Comparative Analysis of Cabernet Sauvignon (Vitis vinifera L.) and Kober 5BB (V. berlandieri × V. riparia) Root Transcriptomes Reveals Multiple Processes Associated with Drought Tolerance in Grapevines
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Tissue Culture
2.3. Drought Stress Treatment and Leaf Stem Water Potential (MPa) Measurements
2.4. RNA Isolation and Microarray Hybridization
2.5. Microarray Data Analysis
2.6. qRT-PCR Analysis
3. Results
3.1. Leaf Stem Water Potential Measurements (-MPa)
3.2. Microarray Analyses of CS and 5BB in Drought-Stressed Roots
3.3. Gene Ontology Analyses
3.4. DEGs Under Drought Stress
3.5. qRT-PCR Analysis
4. Discussion
4.1. Leaf Water Potentials of CS and 5BB Under Drought Stress
4.2. Comparing the Response Genes of 5BB and CS to Drought Stress
4.3. DEGs Involved Aquaporins (AQPs) and Proline-Rich Protein (PRP) Genes Under Drought Stress
4.4. DEGs Involved in ROS Under Drought Stress
4.5. DEGs Involved in Transcription Factor Genes (TFs)
4.6. DEGs Involved in Osmoprotection Under Drought Stress
4.7. DEGs Involved in Plant Lipid Transfer Proteins (LTPs) Under Drought Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boscaiu, M.; Fita, A. Physiological and molecular characterization of crop resistance to abiotic stresses. Agronomy 2020, 10, 1308. [Google Scholar] [CrossRef]
- Garcia-Caparros, P.; Ciriello, M.; Rouphael, Y.; Giordano, M. The Role of Organic Extracts and Inorganic Compounds as Alleviators of Drought Stress in Plants. Horticulturae 2025, 11, 91. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, F. The battle of crops against drought: Genetic dissection and improvement. J. Integr. Plant Biol. 2023, 65, 496–525. [Google Scholar] [CrossRef]
- Ozturk, M.; Turkyilmaz Unal, B.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant 2020, 172, 1321–1335. [Google Scholar] [CrossRef]
- Schönbeck, L.C.; Rasmussen, C.; Santiago, L.S. Leaf Turgor Loss Does Not Coincide with Cell Plasmolysis in Drought-Tolerant Chaparral Species. Plant Cell Environ. 2025, 48, 1–11. [Google Scholar] [CrossRef]
- Zareen, S.; Ali, A.; Yun, D.J. Significance of ABA biosynthesis in plant adaptation to drought stress. J. Plant Biol. 2024, 67, 175–184. [Google Scholar] [CrossRef]
- Jogawat, A.; Yadav, B.; Chhaya Lakra, N.; Singh, A.K.; Narayan, O.P. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Physiol. Plant. 2021, 172, 1106–1132. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Léon, J.; Naz, A.A.; Ballvora, A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J. Exp. Bot. 2021, 72, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, S.; Hassan, M.A.; Xia, X.; York, L.M.; Rasheed, A.; He, Z. Root system architecture in cereals: Progress, challenges and perspective. Plant J. 2022, 110, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Koevoets, I.T.; Venema, J.H.; Elzenga, J.T.M.; Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 2016, 7, 1335. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Sinha, R.; Singla-Pareek, S.L.; Pareek, A.; Singh, A.K. Shaping the root system architecture in plants for adaptation to drought stress. Physiol. Plant. 2022, 174, e13651. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Mir, R.A.; Haque, M.A.; Danishuddin Almalki, M.A.; Alfredan, M.; Khalifa, A.; Mahmoudi, H.; Shahid, M.; Tyagi, A.; Mir, Z.A. Exploring physiological and molecular dynamics of drought stress responses in plants: Challenges and future directions. Front. Plant Sci. 2025, 16, 1565635. [Google Scholar] [CrossRef]
- Yıldırım, K.; Yağcı, A.; Sucu, S.; Tunç, S. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol. Biochem. 2018, 127, 256–268. [Google Scholar] [CrossRef]
- Janiak, A.; Kwasniewski, M.; Sowa, M.; Kuczyńska, A.; Mikołajczak, K.; Ogrodowicz, P.; Szarejko, I. Insights into barley root transcriptome under mild drought stress with an emphasis on gene expression regulatory mechanisms. Int. J. Mol. Sci. 2019, 20, 6139. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, C.; Zhang, X.; Yongxiang, L.; Dengfeng, Z.; Yunsu, S.; Yanchun, S.; Yu, L.; Deguang, Y.; Tianyu, W. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci. 2020, 292, 110380. [Google Scholar] [CrossRef]
