Effects of Berry, Cluster Thinning and No-Sulfites Addition on the Sensory Quality of ‘Monastrell’ Organic Wines
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Winemaking
2.3. Determination of Physicochemical Parameters
2.4. Volatile Organic Compounds (VOCs)
2.5. Sensory Analysis
2.5.1. Descriptive Sensory Analysis
2.5.2. Affective Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Effect of Thinning Method on Total Production (kg), Yield (kg/vine) and Berry Size (mm) of Wine Grape
3.2. Effect of Thinning on Physicochemical Composition of Wine
3.3. Volatile Compounds
Compound | ANOVA † | 2020 | 2025 | |||||
---|---|---|---|---|---|---|---|---|
2020 | 2025 | C | BR | BT | C | BR | BT | |
Ethanol | ** | ** | 6.531 b ‡ | 7.779 a | 7.234 ab | 6.204 b | 7.025 a | 7.220 a |
Ethyl acetate | *** | ** | 1.235 b | 1.403 a | 1.484 a | 1.180 b | 1.352 a | 1.405 a |
2-Methyl-1-propanol | ** | NS | 0.096 a | 0.095 a | 0.082 b | 0.080 | 0.075 | 0.094 |
3-Methyl-1-butanol | NS | NS | 1.538 | 1.639 | 1.843 | 1.488 | 1.520 | 1.505 |
2-Methyl-1-butanol | NS | NS | 0.155 | 0.208 | 0.085 | 0.135 | 0.130 | 0.120 |
Ethyl isobutyrate | *** | NS | 0.022 a | 0.020 ab | 0.015 b | 0.015 | 0.016 | 0.018 |
Butyl acetate | NS | NS | 0.005 | 0.006 | 0.005 | 0.010 | 0.012 | 0.008 |
2,3-Butanediol | NS | NS | 0.065 | 0.174 | 0.277 | 0.095 | 0.120 | 0.111 |
Ethyl butyrate | NS | NS | 0.014 | 0.014 | 0.052 | 0.034 | 0.020 | 0.057 |
Ethyl lactate | ** | * | 0.145 b | 0.166 b | 0.281 a | 0.125 c | 0.156 b | 0.170 a |
Ethyl 2-methylbutyrate | *** | NS | 0.014 a | 0.011 ab | 0.009 b | 0.022 | 0.034 | 0.026 |
Ethyl isovalerate | NS | NS | 0.014 | 0.013 | 0.014 | 0.010 | 0.008 | 0.014 |
1-Hexanol | ** | NS | 0.018 b | 0.035 a | 0.039 a | 0.008 | 0.015 | 0.022 |
Isoamyl acetate | NS | NS | 0.070 | 0.123 | 0.152 | 0.054 | 0.074 | 0.068 |
γ-Butyrolactone | NS | NS | 0.018 | 0.024 | 0.031 | 0.025 | 0.023 | 0.019 |
Ethyl hexanoate | NS | NS | 0.235 | 0.195 | 0.180 | 0.284 | 0.222 | 0.241 |
Nonanal | NS | NS | 0.010 | 0.011 | 0.011 | 0.009 | 0.007 | 0.010 |
Phenyl ethyl alcohol | NS | NS | 1.003 | 1.169 | 1.169 | 0.095 | 0.080 | 0.088 |
Ethyl succinate | NS | NS | 0.051 | 0.103 | 0.181 | 0.069 | 0.094 | 0.105 |
Octanoic acid | NS | NS | 0.023 | 0.019 | 0.013 | 0.031 | 0.026 | 0.023 |
Diethyl succinate | NS | NS | 1.631 | 1.539 | 1.749 | 1.520 | 1.581 | 1.632 |
Ethyl octanoate | ** | * | 1.259 a | 0.762 b | 0.605 b | 1.204 a | 0.990 b | 0.925 b |
2-Phenyl ethyl acetate | NS | NS | 0.011 | 0.015 | 0.015 | 0.010 | 0.008 | 0.011 |
Ethyl nonanoate | ** | NS | 0.004 a | 0.002 b | 0.001 b | 0.002 | 0.001 | 0.004 |
Ethyl decanoate | *** | * | 0.418 a | 0.212 b | 0.175 b | 0.480 a | 0.251 b | 0.226 b |
Dodecanal | *** | NS | 0.007 a | 0.000 b | 0.000 b | 0.004 | 0.002 | 0.004 |
Ethyl isopentyl succinate | NS | NS | 0.025 | 0.021 | 0.026 | 0.023 | 0.031 | 0.018 |
Isoamyl octanoate | *** | NS | 0.007 a | 0.005 b | 0.004 b | 0.004 | 0.007 | 0.006 |
Ethyl dodecanoate | ** | NS | 0.010 a | 0.004 b | 0.004 b | 0.004 | 0.005 | 0.005 |
1-Tetradecanal | *** | NS | 0.003 a | 0.000 b | 0.000 b | 0.004 | 0.002 | 0.007 |
