | 52.2 | 0.09 | 0.10 | 0.06 | 1.03 | 0.08 | n | [50] |
Olive mill waste | 500 | n | n | n | n | 9.7 | 9.2 | n | 0.6 | 59.5 | 0.90 | 6.42 | 0.05 | 3.40 | 0.61 | 0.17 | [47] |
Pine chip z | 200–250 | n | n | n | n | 6.4 | 0.03 | n | 0.3 | 53.7 | 0.05 | 0.65 | 0.05 | 0.23 | 0.08 | n | [50] |
Pine cone z | 200–250 | n | n | n | n | 5.1 | 1.2 | n | 0.6 | 53.2 | 0.01 | 0.16 | 0.04 | 0.36 | 0.05 | n | [50] |
Pine wood | 450 | 49 | 34 | 83 | 0.17 | n | n | n | 0.4 | 48.1 | n | 0.10 | n | 0.50 | 0.30 | n | [6,57] |
Pine wood | 450 | 47 | 36 | 83 | 0.18 | 5.4 | 0.2 | n | n | n | n | n | n | n | n | n | [55,56] |
Poplar y | 1100–1200 | 57 | 34 | 91 | n | 9.7 | 0.2 | n | 0.7 | n | 0.51 | 0.98 | n | 4.31 | 7.64 | n | [63] |
Pruning wastes | 300 | 17 | 4 | 21 | 0.18 | 7.5 | 0.3 | 26 | 1.2 | 66.2 | 0.004 | n | n | n | n | n | [20] |
Pruning wastes | 500 | 35 | 4 | 39 | 0.18 | 10.3 | 1.0 | 16 | 1.2 | 77.7 | 0.01 | n | n | n | n | n | [20] |
Rice husk | 500 | n | n | n | n | 10.2 | 0.8 | 50 | 0.3 | 20.5 | n | n | n | n | n | n | [64] |
Rice husk z | n | n | n | n | 0.30 | 7.3 | n | n | 1.1 | n | 0.10 | 0.50 | n | n | n | n | [65] |
Rice husk z | 200–250 | n | n | n | n | 6.3 | 0.4 | n | 0.6 | 45.4 | 1.21 | 0.27 | 0.73 | 15.80 | 1.04 | n | [50] |
Rice hull y | 815–871 | n | n | n | 0.20 | 10.5 | n | n | 0.2 | 17.7 | 0.30 | 0.98 | n | 0.35 | 0.15 | 0.03 | [49,66,67] |
Sewage sludge x | 450 | n | n | n | n | 7.9 | 1.1 | n | 1.1 | n | n | n | n | n | n | n | [19] |
Sewage sludge x | 450 | n | n | n | n | 7.5 | 1.1 | n | 3.1 | n | n | n | n | n | n | n | [19] |
Southern yellow pine | 400 | n | n | n | n | 6.0 | n | n | n | n | 0.03 | 0.29 | n | 0.06 | 0.12 | 0.08 | [68] |
Spruce wood y | 1100–1200 | 29 | 63 | 92 | n | 11.1 | 0.3 | n | 0.2 | n | 0.05 | 0.74 | n | 1.34 | 0.17 | n | [63] |
Sugarcane bagasse z | 343 | n | n | n | 0.11 | 5.8 | n | n | n | n | n | n | n | n | n | n | [48] |
Sugarcane bagasse z | 343 | n | n | n | 0.11 | 6.1 | n | n | n | n | n | n | n | n | n | n | [48] |
Switchgrass z | 1000 | n | n | n | 0.10 | 10.8 | 3.5 | n | 1.3 | 79.0 | 1.20 | 6.60 | n | n | n | n | [69] |
Wheat straw | 600 | n | n | n | 0.31 | 10.0 | 1.0 | n | 1.0 | 79.3 | n | n | n | n | n | n | [70] |
Wheat straw | n | n | n | n | 0.24 | 9.5 | 2.5 | n | n | n | 0.003 | 0.10 | 0.002 | 0.004 | 0.0009 | n | [5] |
Plant Species | Non-Biochar Components | Biochar Feedstock | Percentage (%, by vol.) of Biochar and the Effects on Plants’ Dry Weight/Growth Index (DW/GI)z | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 10 | 15 | 20 | 25 | 30 | 40 | ||||
Buxus sempervirens × Buxus microphylla | Pine bark and 24 g osmocote 18N–6P–12K | Switchgrass | =/n | =/n | [69] | ||||||
Calendula offcinalis | Coir | Forest waste | =/n | =/n | [46] | ||||||
Chrysanthemum nankingense | Pine bark | Pine wood | =/= | =/= | [57] | ||||||
Cucumis melo | Sunshine commercial growing medium | Standard sugarcane bagasse | =/=y | [48] | |||||||
Sugarcane bagasse using a pneumatic transport system | =/=y | ||||||||||
Cucurbita pepo | Sunshine commercial growing medium | Standard sugarcane bagasse | =/=y | ||||||||
Sugarcane bagasse using a pneumatic transport system | =/=y | ||||||||||