- . Zhou, J.; Huang, L.; Wang, P.; Zhao, L. Root morphology and transcriptomic analyses of the response to heat stress in Paspalum wettsteinii Hack. Genet. Resour. Crop Evol. 2024, 71, 3219–3239. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef]
- Ismail, A.; Gajjar, P.; Darwish, A.G.; Abuslima, E.; Islam, T.; Mohamed, A.G.; Violeta, T.; Peter, N.; Walid, E.K.; Islam, E. Redox and Osmotic Homeostasis: Central Drivers of Drought Resilience in Grapevine Rootstocks. Plant Physiol. Biochem. 2025, 221, 109618. [Google Scholar] [CrossRef]
- Granett, J.; Timper, P.; White, J. Grape phylloxera, Daktulosphaira vitifoIiae (Homoptera: Phylloxeridae), susceptibility to carbofuran: Stage and clonal variability. J. Econ. Entomol. 1986, 79, 1096–1099. [Google Scholar]
- Powell, K.S. A holistic approach to future management of grapevine phylloxera. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Springer: Dordrecht, The Netherlands, 2012; pp. 219–251. [Google Scholar]
- Pavlousek, P. Evaluation of drought tolerance of new grapevine rootstock hybrids. J. Environ. Biol. 2011, 32, 543–549. [Google Scholar]
- Tsegay, D.; Amsalem, D.; Almeida, M.; Crandles, M. Responses of grapevine rootstocks to drought stress. Int. J. Plant Physiol. Biochem. 2014, 6, 1–6. [Google Scholar] [CrossRef]
- Serra, I.; Strever, A.; Myburgh, P.A.; Deloire, A. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Zhao, F.; Zheng, T.; Liu, Z.; Fu, W.; Fang, J. Transcriptomic analysis elaborates the resistance mechanism of grapevine rootstocks against salt stress. Plants 2022, 11, 1167. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Masias, F.H.; Knipfer, T.; Walker, M.A.; McElrone, A.J. Differences in hydraulic traits of grapevine rootstocks are not conferred to a common Vitis vinifera scion. Funct. Plant Biol. 2018, 46, 228–235. [Google Scholar] [CrossRef]
- Bernardo, S.; Marguerit, E.; Ollat, N.; Gambetta, G.A.; Saint Cast, C.; de Miguel, M. Root system ideotypes: What is the potential for breeding drought-tolerant grapevine rootstocks? J. Exp. Bot. 2025, 76, 2970–2984. [Google Scholar] [CrossRef]
- Zamorano, D.; Franck, N.; Pastenes, C.; Wallberg, B.; Garrido, M.; Silva, H. Improved physiological performance in grapevine (Vitis vinifera L.) cv. Cabernet Sauvignon facing recurrent drought stress. Aust. J. Grape Wine Res. 2021, 27, 258–268. [Google Scholar] [CrossRef]
- Tamayo, M.; Sepúlveda, L.; Guequen, E.P.; Saavedra, P.; Pedreschi, R.; Cáceres-Mella, A.; Cuneo, I.F. Hydric behavior: Insights into primary metabolites in leaves and roots of Cabernet Sauvignon and Grenache grapevine varieties under drought stress. Horticulturae 2023, 9, 566. [Google Scholar] [CrossRef]
- Roubelakis-Angelakis, K.A.; Zivanovitc, S.B. A New Culture Medium for in vitro Rhizogenesis of Grapevine (Vitis spp.) Genotypes. Hortic. Sci. 1991, 26, 1551–1553. [Google Scholar] [CrossRef]
- Çakır Aydemir, B.; Yüksel Özmen, C.; Kibar, U.; Mutaf, F.; Büyük, P.B.; Bakır, M.; Ergül, A. Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS ONE 2020, 15, e0236424. [Google Scholar]
- Yüksel, C. Microarray Analyses of Root Stress Transcriptomes in Grapevine Cultivar and Rootstock. Ph.D. Thesis, Ankara University Biotechnology Institute, Ankara, Türkiye, 2015. (In Turkish). [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water Culture Method for Growing Plants Without Soil; University of California: Berkeley, CA, USA, 1950; Volume 347, pp. 1–32. [Google Scholar]
- Tattersall, E.A.; Ergul, A.; AlKayal, F.; DeLuc, L.; Cushman, J.C.; Cramer, G.R. Comparison of methods for isolating high-quality RNA from leaves of grapevine. Am. J. Enol. Vitic. 2005, 56, 400–406. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.A. Affy Express: Affymetrix Quality Assessment and Analysis Tool, R package version 1.48.0.; Affy Express Ltd.: London, UK, 2012.
- Gene Ontology Consortium. Gene Ontology annotations and resources. Nucleic Acids Res. 2012, 41, D530–D535. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. Gene ontology consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [Google Scholar] [CrossRef] [PubMed]
- Ensembl Plants. Available online: https://plants.ensembl.org/biomart/martview (accessed on 12 February 2020).