Ethyl tetradecanoate | NS | NS | 0.012 | 0.009 | 0.013 | 0.018 | 0.010 | 0.012 |
Ethyl hexadecanoate | ** | NS | 0.144 b | 0.205 a | 0.188 ab | 0.120 | 0.182 | 0.167 |
Family | ||||||||
Alcohols | ** | ** | 9.405 b | 11.099 a | 10.729 a | 8.105 b | 8.965 a | 9.160 a |
Esters | NS | NS | 5.344 | 4.850 | 5.182 | 5.213 | 5.077 | 5.134 |
Aldehydes | ** | NS | 0.020 a | 0.011 b | 0.011 b | 0.017 | 0.011 | 0.021 |
Carboxylic acids | NS | NS | 0.023 | 0.019 | 0.013 | 0.031 | 0.026 | 0.023 |
Total | ** | * | 14.792 b | 15.979 a | 15.935 a | 13.366 b | 14.079 a | 14.338 a |
3.4. Sensory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urvieta, R.; Buscema, F.; Bottini, R.; Coste, B.; Fontana, A. Phenolic and Sensory Profiles Discriminate Geographical Indications for Malbec Wines from Different Regions of Mendoza, Argentina. Food Chem. 2018, 265, 120–127. [Google Scholar] [CrossRef]
- Petronilho, S.; Lopez, R.; Ferreira, V.; Coimbra, M.A.; Rocha, S.M. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Molecules 2020, 25, 272. [Google Scholar] [CrossRef] [PubMed]
- Condurso, C.; Cincotta, F.; Tripodi, G.; Sparacio, A.; Giglio, D.M.L.; Sparla, S.; Verzera, A. Effects of Cluster Thinning on Wine Quality of Syrah Cultivar (Vitis vinifera L.). Eur. Food Res. Technol. 2016, 242, 1719–1726. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Delgado, J.A.; Ferrer, M.A.; Viñas, M.A.G. The Aroma of La Mancha Chelva Wines: Chemical and Sensory Characterization. Food Res. Int. 2019, 119, 135–142. [Google Scholar] [CrossRef]
- Hopfer, H.; Heymann, H. Judging Wine Quality: Do We Need Experts, Consumers or Trained Panelists? Food Qual. Prefer. 2014, 32, 221–233. [Google Scholar] [CrossRef]
- Rasines-Perea, Z.; Prieto-Perea, N.; Romera-Fernández, M.; Berrueta, L.A.; Gallo, B. Fast Determination of Anthocyanins in Red Grape Musts by Fourier Transform Mid-Infrared Spectroscopy and Partial Least Squares Regression. Eur. Food Res. Technol. 2015, 240, 897–908. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Li, Y.; Liu, Q.; Yuan, C. Survey of the Phenolic Content and Antioxidant Properties of Wines from Five Regions of China According to Variety and Vintage. LWT 2022, 169, 114004. [Google Scholar] [CrossRef]
- Lavilla, M.; Gayán, E. Consumer Acceptance and Marketing of Foods Processed through Emerging Technologies. In Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms; Elsevier: Amsterdam, The Netherlands, 2018; pp. 233–254. ISBN 9780128110324. [Google Scholar]
- Mohammadi, X.; Kitts, D.D.; Singh, A.; Amiri, A.; Matinfar, G.; Pratap-Singh, A. Pulsed Light Treatment Helps Reduce Sulfur Dioxide Required to Preserve Malbec Wines. Food Biosci. 2024, 61, 104776. [Google Scholar] [CrossRef]
- Santos, C.V.A.; Pereira, C.; Martins, N.; Cabrita, M.J.; Gomes da Silva, M. Different SO2 Doses and the Impact on Amino Acid and Volatile Profiles of White Wines. Beverages 2023, 9, 33. [Google Scholar] [CrossRef]
- Regulation (EU) No.1169/2011 of the European Parliament and of the Council of October 25, 2011, on the Provision of Food Information to Consumers; Official Journal of the European Union: Brussels, Belgium, 2011; Volume L 304, pp. 18–63.