Euphorbia × lomi | Peat | Conifer wood | n/= y | n/+ y | [53] | ||||||
Euphorbia pulcherrima | Sunshine Mix #1 | Pine wood | +/= | =/= | [55] | ||||||
Hydrangea paniculata | Pine bark and 24 g osmocote 18N–6P–12K | Switchgrass | =/n | -/n | [69] | ||||||
Lactuca sativa | Peat | Sewage sludge | +/+y | [19] | |||||||
Lactuca sativa ‘Black Seeded Simpson’ | Pine bark | Pine wood | n/= | n/= | [57] | ||||||
Lilium longiflorum | Sunshine Mix #1 | Pine wood | =x/=y | =x/=y | [56] | ||||||
Ocimum basilicum ‘Genovese’ | Pine bark | Pine wood | =/n | =/n | [57] | ||||||
Ocimum basilicum | Peat | Softwood from spruce wood | =/n | [63] | |||||||
Harwood from poplar | =/n | ||||||||||
Ocimum basilicum | 5% vermicompost (VC) with the rest being Berger BM7 | Mixed hardwood | =/= | =/= | [61] | ||||||
10% VC with the rest being Berger BM7 | =/= | =/= | |||||||||
15% VC with the rest being Berger BM7 | =/= | +/= | |||||||||
20% VC with the rest being Berger BM7 | =/= | +/= | |||||||||
Petunia hybrida | Coir | Forest waste | =/n | =/n | [46] | ||||||
Solanum lycopersicum. ‘Red Robin’ | 50% vermiculite with the rest being peat and biochar | Pelletized wheat straw | =/+ y | =/+ y | =/+ y | [5] | |||||
Hardwood pellets | =/+y | =/+ y | =/+ y | ||||||||
Solanum lycopersicum ‘Cuarenteno’ | Coir | Forest waste | =/n | =/n | [47] | ||||||
Olive mill waste | +/n | =/n | |||||||||
Solanum lycopersicum ‘Gransol Rijk Zwaan’ | Forest waste | =/n | -/n | ||||||||
Olive mill waste | =/n | =/n | |||||||||
Solanum lycopersicum ‘Hope’ | Pine bark | Pine wood | =/= | +/= | [57] | ||||||
Solanum lycopersicum ‘Roma’ | 5% VC with the rest being Berger BM7 | Mixed hardwood | =/= | =/= | [61] | ||||||
10% VC with the rest being Berger BM7 | +/= | =/= | |||||||||
15% VC with the rest being Berger BM7 | =/+ | +/= | |||||||||
20% VC with the rest being Berger BM7 | =/= | =/= | |||||||||
Tagetes erecta ‘Inca II Yellow Hybrid’ | 50% vermiculite with the rest being peat and biochar | Pelletized wheat straw | =/+ y | =/+ y | =/+ y | [5] | |||||
Hardwood pellets | =/= y | =/+ y | =/+ y |
Plant Species | Non-Biochar Components | Biochar Feedstock | Percentage (%, by vol.) of Biochar and Its Effect on Plants’ Dry Weight/Growth Index (DW/GI) z | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 60 | 66 | 70 | 75 | 80 | 90 | 100 | ||||
Anethum graveolens | Perlite | Rice husk | +/+y | [64]w | |||||||
Brassica rapa ssp. pekinensis | +/+y | ||||||||||
Brassica rapa var. rosularis | +/+y | ||||||||||
Calathea rotundifolia cv. Fasciata | Peat | Green waste | +/n | [18] | |||||||
Chrysanthemum nankingense | Pine bark | Pine wood | =/n | +/n | =/n | [57] | |||||
Cucumis melo | Sunshine commercial growing medium | Standard sugarcane bagasse | =/= y | -/= y | -/= y | [48] | |||||
Sugarcane bagasse using a pneumatic transport system | =/+ y | =/= y | -/= y | ||||||||
Cucurbita pepo | Sunshine commercial growing medium | Standard sugarcane bagasse | =/=y | =/= y | =/= y | ||||||
Sugarcane bagasse using a pneumatic transport system | +/+ y | =/= y | =/= y | ||||||||
Euphorbia × lomi | Peat | Conifer wood | +/+ y | +/+y | n/= y | [53] | |||||
Euphorbia pulcherrima | Sunshine Mix #1 | Pine wood | -/= | -/= | -/- | [55] | |||||