- KAAS—KEGG Automatic Annotation Server. Available online: https://www.genome.jp/kaas-bin/kaas_main (accessed on 18 November 2020).
- Özmen, C.Y.; Baydu, F.Y.; Hasanzadeh, M.; Öktem, M.; Babaoğlu, G.; Kibar, U.; Ergül, A. Assessment of drought stress responsive genes expression profiles and proline accumulation in a diverse set of grapevine rootstocks. Turk. J. Agric. For. 2023, 47, 319–334. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Santesteban, L.G.; Miranda, C.; Marín, D.; Sesma, B.; Intrigliolo, D.S.; Mirás-Avalos, J.M.; Escalona, J.M.; Montoro, A.; de Herralde, F.; Baeza, P.; et al. Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.). Agric. Water Manag. 2019, 221, 202–210. [Google Scholar] [CrossRef]
- Nio, S.A.; Ludong, D.P.M.; Wade, L.J. Comparison of leaf osmotic adjustment expression in wheat (Triticum aestivum L.) under water deficit between the whole plant and tissue levels. Agric. Nat. Resour. 2018, 52, 33–38. [Google Scholar] [CrossRef]
- Vincent, D.; Ergül, A.; Bohlman, M.C.; Tattersall, E.A.R.; Tillett, R.L.; Matthew, D.; Woolsey, R.W.; Quilici, D.R.; Joets, J.; Schlauch, K.; et al. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and Cabernet Sauvignon and their responses to water deficit and salinity. J. Exp. Bot. 2007, 58, 1873–1892. [Google Scholar] [CrossRef]
- Williams, L.; Araujo, F. Correlations among Predawn Leaf, Midday Leaf, and Midday Stem Water Potential and their Correlations with other Measures of Soil and Plant Water Status in Vitis vinifera. J. Am. Soc. Hortic. Sci. 2002, 127, 448–454. [Google Scholar] [CrossRef]
- Tuccio, L.; Piccolo, E.L.; Battelli, R.; Matteoli, S.; Massai, R.; Scalabrelli, G.; Remorini, D. Physiological indicators to assess water status in potted grapevine (Vitis vinifera L.). Sci. Hortic. 2019, 255, 8–13. [Google Scholar] [CrossRef]
- Bonarota, M.S.; Toups, H.S.; Bristow, S.T.; Santos, P.; Jackson, L.E.; Cramer, G.R.; Barrios-Masias, F.H. Drought response and recovery mechanisms of grapevine rootstocks grafted to a common Vitis vinifera scion. Plant Stress 2024, 11, 100346. [Google Scholar] [CrossRef]
- Cramer, G.R.; Ergül, A.; Grimplet, J.; Tillett, R.L.; Tattersall, E.A.R.; Bohlman, M.C.; Vincent, D.; Sonderegger, J.; Evans, J.; Osborne, C.; et al. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Funct. Integr. Genomics 2007, 7, 111–134. [Google Scholar] [CrossRef] [PubMed]
- de María, N.; Guevara, M.Á.; Perdiguero, P.; Vélez, M.D.; Cabezas, J.A.; López-Hinojosa, M.; Cervera, M.T. Molecular study of drought response in Pinus pinaster: Differential transcriptomic profiling reveals constitutive water deficit-independent drought tolerance mechanisms. Ecol. Evol. 2020, 10, 9788–9807. [Google Scholar] [CrossRef] [PubMed]
- Nawae, W.; Shearman, J.R.; Tangphatsornruang, S.; Punpee, P.; Yoocha, T.; Sangsrakru, D.; Pootakham, W. Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by leaf transcriptome analysis. Peer J. 2020, 8, e9608. [Google Scholar] [CrossRef]
- Janiak, A.; Kwasniewski, M.; Sowa, M.; Gajek, K.; Żmuda, K.; Kościelniak, J.; Szarejko, I. No time to waste: Transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns existing before stress. Front. Plant Sci. 2018, 8, 2212. [Google Scholar] [CrossRef]
- Qiu, F.; Bachle, S.; Estes, R.; Duvall, M.R.; Nippert, J.B.; Ungerer, M.C. Transcriptional responses to water stress and recovery in drought-tolerant Festuca ovina. Genome 2020, 64, 15–27. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Zhang, Y.; Gao, Y.; Yu, J.; Wei, X.; Zhang, X. Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS ONE 2016, 11, e0149912. [Google Scholar]
- Baldoni, E.; Frugis, G.; Martinelli, F.; Benny, J.; Paffetti, D.; Buti, M. A comparative transcriptomic meta-analysis revealed conserved key genes and regulatory networks involved in drought tolerance in cereal crops. Int. J. Mol. Sci. 2021, 22, 13062. [Google Scholar] [CrossRef]