- Guerrero, R.F.; Cantos-Villar, E. Demonstrating the Efficiency of Sulphur Dioxide Replacements in Wine: A Parameter Review. Trends Food Sci. Technol. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- Ancín-Azpilicueta, C.; Barriuso-Esteban, B.; Nieto-Rojo, R.; Aristizábal-López, N. SO2 Protects the Amino Nitrogen Metabolism of Saccharomyces Cerevisiae under Thermal Stress. Microb. Biotechnol. 2012, 5, 654–662. [Google Scholar] [CrossRef]
- Makhotkina, O.; Kilmartin, P.A. Electrochemical Oxidation of Wine Polyphenols in the Presence of Sulfur Dioxide. J. Agric. Food Chem. 2013, 61, 5573–5581. [Google Scholar] [CrossRef]
- Giacosa, S.; Río Segade, S.; Cagnasso, E.; Caudana, A.; Rolle, L.; Gerbi, V. SO2 in Wines: Rational Use and Possible Alternatives. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 309–321. ISBN 9780128144008. [Google Scholar]
- Wedral, D.; Shewfelt, R.; Frank, J. The Challenge of Brettanomyces in Wine. LWT 2010, 43, 1474–1479. [Google Scholar] [CrossRef]
- Jackowetz, J.N.; Dierschke, S.; Mira de Orduña, R. Multifactorial Analysis of Acetaldehyde Kinetics during Alcoholic Fermentation by Saccharomyces Cerevisiae. Food Res. Int. 2011, 44, 310–316. [Google Scholar] [CrossRef]
- Silva, F.V.M.; van Wyk, S. Emerging Non-Thermal Technologies as Alternative to SO2 for the Production of Wine. Foods 2021, 10, 2175. [Google Scholar] [CrossRef]
- Walzem, R.L. Wine and Health: State of Proofs and Research Needs. Inflammopharmacology 2008, 16, 265–271. [Google Scholar] [CrossRef]
- Macoviciuc, S.; Nechita, C.B.; Cioroiu, I.B.; Cotea, V.; Niculaua, M. Effect of Added Sulphur Dioxide Levels on the Aroma Characteristics of Wines from Panciu Wine Region. Agric. Sci. 2022, 1, 73–77. [Google Scholar] [CrossRef]
- Christofi, S.; Malliaris, D.; Katsaros, G.; Panagou, E.; Kallithraka, S. Limit SO2 Content of Wines by Applying High Hydrostatic Pressure. Innov. Food Sci. Emerg. Technol. 2020, 62, 102342. [Google Scholar] [CrossRef]
- García Martín, J.F.; Sun, D.W. Ultrasound and Electric Fields as Novel Techniques for Assisting the Wine Ageing Process: The State-of-the-Art Research. Trends Food Sci. Technol. 2013, 33, 40–53. [Google Scholar] [CrossRef]
- Puértolas, E.; López, N.; Condón, S.; Raso, J.; Álvarez, I. Pulsed Electric Fields Inactivation of Wine Spoilage Yeast and Bacteria. Int. J. Food Microbiol. 2009, 130, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.; Nunes, C.; Cappelle, J.; Gonçalves, F.J.; Rodrigues, A.; Saraiva, J.A.; Coimbra, M.A. Effect of High Pressure Treatments on the Physicochemical Properties of a Sulphur Dioxide-Free Red Wine. Food Chem. 2013, 141, 2558–2566. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Martínez-Cutillas, A.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. Improving Colour Extraction and Stability in Red Wines: The Use of Maceration Enzymes and Enological Tannins. Int. J. Food Sci. Technol. 2005, 40, 867–878. [Google Scholar] [CrossRef]