Lactuca sativa | Perlite | Rice husk | +/+y | [64]w | |||||||
Lactuca sativa | Peat | Deinking sludge | +/n | [75] | |||||||
Coir | -/n | ||||||||||
Lactuca sativa | Peat | Pruning wastes | +/n | +/n | [20] | ||||||
Lactuca sativa ‘Black Seeded Simpson’ | Pine bark | Pine wood | n/= | n/= | n/= | [57] | |||||
Lilium longiflorum | Sunshine Mix #1 | Pinewood | =x/=y | =x/=y | [56] | ||||||
Malva verticillata | Perlite | Rice husk | +/+y | [64]w | |||||||
Ocimum basilicum | 5% VC with the rest being Berger BM7 | Mixed hardwood | =/= | [61] | |||||||
10% VC with the rest being Berger BM7 | =/= | ||||||||||
Ocimum basilicum | 15% VC with the rest being Berger BM7 | Mixed hardwood | +/= | [61] | |||||||
20% VC with the rest being Berger BM7 | =/= | ||||||||||
Ocimum basilicum | 5% chicken manure compost (CM) with the rest being Berger BM7 | Mixed hardwood | =/= | =/= | -/- | [61] | |||||
Ocimum basilicum | 5% VC with the rest being Berger BM7 | =/= | =/= | -/- | |||||||
Ocimum basilicum ‘Genovese’ | Pine bark | Pine wood | =/n | =/n | -/n | [57] | |||||
Solanum lycopersicum ‘Red Robin’ | Potato digestate | Wood pellet | +/= y | [71] | |||||||
Pelletized wheat straw | +/= y | ||||||||||
Pennycress presscake | =/= y | ||||||||||
Solanum lycopersicum ‘Gransol Rijk Zwaan’ | Coir | Forest waste | -/n | -/n | -/n | [47] | |||||
Olive mill waste | -/n | -/n | -/n | ||||||||
Solanum lycopersicum ‘Cuarenteno’ | Coir | Forest waste | -/n | -/n | -/n | ||||||
Olive mill waste | =/n | =/n | =/n | ||||||||
Solanum lycopersicum | Faecal sludge based compost | Rice husk | =/=y | -/-y | [65] | ||||||
Solanum lycopersicum ‘Roma’ | 5% VC with the rest being Berger BM7 | Mixed hardwood | =/= | [61] | |||||||
10% VC with the rest being Berger BM7 | =/= | ||||||||||
15% VC with the rest being Berger BM7 | =/= | ||||||||||
20% VC with the rest being Berger BM7 | =/= | ||||||||||
Solanum lycopersicum ‘Tumbling Tom Red’’ | 5% CM with the rest being Berger BM7 | Mixed hardwood | +/= | =/= | -/- | [61] | |||||
5% VC with the rest being Berger BM7 | =/= | =/= | =/= | ||||||||
Solanum lycopersicum ‘Hope’ | Pine bark | Pine wood | =/= | -/= | -/= | [57] | |||||
Tagetes erecta | Potato digestate | Wood pellet | -/=y | [71] | |||||||
Pelletized wheat straw | =/= y | ||||||||||
Pennycress presscake | -/= y |
Plant Species | Non-Biochar Components | Biochar Feedstock | Percentage (%, by weight) of Biochar and Its Effect on Plants’ Dry Weight/Growth Index (DW/GI) z | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.5 | 3 | 5 | 10 | 20 | 35 | 40 | 60 | 80 | ||||
Acmena smithii | Growing medium (pine bark, coir, clinker ash and coarse sand) with 3 kg m−3 controlled-release fertilizer (CRF) | Eucalyptus saligna wood chip | =/n | =/n | =/n | [51] | |||||||
Growing medium (pine bark, coir, clinker ash and coarse sand) with 6 kg m−3 CRF | +/n | =/n | =/n | ||||||||||
Growing medium (pine bark, coir, clinker ash and coarse sand) with no CRF | +/n | =/n | =/n | ||||||||||
Calathea insignis | Composted green waste medium | Coir (coconut husk fiber) | +/+ y | +/+ y | [21] | ||||||||
0.5% humic acid (w/w) with the rest being green waste compost | +/+ y | +/+ y | |||||||||||