- Kumar, R.; Chanda, B.; Adkins, S.; Kousik, C.S. Comparative transcriptome analysis of resistant and susceptible watermelon genotypes reveals the role of RNAi, callose, proteinase, and cell wall in squash vein yellowing virus resistance. Front. Plant Sci. 2024, 15, 1426647. [Google Scholar] [CrossRef]
- Xiao, H.; Nassuth, A. Stress-and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep. 2006, 25, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, M.; Zhu, Z.; Li, S.; Xu, Y.; Zhang, C.; Singer, S.D.; Wang, Y. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 2012, 12, 140. [Google Scholar] [CrossRef]
- Choi, Y.J.; Hur, Y.Y.; Jung, S.M.; Kim, S.H.; Noh, J.H.; Park, S.J.; Park, K.S.; Yun, H.K. Transcriptional analysis of Dehydrin1 genes responsive to dehydrating stress in grapevines. Hortic. Environ. Biotechnol. 2013, 54, 272–279. [Google Scholar] [CrossRef]
- Zhang, G.; Hou, X.; Wang, L.; Xu, J.; Chen, J.; Fu, X.; Shen, N.; Nian, J.; Jiang, Z.; Hu, J.; et al. Photo-Sensıtıve Leaf Rollıng 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytol. 2021, 229, 890–901. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Y.; Chen, N.; Guo, S.; Liu, H.; Guo, X.; Chong, K.; Xu, Y. Overexpression of stress-inducible OsBURP16, the beta subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increasesabiotic stress sensitivity in rice. Plant Cell Envıron. 2014, 37, 1144–1158. [Google Scholar] [CrossRef]
- He, L.; Lu, C.; Yan, X.; Yang, S.; Zhou, P.; Lai, W.; He, J. Genome-Wide identification of the polygalacturonase gene family and its potential association with abscission zone in Capsicum annuum L. Genes 2025, 16, 579. [Google Scholar] [CrossRef]
- He, P.; Zhang, J.; Lv, Z.; Cui, P.; Xu, X.; George, M.S.; Lu, G. Genome-wide identification and expression analysis of the polygalacturonase gene family in sweetpotato. BMC Plant Biol. 2023, 23, 300. [Google Scholar] [CrossRef]
- Moloi, S.J.; Ngara, R. The roles of plant proteases and protease inhibitors in drought response: A review. Front. Plant Sci. 2023, 14, 1165845. [Google Scholar] [CrossRef]
- Kaur, L.; Zhawar, V.K. Phenolic parameters under exogenous ABA, water stress, salt stress in two wheat cultivars varying in drought tolerance. Indian J. Plant. Physi. 2015, 20, 151–156. [Google Scholar] [CrossRef]
- Liu, D.; Meng, S.; Xiang, Z.; Yang, G.; He, N. An R1R2R3 MYB transcription factor, MnMYB3R1, regulates the polyphenol oxidase gene in mulberry (Morus notabilis). Int. J. Mol. Sci. 2019, 20, 2602. [Google Scholar] [CrossRef] [PubMed]
- Hooks, M.A.; Allwood, J.W.; Harrison, J.K.D.; Kopka, J.; Erban, A. Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis. Plant Physiol. 2014, 317, 309–317. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Kherawat, B.S.; Ram, C.; Singh, A.; Dey, P.; Gora, J.S.; Kumar, M. Genome-wide identification and expression profiling of aconitase gene family members reveals their roles in plant development and adaptation to diverse stress in Triticum aestivum L. Plants 2022, 11, 3475. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Du, T.; Qin, Z.; Xu, T.; Li, A.; Dong, S.; Zhang, L. Genome-wide in silico identification and expression analysis of beta-galactosidase family members in sweetpotato [Ipomoea batatas (L.) Lam]. BMC Genom. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Gu, Z.; Men, S.; Zhu, J.; Hao, Q.; Tong, N.; Liu, Z.A.; Zhang, H.; Shu, Q.; Wang, L. Chalcone synthase is ubiquitinated and degraded via interactions with a RING-H2 protein in petals of Paeonia “He Xie.”. J. Exp. Bot. 2019, 70, 4749–4762. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, J.; Li, H.; Zhu, L.; Long, Y. Genome-wide identification, evolution, and expression and metabolic regulation of the maize CHS gene family under abiotic stress. BMC Genom. 2025, 26, 581. [Google Scholar] [CrossRef]
- Su, S.; Xuan, X.; Tan, J.; Yu, Z.; Jiao, Y.; Zhang, Z.; Ramakrishnan, M. Analysis of the CHS gene family reveals its functional responses to hormones, salinity, and drought stress in Moso bamboo (Phyllostachys edulis). Plants 2025, 14, 161. [Google Scholar] [CrossRef] [PubMed]