- Basaran-Akgul, N.; Churey, J.J.; Basaran, P.; Worobo, R.W. Inactivation of Different Strains of Escherichia Coli O157:H7 in Various Apple Ciders Treated with Dimethyl Dicarbonate (DMDC) and Sulfur Dioxide (SO2) as an Alternative Method. Food Microbiol. 2009, 26, 8–15. [Google Scholar] [CrossRef]
- Costa, A.; Barata, A.; Malfeito-Ferreira, M.; Loureiro, V. Evaluation of the Inhibitory Effect of Dimethyl Dicarbonate (DMDC) against Wine Microorganisms. Food Microbiol. 2008, 25, 422–427. [Google Scholar] [CrossRef]
- Delfini, C.; Gaia, P.; Schellino, R.; Strano, M.; Pagliara, A.; Ambrò, S. Fermentability of Grape Must after Inhibition with Dimethyl Dicarbonate (DMDC). J. Agric. Food Chem. 2002, 50, 5605–5611. [Google Scholar] [CrossRef] [PubMed]
- Divol, B.; Strehaiano, P.; Lonvaud-Funel, A. Effectiveness of Dimethyldicarbonate to Stop Alcoholic Fermentation in Wine. Food Microbiol. 2005, 22, 169–178. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Costello, P.J.; Villa, A.; Henschke, P.A. The Chemical and Sensorial Effects of Lysozyme Addition to Red and White Wines over Six Months’ Cellar Storage. Aust. J. Grape Wine Res. 2004, 10, 143–150. [Google Scholar] [CrossRef]
- Tello, J.; Ibáñez, J. What Do We Know about Grapevine Bunch Compactness? A State-of-the-Art Review. Aust. J. Grape Wine Res. 2018, 24, 6–23. [Google Scholar] [CrossRef]
- Piernas, J.; Giménez, M.J.; Noguera-Artiaga, L.; García-Pastor, M.E.; García-Martínez, S.; Zapata, P.J. Influence of Bunch Compactness and Berry Thinning Methods on Wine Grape Quality and Sensory Attributes of Wine in Vitis vinifera L. Cv. ‘Monastrell’. Agronomy 2022, 12, 680. [Google Scholar] [CrossRef]
- Gil, M.; Esteruelas, M.; González, E.; Kontoudakis, N.; Jiménez, J.; Fort, F.; Canals, J.M.; Hermosín-Gutiérrez, I.; Zamora, F. Effect of Two Different Treatments for Reducing Grape Yield in Vitis vinifera Cv Syrah on Wine Composition and Quality: Berry Thinning versus Cluster Thinning. J. Agric. Food Chem. 2013, 61, 4968–4978. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Han, N.; He, X.; Zhao, X. Berry Thinning to Reduce Bunch Compactness Improves Fruit Quality of Cabernet Sauvignon (Vitis vinifera L.). Sci. Hortic. 2019, 246, 589–596. [Google Scholar] [CrossRef]