0.7% humic acid (w/w) with the rest being green waste compost | +/+ y | +/=y | |||||||||||
Capsicum annuum | A mixture of coconut fiber and tuff at a ratio of 7:3 (by vol.) | Citrus wood | n/= y | n/= y | [54] | ||||||||
Capsicum annuum | Sphagnum peatmoss-based medium in 50-cell transplant trays | Hardwood including oak, elm, and hickory | =/= y | =/= y | -/-y | -/- y | [60] | ||||||
Sphagnum peatmoss-based medium in 72-cell transplant trays | =/+ y | =/= y | =/= y | -/- y | |||||||||
Sphagnum peatmoss-based medium in 98-cell transplant trays | =/= y | =/= y | =/= y | -/- y | |||||||||
Solanum lycopersicum | A mixture of coconut fiber and tuff at a ratio of 7:3 (by vol.) | Citrus wood | n/+ y | n/+ y | [54] | ||||||||
Viola × hybrida | Growing medium (pine bark, coir, clinker ash and coarse sand) blended with 3 kg m−3 CRF | Eucalyptus saligna wood chip | =/n | =/n | =/n | [51] | |||||||
Growing medium (pine bark, coir, clinker ash and coarse sand) blended with 6 kg m−3 CRF | +/n | =/n | +/n | ||||||||||
Growing medium (pine bark, coir, clinker ash and coarse sand) with no CRF | -/n | =/n | -/n | ||||||||||
Viola× wittrockiana | Growing medium (pine bark, coir, clinker ash and coarse sand) blended with 3 kg m−3 CRF | Eucalyptus saligna wood chip | -/n | =/n | =/n | [51] | |||||||
Growing medium (pine bark, coir, clinker ash and coarse sand) blended with 6 kg m−3 CRF | +/n | =/n | =/n | ||||||||||
Growing medium (pine bark, coir, clinker ash and coarse sand) with no CRF | +/n | =/n | =/n |
Plant Species | Non-Biochar Components | Biochar Feedstock | Biochar Percentage (by vol.) | Effects on Plant Growthz | Other Information | Reference |
---|---|---|---|---|---|---|
Agrostis stolonifera | Sand | Southern yellow pine | 15% | Plant height (=)/DW (=)/FW (=) | Control was mixes with 85% sand and 15% peat | [68] |
85% sand and 10% peat, vermicompost, yard-waste compost, Organimix compost, humus or worm castings | 5% | Plant height (=)/DW (=)/FW (=) | ||||
85% sand and 10% anaerobic biosolids | 5% | Plant height (+)/DW (+)/FW (+) | ||||
Helianthus annuus | Pig slurry compost | Holm oak | 40% or 80% | Shoot DW (+) | Compared to mixes with 40% or 80% coir with the rest being pig slurry compost, respectively | [52] |
Pig slurry compost | 60% | Shoot DW (=) | Control was mixes with 60% coir with the rest being pig slurry compost | |||
No | 100% | Shoot DW (=) | Control was 100% coir | |||
Ipomoea aquatica | Spent pig litter compost, vermiculite, perlite and peat | Wheat straw | 2%, 4% or 8% | Germination rate (=) | [70] | |
10%, 12%, 14% or 16% | Germination rate (-) | |||||
Lactuca sativa | Two parts of single wood species sawdust to one-part poultry manure | Rice husk | 50% or 66% | Plant height (-) | Half irrigation (0.1125mm) | [92] |
50% | Plant height (=) | Full irrigation (0.225mm) | ||||
66% | Plant height (+) | Full irrigation (0.225mm) | ||||
Pelargonium × hortorum ‘Maverick Red’ | Sunshine Mix #2 | Rice hull | 1% or 10% | Shoot DW (-) | Plants in biochar-added substrates were fertilized with 100 mg L–1 N. Control was Sunshine Mix #2 with a fertilizer (20N-4.4P-16.6K-0.15Mg-0.02B-0.01Cu-0.1Fe-0.05Mn-0.01Mo-0.05Zn) at the rate of 100 mg L−1 N | [66] |