- Afzal, Z.; Howton, T.C.; Sun, Y.; Mukhtar, M.S. The roles of aquaporins in plant stress responses. J. Dev. Biol. 2016, 4, 9. [Google Scholar] [CrossRef]
- Ren, J.H.; Yang, X.X.; Ma, C.Y.; Wang, Y.L.; Zhao, J.; Kang, L. Meta-analysis of the effect of the overexpression of aquaporin family genes on the drought stress response. Plant Biotechnol. Rep. 2021, 15, 695–707. [Google Scholar] [CrossRef]
- Galmes, J.; Pou, A.; Alsina, M.M.; Tomàs, M.; Medrano, H.; Flexas, J. Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): Relationship with ecophysiological status. Planta 2007, 226, 671–681. [Google Scholar] [CrossRef]
- Braidotti, R.; Falchi, R.; Calderan, A.; Pichierri, A.; Vankova, R.; Dobrev, P.I.; Griesser, M.; Sivilotti, P. Multi-hormonal analysis and aquaporins regulation reveal new insights on drought tolerance in grapevine. J. Plant Physiol. 2024, 296, 154243. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, X.; Kitagawa, Y.; Calamita, G.; Ding, X. Plant aquaporins: Their roles beyond water transport. Crop J. 2024, 12, 231–242. [Google Scholar] [CrossRef]
- Li, J.; Ban, L.; Wen, H.Y.; Wang, Z.; Dzyubenko, N.; Chapurin, V.; Gao, H.W.; Wang, X.M. An aquaporin protein is associated with drought stress tolerance. Biochem. Biophys. Res. Commun. 2015, 459, 208–213. [Google Scholar] [CrossRef]
- Koc, M.; Cangi, R.; Yildiz, K. Effect of drought on aquaporin expression in grafted and ungrafted grapevine cultivars. Cienc. Téc. Vitiv. 2023, 38, 35–42. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Wang, Z.; Chen, J.; Zhang, H. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Yepes-Molina, L.; Bárzana, G.; Carvajal, M. Controversial regulation of gene expression and protein transduction of aquaporins under drought and salinity stress. Plants 2020, 9, 1662. [Google Scholar] [CrossRef]
- Cochetel, N.; Ghan, R.; Toups, H.S.; Degu, A.; Tillett, R.L.; Schlauch, K.A.; Cramer, G.R. Drought tolerance of the grapevine, Vitis champinii cv. Ramsey, is associated with higher photosynthesis and greater transcriptomic responsiveness of abscisic acid biosynthesis and signaling. BMC Plant Biol. 2020, 20, 55. [Google Scholar] [CrossRef]
- Labarga, D.; Mairata, A.; Puelles, M.; Martín, I.; Albacete, A.; García-Escudero, E.; Pou, A. The rootstock genotypes determine drought tolerance by regulating aquaporin expression at the transcript level and phytohormone balance. Plants 2023, 12, 718. [Google Scholar] [CrossRef]
- Gujjar, R.S.; Karkute, S.G.; Rai, A.; Singh, M.; Singh, B. Proline-rich proteins may regulate free cellular proline levels during drought stress in tomato. Curr. Sci. 2018, 114, 915–920. [Google Scholar] [CrossRef]
- Juhi, B.; Nilima, K.; Neha, M.; Renu, Y.; Kumar, S.R.; Rajendra, K. Quantitative expression analysis through transcript profiling for drought stress in Cicer arietinum L. Res. J. Biotechnol. 2021, 16, 26–32. [Google Scholar]
- Choi, D.W.; Song, J.Y.; Kwon, Y.M.; Kim, S.G. Characterization of a cDNA encoding a proline-rich 14 kDa protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. Plant Mol. Biol. 1996, 30, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Hajnal, Á.; Gallé, Á.; Gaál, M.; Tompa, B.; Pelsőczi, A.; Csiszár, J.; Horváth, E. Exploring the variety-specific roles of glutathione transferases in tomato osmotic stress response. Plant Sci. 2025, 359, 112645. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, L.; Li, A.; Meng, J.; Yun, P.; Li, J.; Hou, P. Glutathione S-transferase in mediating adaptive responses of oats (Avena sativa) to osmotic and cadmium stress: Genome-wide analysis. BMC Plant Biol. 2025, 25, 538. [Google Scholar]
- Kang, Y.; Udvardi, M. Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery. Plant Signal. Behav. 2012, 7, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Nasirzadeh, L.; Sorkhilaleloo, B.; Majidi Hervan, E.; Fatehi, F. Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Res. Commun. 2021, 49, 83–89. [Google Scholar] [CrossRef]