- Ruiz-García, L.; Fernández-Fernández, J.I.; Martínez-Mora, C.; Moreno-Olivares, J.D.; Giménez-Bañón, M.J.; Fernández-López, D.J.; Bleda-Sánchez, J.A.; Gil-Muñoz, R. Characterization of New Grapevine Varieties Cross-Bred from Monastrell, Authorized for Winemaking in the Warm Region of Murcia (South-Eastern Spain). Horticulturae 2023, 9, 760. [Google Scholar] [CrossRef]
- Coombe, B.G. Growth Stages of the Grapevine: Adoption of a System for Identifying Grapevine Growth Stages. Aust. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis, 2021st ed.; OIV: Paris, France, 2021; Volume 1, ISBN 9782850380334. [Google Scholar]
- Pérez-López, A.J.; Noguera-Artiaga, L.; Navarro, P.; Mompean, P.; Van Lieshout, A.; Acosta-Motos, J.R. Effects of Hyperbaric Micro-Oxygenation on the Color, Volatile Composition, and Sensory Profile of Vitis vinifera L. Cv. Monastrell Grape Must. Fermentation 2025, 11, 380. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Noguera-Artiaga, L.; Sendra, E.; Pérez-López, A.J.; Burló, F.; Carbonell-Barrachina, Á.A.; López-Lluch, D. Volatile Composition, Sensory Profile, and Consumers’ Acceptance of Fondillón. J Food Qual 2019, 2019, 5981762. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook. Standard Reference Database SRD, Number 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 14 January 2025).
- Selfridge, T.B.; Amerine, M.A. Odor Thresholds and Interactions of Ethyl Acetate and Diacetyl in an Artificial Wine Medium. Am. J. Enol. Vitic. 1978, 29, 1–6. [Google Scholar] [CrossRef]
- Echave, J.; Barral, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Bottle Aging and Storage of Wines: A Review. Molecules 2021, 26, 713. [Google Scholar] [CrossRef]
- Oberholster, A.; Elmendorf, B.L.; Lerno, L.A.; King, E.S.; Heymann, H.; Brenneman, C.E.; Boulton, R.B. Barrel Maturation, Oak Alternatives and Micro-Oxygenation: Influence on Red Wine Aging and Quality. Food Chem. 2015, 173, 1250–1258. [Google Scholar] [CrossRef]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Evolution of Polyphenols in Red Wines from Vitis vinifera L. during Aging in the Bottle: I. Anthocyanins and Pyranoanthocyanins. Eur. Food Res. Technol. 2005, 220, 607–614. [Google Scholar] [CrossRef]
- Loureiro, V.; Malfeito-Ferreira, M. Spoilage Yeasts in the Wine Industry. Int. J. Food Microbiol. 2003, 86, 23–50. [Google Scholar] [CrossRef]
- Oelofse, A.; Lonvaud-Funel, A.; du Toit, M. Molecular Identification of Brettanomyces Bruxellensis Strains Isolated from Red Wines and Volatile Phenol Production. Food Microbiol. 2009, 26, 377–385. [Google Scholar] [CrossRef]
- Agnolucci, M.; Tirelli, A.; Cocolin, L.; Toffanin, A. Brettanomyces Bruxellensis Yeasts: Impact on Wine and Winemaking. World J. Microbiol. Biotechnol. 2017, 33, 180. [Google Scholar] [CrossRef]