Sunshine Mix #2 with a micronutrient package (Micromax, The Scotts Co., Marysville, OH) at 0.9 kg m–3 | Rice hull | 5%,10% or 15% | Shoot DW (=) | [67] | ||
20% | Shoot DW (-) | |||||
Pelargonium zonale | Peat | N/A | 30% or 70% | Plant height (=)/DW (=) | 140 mg L−1 slow released fertilizer applied | [87] |
30% | Plant height (=)/DW (=) | 210 mg L−1 slow released fertilizer applied | ||||
70% | Plant height (-)/DW (-) | |||||
Solanum lycopersicum ‘Megabite’ | Sunshine Mix #2 with a micronutrient package (Micromax, The Scotts Co., Marysville, OH) at 0.9 kg m–3 | Rice hull | 5% | Shoot DW (=) | Plants in biochar-added substrates were fertilized with 100 mg L–1 N. Control was Sunshine Mix #2 with a fertilizer (20N-4.4P- 16.6K-0.15Mg-0.02B-0.01Cu-0.1Fe-0.05Mn-0.01Mo-0.05Zn) at the rate of 100 mg L−1 N | [67] |
10%, 15% or 20% | Shoot DW (+) | |||||
Solanum lycopersicum | Pine (Pinus radiata D. Don) sawdust | Tomato crop green waste | 25%, 50%, 75% or 100% | Shoot fresh weight (FW) (=)/Fruit number (=)/ Yield (=) | Control was 100% pine sawdust. | [59] |
Sylibum marianum | Pig slurry compost | Holm oak | 40%, 60% or 80% | Shoot DW (=) | Compared to mixes with 40%, 60%, or 80% coir with the rest being pig slurry compost, respectively | [52] |
No | 100% | Shoot DW (-) | Control was 100% coir | |||
Tagetes erecta | 30% perlite with the rest being peat and biochar | Mixed softwood | 10%, 20%, 30%, 40%, 50%, 60% or 70% | Plant height (=)/DW (=) | No pH adjustment; control was 70:30 peat: perlite mixture. | [62] |
10% or 70% | Plant height (-)/DW (=) | pH adjusted to 5.8; control was 70:30 peat: perlite mixture. | ||||
20%, 30%, 40%, 50% or 60% | Plant height (=)/DW (=) | |||||
Zelkova serrata | Growing medium mixture of peat moss, perlite, and vermiculite at a ratio of 1:1:1 by vol. | Pine chip | 20% | Plant height (=)/Stem DW (=) | 0.5 or 1 g/L fertilization | [50] |
Oak chip | 20% | Plant height (=)/Stem DW (=) | 0.5 or 1 g/L fertilization | |||
Pine cone | 20% | Plant height (-)/Stem DW (-) | 0.5 g/L fertilization | |||
Plant height (=)/Stem DW (=) | 1 g/L fertilization | |||||
Rice husk | 20% | Plant height (+)/Stem DW (+) | 0.5 g/L fertilization | |||
Plant height (=)/Stem DW (=) | 1 g/L fertilization | |||||
Crab shell | 20% | Plant height (-)/Stem DW (-) | 0.5 or 1 g/L fertilization |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Gu, M. Effects of Biochar on Container Substrate Properties and Growth of Plants—A Review. Horticulturae 2019, 5, 14. https://doi.org/10.3390/horticulturae5010014
Huang L, Gu M. Effects of Biochar on Container Substrate Properties and Growth of Plants—A Review. Horticulturae. 2019; 5(1):14. https://doi.org/10.3390/horticulturae5010014
Chicago/Turabian StyleHuang, Lan, and Mengmeng Gu. 2019. "Effects of Biochar on Container Substrate Properties and Growth of Plants—A Review" Horticulturae 5, no. 1: 14. https://doi.org/10.3390/horticulturae5010014
APA StyleHuang, L., & Gu, M. (2019). Effects of Biochar on Container Substrate Properties and Growth of Plants—A Review. Horticulturae, 5(1), 14. https://doi.org/10.3390/horticulturae5010014