- Aleem, M.; Aleem, S.; Sharif, I.; Aleem, M.; Shahzad, R.; Khan, M.I.; Ahmad, P. Whole-genome identification of APX and CAT gene families in cultivated and wild soybeans and their regulatory function in plant development and stress response. Antioxidants 2022, 11, 1626. [Google Scholar] [CrossRef]
- Ali, Q.; Sami, A.; Haider, M.Z.; Ashfaq, M.; Javed, M.A. Antioxidant production promotes defense mechanism and different gene expression level in Zea mays under abiotic stress. Sci. Rep. 2024, 14, 7114. [Google Scholar] [CrossRef]
- Bianchi, D.; Ricciardi, V.; Pozzoli, C.; Grossi, D.; Caramanico, L.; Pindo, M.; Stefani, E.; Cestaro, A.; Brancadoro, L.; De Lorenzis, G. Physiological and transcriptomic evaluation of drought effect on own-rooted and grafted grapevine rootstock (1103P and 101-14MGt). Plants 2023, 12, 1080. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Cao, L.; Zhang, X.; Zhang, W.; Yang, T.; Zhang, J.; Che, D. An R2R3-MYB transcription factor RmMYB108 responds to chilling stress of Rosa multiflora and confers cold tolerance in Arabidopsis. Front. Plant Sci. 2021, 12, 696919. [Google Scholar] [CrossRef]
- Du, B.; Liu, H.; Dong, K.; Wang, Y.; Zhang, Y. Over-expression of an R2R3 MYB gene, MdMYB108L, enhances tolerance to salt stress in transgenic plants. Int. J. Mol. Sci. 2022, 23, 9428. [Google Scholar] [CrossRef]
- Yao, C.; Li, W.; Liang, X.; Ren, C.; Liu, W.; Yang, G.; Han, D. Molecular cloning and characterization of MbMYB108, a Malus baccata MYB transcription factor gene, with functions in tolerance to cold and drought stress in transgenic Arabidopsis thaliana. Int. J. Mol. Sci. 2022, 23, 4846. [Google Scholar] [CrossRef]
- Wu, Y.; Li, T.; Cheng, Z.; Zhao, D.; Tao, J. R2R3-MYB transcription factor PlMYB108 confers drought tolerance in herbaceous peony (Paeonia lactiflora Pall.). Int. J. Mol. Sci. 2021, 22, 11884. [Google Scholar]
- Zhao, X.; Sun, Y.; Wang, Y.; Shao, D.; Chen, G.; Jiang, Y.; Qin, L. Molecular cloning of QwMYB108 gene and its response to drought stress in Quercus wutaishanica Mayr. Forests 2024, 15, 1557. [Google Scholar] [CrossRef]
- Mittal, S.; Banduni, P.; Mallikarjuna, M.G.; Rao, A.R.; Jain, P.A.; Dash, P.K.; Thirunavukkarasu, N. Structural, functional, and evolutionary characterization of major drought transcription factor families in maize. Front. Chem. 2018, 6, 177. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, M.; Quan, C.; Lin, S.; Li, J.; Wei, F.; Tang, D. Genome-wide identification and expression analysis of the WRKY gene family reveal essential roles in abiotic stress responses and polysaccharides and flavonoids biosynthesis in Platostoma palustre (Blume) A. J. Paton. BMC Plant Biol. 2024, 24, 1122. [Google Scholar] [CrossRef]
- Ma, F.; Zhou, H.; Yang, H.; Huang, D.; Xing, W.; Wu, B.; Xu, Y. WRKY transcription factors in passion fruit analysis reveals key PeWRKYs involved in abiotic stress and flavonoid biosynthesis. Int. J. Biol. Macromol. 2024, 256, 128063. [Google Scholar] [CrossRef]
- Luo, X.; Li, C.; He, X.; Zhang, X.; Zhu, L. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep. 2020, 39, 181–194. [Google Scholar] [CrossRef]
- Hu, Q.; Ao, C.; Wang, X.; Wu, Y.; Du, X. GhWRKY1-like, a WRKY transcription factor, mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis. BMC Plant Biol. 2021, 21, 458. [Google Scholar] [CrossRef]
- Radani, Y.; Li, R.; Korboe, H.M.; Ma, H.; Yang, L. Transcriptional and post-translational regulation of plant bHLH transcription factors during the response to environmental stresses. Plants 2023, 12, 2113. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Ma, F.; Li, B.; Guo, C.; Hu, T.; Zhang, M.; Zhan, X. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato. Hortic. Res. 2022, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yan, C.; Sun, Q.; Wang, J.; Yuan, C.; Mou, Y.; Zhao, X. The bHLH transcription factor AhbHLH112 improves the drought tolerance of peanut. BMC Plant Biol. 2021, 21, 540. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, X.; Li, N.; Nie, H.; Ma, Y.; Wu, J.; Ma, Y. The StbHLH47 transcription factor negatively regulates drought tolerance in potato (Solanum tuberosum L.). BMC Plant Biol. 2025, 25, 14. [Google Scholar] [CrossRef]