- Šućur, S.; Čadež, N.; Košmerl, T. Volatile Phenols in Wine: Control Measures of Brettanomyces/Dekkera Yeasts. Acta Agric. Slov. 2016, 107, 453–472. [Google Scholar] [CrossRef]
- Xi, X.; Zha, Q.; He, Y.; Tian, Y.; Jiang, A. Influence of Cluster Thinning and Girdling on Aroma Composition in ‘Jumeigui’ Table Grape. Sci. Rep. 2020, 10, 6877. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Mattii, G.B. Effect of Agronomic Techniques on Aroma Composition of White Grapevines: A Review. Agronomy 2021, 11, 2027. [Google Scholar] [CrossRef]
Determinations | ANOVA † | 2020 | 2025 | |||||
---|---|---|---|---|---|---|---|---|
2020 | 2025 | C | BR | BT | C | BR | BT | |
Total acidity (g/L tartaric acid) | NS | NS | 6.57 | 6.38 | 6.7 | 6.61 | 6.35 | 6.72 |
Volatile acidity (g/L acetic acid) | * | NS | 0.59 b ‡ | 0.76 ab | 0.82 a | 0.88 | 0.88 | 0.91 |
Acetic acid (g/L) | * | NS | 0.30 c | 0.53 b | 0.61 a | 0.86 | 0.76 | 0.84 |
Reducing sugars (g/L glucose) | * | NS | <1.5 b | <1.5 b | 2.1 a | 2.8 | 2.4 | 2.9 |
Acquired alcoholic degree (% vol) | * | ** | 13.57 b | 14.50 a | 14.75 a | 13.92 c | 14.28 b | 14.57 a |
Total alcoholic strength (% vol) | * | ** | 13.61 b | 14.52 a | 14.78 a | 13.95 c | 14.30 b | 14.62 a |
Total polyphenol index (UA) | ** | NS | 43 b | 50 a | 52 a | 49 | 50 | 51 |
pH | NS | * | 3.35 | 3.43 | 3.39 | 3.39 b | 3.46 a | 3.45 a |
Total sulfur (mg/L) | NS | NS | 28 | 31 | 27 | 10 | <10 | <10 |
RT (min) | Compound | Chemical Family | Sensory Descriptor | RI (Exp) | RI (Lit) |
---|---|---|---|---|---|
2.152 | Ethanol | Alcohols | Alcohol | 491 | 489 |
2.781 | Ethyl acetate | Esters | Aniseed, pineapple | 604 | 600 |
2.899 | 2-Methyl-1-propanol | Alcohols | Fruity, wine | 648 | 650 |
4.273 | 3-Methyl-1-butanol | Alcohols | Oil, whiskey | 735 | 737 |
4.346 | 2-Methyl-1-butanol | Alcohols | Toasted, fruity, whiskey | 741 | 740 |
4.738 | Ethyl isobutyrate | Esters | Citrus, strawberry | 749 | 750 |
5.085 | Butyl acetate | Esters | Banana, fruity, green | 805 | 807 |
5.301 | 2,3-Butanediol | Alcohols | Fruity, creamy, fatty | 781 | 780 |
5.791 | Ethyl butyrate | Esters | Banana, pineapple, sweet | 802 | 800 |
6.120 | Ethyl lactate | Esters | Buttery, fruity | 815 | 815 |
7.413 | Ethyl 2-methylbutyrate | Esters | Fruity, green, sweet | 852 | 850 |
7.579 | Ethyl isovalerate | Esters | Apple | 858 | 858 |
8.191 | 1-Hexanol | Alcohols | Green, wood, sweet | 871 | 869 |
8.495 | Isoamyl acetate | Esters | Banana, pear, sweet | 878 | 876 |
9.945 | γ-Butyrolactone | Esters | Candy | 920 | 918 |
14.915 | Ethyl hexanoate | Esters | Apple, banana, pineapple | 996 | 998 |
21.840 | Nonanal | Aldehydes | Fruity, fat, floral | 1103 | 1101 |
22.166 | Phenyl ethyl alcohol | Alcohols | Honey, floral, pink | 1108 | 1112 |
25.663 | Ethyl succinate | Esters | Fruity, apple, floral | 1175 | 1176 |
26.495 | Octanoic acid | Carbox. Acid | Oily, cheese | 1182 | 1180 |
26.933 | Diethyl succinate | Esters | Fruity, chocolate, earthy | 1189 | 1188 |
28.122 | Ethyl octanoate | Esters | Fruity, floral | 1195 | 1193 |
31.454 | 2-Phenyl ethyl acetate | Esters | Honey, fruity, floral | 1224 | 1224 |
33.931 | Ethyl nonanoate | Esters | Oily, fruity, nutty | 1290 | 1294 |
38.979 | Ethyl decanoate | Esters | Grapes, oily, pear | 1382 | 1380 |
39.640 | Dodecanal | Aldehydes | Herbal, wax, floral | 1422 | 1420 |
40.464 | Ethyl isopentyl succinate | Esters | Not found | 1438 | 1436 |
41.367 | Isoamyl octanoate | Esters | Coconut, green, fruity | 1442 | 1446 |
47.670 | Ethyl dodecanoate | Esters | Green, fruity, floral | 1561 | 1563 |
48.439 | 1-Tetradecanal | Aldehydes | Oily, incense, musk | 1620 | 1618 |
54.328 | Ethyl tetradecanoate | Esters | Wax, soap | 1795 | 1790 |
57.353 | Ethyl hexadecanoate | Esters | Wax | 1970 | 1975 |
Descriptors | ANOVA † | 2020 | 2025 | |||||
---|---|---|---|---|---|---|---|---|
2020 | 2025 | C | BR | BT | C | BR | BT | |
Odor | ||||||||
Alcohol | *** | ** | 3.3 b ‡ | 3.7 ab | 4.2 a | 4.3 b | 5.5 a | 5.3 a |
Fruity | NS | NS | 5.9 | 5.1 | 5.3 | 4.1 | 4.2 | 3.9 |
Floral | NS | NS | 1.8 | 1.5 | 2.0 | 2.1 | 1.8 | 1.9 |
Vegetable | ** | ** | 1.8 b | 1.6 b | 2.6 a | 2.1 b | 2.2 b | 3.0 a |
Spicy | NS | NS | 1.5 | 1.8 | 1.8 | 1.4 | 1.3 | 1.5 |
Animal | NS | ** | 0.9 | 1.0 | 1.2 | 0.9 b | 1.5 a | 1.0 b |
Toasted | *** | *** | 1.2 c | 3.7 a | 2.2 b | 1.5 b | 3.5 a | 3.6 a |
Defects | NS | *** | 0.1 | 0.1 | 0.1 | 2.0 a | 0.6 b | 0.5 b |
Flavor | ||||||||
Alcohol | ** | ** | 2.7 b | 3.6 a | 3.8 a | 3.2 b | 4.3 a | 4.5 a |
Fruity | NS | * | 4.9 | 5.1 | 4.3 | 4.5 b | 5.3 a | 5.2 a |
Floral | NS | NS | 2.1 | 2.0 | 2.1 | 2.0 | 1.8 | 1.7 |
Vegetable | ** | ** | 1.6 b | 2.3 a | 2.3 a | 2.2 b | 2.4 a | 2.6 a |
Spicy | *** | NS | 0.8 b | 1.7 a | 1.6 a | 0.4 | 0.3 | 0.4 |
Animal | NS | * | 0.3 | 0.7 | 0.7 | 0.4 b | 1.1 a | 0.9 a |
Toasted | *** | ** | 1.7 b | 2.6 a | 2.3 ab | 1.0 b | 2.2 a | 2.1 a |
Sweetness | ** | ** | 2.4 b | 3.3 a | 2.7 ab | 2.3 b | 2.9 a | 3.0 a |
Sourness | *** | *** | 2.3 b | 4.3 a | 3.8 a | 1.5 c | 3.2 a | 2.5 b |
Bitterness | ** | NS | 1.9 b | 2.3 a | 2.2 a | 2.0 | 2.2 | 2.1 |
Astringency | NS | NS | 1.9 | 2.5 | 2.0 | 2.0 | 2.1 | 2.2 |
Defects | NS | ** | 0.1 | 0.2 | 0.1 | 1.8 a | 0.5 c | 1.2 b |
Global | ||||||||