- Qin, L.; He, H.; Yang, L.; Zhang, H.; Li, J.; Zhu, Y.; Wu, S. AtZAT10/STZ1 improves drought tolerance and increases fiber yield in cotton. Front. Plant Sci. 2024, 15, 1464828. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xu, Z.; Wei, P.; Xu, L.; Wan, Q.; Huang, Y.; He, X.; Yang, J.; Shao, H.; et al. Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Front. Plant Sci. 2016, 7, 325. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Meng, D.; Li, M.J.; Zhou, J.; Yang, Y.Z.; Zhou, B.B.; Zhang, J.K. Transcription factors MhDREB2A/MhZAT10 play a role in drought and cold stress response crosstalk in apple. Plant Physiol. 2023, 192, 2203–2220. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Rev. Environ. Sci. Biotechnol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Sagor, G.H.M.; Zhang, S.; Kojima, S.; Simm, S.; Berberich, T.; Kusano, T. Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression. Front. Plant Sci. 2016, 7, 214. [Google Scholar] [CrossRef]
- Balkova, D.; Mala, K.; Hejatko, J.; Panzarova, K.; Abdelhakim, L.; Pleskacova, B.; Samalova, M. Differential expression and localization of expansins in Arabidopsis shoots: Implications for cell wall dynamics and drought tolerance. Front. Plant Sci. 2025, 16, 1546819. [Google Scholar] [CrossRef]
- Pan, Y.; Li, J.; Jiao, L.; Li, C.; Zhu, D.; Yu, J. A non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress. Front. Plant Sci. 2016, 7, 1752. [Google Scholar] [CrossRef]
- Yang, M.; Wang, L.; Wang, X.; Li, Y.; Huang, H. Transcriptomic response to drought stress in Populus davidiana Dode. Forests 2023, 14, 1465. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, X.; Song, Y.; Zhu, L.; Yu, Z.; Gan, L.; Zhu, C. NtLTP4, a lipid transfer protein that enhances salt and drought stress tolerance in Nicotiana tabacum. Sci. Rep. 2018, 8, 8873. [Google Scholar] [CrossRef]
- Kao, P.H.; Lin, Y.T.; Hsu, Y.L.; Chang, C.H.; Chang, S.B.; Chen, L.F.O. Identification of key drought-tolerant genes in soybean using an integrative data-driven feature engineering pipeline. J. Big Data 2025, 12, 1–30. [Google Scholar] [CrossRef]
- Akter, M.B.; Li, J.; Lv, X.; Wang, Q.; Wang, Z.; Zhou, Z.; Deng, Y.; Xu, J.; Zheng, J.; Xu, Y.; et al. Identification of key genes and signaling pathways in coconut (Cocos nucifera L.) under drought stress via comparative transcriptome analysis. BMC Plant Biol. 2025, 25, 510. [Google Scholar] [CrossRef]
- Alkhatatbeh, H.A.; Sadder, M.T.; Haddad, N.; Al-Amad, I.; Brake, M.; Alsakarneh, N.A.; Alnajjar, A.M. Transcriptome analysis of historic olives reveals stress-specific biomarkers. Front. Plant Sci. 2025, 16, 1549305. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fei, Y.; Howell, K.; Chen, D.; Clingeleffer, P.; Zhang, P. Rootstocks for grapevines now and into the future: Selection of rootstocks based on drought tolerance, soil nutrient availability, and soil pH. Aust. J. Grape Wine Res. 2024, 30, 6704238. [Google Scholar] [CrossRef]
- Rocheta, M.; Coito, J.L.; Ramos, M.J.; Carvalho, L.; Becker, J.D.; Carbonell-Bejerano, P.; Amâncio, S. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions. BMC Plant Biol. 2016, 16, 224. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, H.; Sun, A.; Wang, L.; Ren, C.; Liu, J.; Gao, X. Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Front. Genet. 2022, 13, 1060529. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Y.; Wang, C.K.; Zhao, Y.W.; Sun, C.H.; Hu, D.G. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Hortic. Res. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- McLachlan, D.H.; Pridgeon, A.J.; Hetherington, A.M. How Arabidopsis talks to itself about its water supply. Mol. Cell 2018, 70, 991–992. [Google Scholar] [CrossRef]