Aftertaste | *** | * | 3.7 b | 3.2 b | 4.8 a | 4.2 b | 5.1 a | 5.3 a |
Imbalances | NS | NS | 0.3 | 0.4 | 0.2 | 0.1 | 0.2 | 0.1 |
Visual | ||||||||
Cleanliness | NS | NS | 9.0 | 9.6 | 9.5 | 9.2 | 9.3 | 9.1 |
Color | NS | * | 8.8 | 9.1 | 9.3 | 6.8 b | 7.3 a | 7.5 a |
Layer | *** | NS | 6.5 b | 7.5 a | 6.8 b | 5.8 | 6.0 | 6.1 |
Descriptors | ANOVA † | 2020 | 2025 | |||||
---|---|---|---|---|---|---|---|---|
2020 | 2025 | C | BR | BT | C | BR | BT | |
Visual | ||||||||
Color | * | ** | 6.5 b ‡ | 7.3 a | 7.2 a | 6.2 b | 7.2 a | 7.3 a |
Odor | ||||||||
Alcohol | NS | NS | 5.6 | 5.9 | 5.6 | 4.8 | 5.2 | 5.1 |
Fruity | ** | * | 5.7 b | 6.0 a | 6.0 a | 6.0 b | 7.1 a | 7.0 a |
Toasted | NS | NS | 5.3 | 5.4 | 5.2 | 5.1 | 5.3 | 5.2 |
Flavor | ||||||||
Alcohol | NS | NS | 5.0 | 5.1 | 4.8 | 5.4 | 5.2 | 5.4 |
Fruity | NS | NS | 5.6 | 6.1 | 5.6 | 5.3 | 5.2 | 5.0 |
Toasted | NS | NS | 5.2 | 5.5 | 5.0 | 5.2 | 5.3 | 5.1 |
Sweetness | NS | NS | 5.6 | 6.1 | 5.3 | 5.8 | 5.6 | 5.5 |
Sourness | NS | NS | 5.4 | 5.7 | 5.0 | 5.4 | 5.5 | 5.6 |
Bitterness | NS | NS | 5.6 | 5.4 | 4.8 | 5.0 | 5.1 | 5.3 |
Astringency | NS | NS | 5.5 | 5.2 | 4.8 | 5.1 | 5.2 | 5.0 |
Aftertaste | ** | * | 5.2 b | 6.2 a | 6.1 a | 5.0 b | 6.5 a | 6.2 a |
Global | * | ** | 5.2 b | 6.1 a | 6.2 a | 5.5 b | 7.0 a | 6.8 a |
Ranking test | ||||||||
2020 | *** | *** | a | b | b | a | c | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piernas, J.; García-Martínez, S.; Zapata, P.J.; Carbonell-Barrachina, Á.A.; Noguera-Artiaga, L.; Giménez, M.J. Effects of Berry, Cluster Thinning and No-Sulfites Addition on the Sensory Quality of ‘Monastrell’ Organic Wines. Horticulturae 2025, 11, 1105. https://doi.org/10.3390/horticulturae11091105
Piernas J, García-Martínez S, Zapata PJ, Carbonell-Barrachina ÁA, Noguera-Artiaga L, Giménez MJ. Effects of Berry, Cluster Thinning and No-Sulfites Addition on the Sensory Quality of ‘Monastrell’ Organic Wines. Horticulturae. 2025; 11(9):1105. https://doi.org/10.3390/horticulturae11091105
Chicago/Turabian StylePiernas, Jorge, Santiago García-Martínez, Pedro J. Zapata, Ángel A. Carbonell-Barrachina, Luis Noguera-Artiaga, and María J. Giménez. 2025. "Effects of Berry, Cluster Thinning and No-Sulfites Addition on the Sensory Quality of ‘Monastrell’ Organic Wines" Horticulturae 11, no. 9: 1105. https://doi.org/10.3390/horticulturae11091105
APA StylePiernas, J., García-Martínez, S., Zapata, P. J., Carbonell-Barrachina, Á. A., Noguera-Artiaga, L., & Giménez, M. J. (2025). Effects of Berry, Cluster Thinning and No-Sulfites Addition on the Sensory Quality of ‘Monastrell’ Organic Wines. Horticulturae, 11(9), 1105. https://doi.org/10.3390/horticulturae11091105