- Wang, C.; Tang, X.; Liu, W.; Zhao, X.; Teng, L.; Li, C. Identification and expression analysis of LRR-RLK genes reveal their roles in plant development and stress responses in Kiwifruit (Actinidia chinensis). Sci. Rep. 2025, 15, 26346. [Google Scholar] [CrossRef]
- Shikakura, Y.; Oguchi, T.; Yu, X.; Ohtani, M.; Demura, T.; Kikuchi, A.; Watanabe, K.N. Transgenic poplar trees overexpressing AtGolS2, a stress-responsive galactinol synthase gene derived from Arabidopsis thaliana, improved drought tolerance in a confined field. Transgenic Res. 2022, 31, 579–591. [Google Scholar] [CrossRef]
- Sharma, A.; Zheng, B. Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants 2019, 8, 190. [Google Scholar] [CrossRef]
- Jing, H.; Li, C.; Ma, F.; Ma, J.H.; Khan, A.; Wang, X.; Chen, R.G. Genome-wide identification, expression diversification of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLoS ONE 2016, 11, e0161073. [Google Scholar] [CrossRef] [PubMed]
Upregulated Genes | ||
---|---|---|
Probe Set ID | Annotation | Fold Change |
1621592_s_at | Dehydrin 1a | 361.74 |
1611682_at | ACT domain-containing protein | 239.17 |
1609875_at | protease inhibitor | 206.65 |
1616317_at | alpha-amylase/subtilisin inhibitor-like | 204.50 |
1620305_at | polygalacturonase | 137.82 |
1611875_at | methionine γ-lyase | 125.89 |
1617466_at | L-allo-threonine aldolase-like | 123.16 |
1614441_at | flavonol synthase/flavanone 3-hydroxylase | 121.62 |
1614008_at | polygalacturonase | 118.83 |
1618333_at | homocysteine S-methyltransferase 3 | 115.21 |
1614862_at | tropinone reductase homolog At1g07440 | 108.81 |
1616116_at | probable galactinol-sucrose galactosyltransferase 6 | 104.43 |
Downregulated Genes | ||
Probe Set ID | Annotation | Fold Change |
1617745_at | putative lipid-transfer protein DIR1 | −180.96 |
1622607_at | aquaporin TIP1-1 | −170.83 |
1609652_s_at | glucomannan 4-beta-mannosyltransferase 2 | −116.47 |
1612244_s_at | aquaporin PIP2 | −99.13 |
1609063_at | BURP domain-containing protein 3-like | −98.56 |
1619613_at | 14 kDa proline-rich protein DC2.15 | −95.64 |
1614387_s_at | aquaporin TIP1-1 | −92.23 |
1615722_s_at | aquaporin-like | −83.81 |
1607541_at | glycine-rich cell wall structural protein 2-like | −83.40 |
1606530_s_at | 14 kDa proline-rich protein DC2.15 | −81.10 |
1621879_at | putative lipid-transfer protein DIR1 | −76.10 |
1607766_at | 14 kDa proline-rich protein DC2.15 | −73.84 |
1619687_at | subtilisin-like protease | −73.38 |
1619703_at | aquaporin-like | −70.61 |
1612873_at | subtilisin-like protease | −62.84 |
1613467_at | pistil-specific extensin-like protein | −62.20 |
1606669_s_at | aquaporin-like | −60.40 |
Upregulated Genes | ||
---|---|---|
Probe Set ID | Annotation | Fold Change |
1622651_at | polyphenol oxidase chloroplastic-like | 42.31 |
1616698_at | aconitase 2 mitochondrial | 31.25 |
1612465_at | beta-galactosidase-like | 31.10 |
1617466_at | L-allo-threonine aldolase-like | 29.66 |
1606794_at | thaumatin-like protein | 29.16 |
1619573_at | zinc finger protein ZAT10-like | 28.97 |
1616116_at | probable galactinol-sucrose galactosyltransferase 6-like | 25.83 |
1620063_at | beta-1.3-glucanase | 25.12 |
1613461_s_at | class IV chitinase | 22.20 |
1607133_at | R2R3 transcription factor MYB108-like protein 1 | 19.90 |
1620390_s_at | thaumatin-like protein///thaumatin-like protein | 19.90 |
1616045_a_at | proline-rich cell wall protein-like | 19.44 |
1621592_s_at | Dehydrin 1a | 19.18 |
1622147_at | aconitase 2, mitochondrial | 19.03 |
1607620_at | NAC domain-containing protein 29-like | 18.62 |
1610880_s_at | probable indole-3-acetic acid-amido synthetase GH3.1-like | 18.39 |
1620065_at | probable sulfate transporter 3.5-like | 18.18 |
1615375_at | bidirectional sugar transporter SWEET10-like | 17.63 |
1621397_at | aspartate aminotransferase, chloroplastic-like | 16.84 |
1619916_s_at | glucan endo-1,3-beta-glucosidase-like | 16.44 |
1614820_at | tonoplast dicarboxylate transporter-like | 15.53 |
Downregulated Genes | ||
Probe Set ID | Annotation | Fold Change |
1617745_at | putative lipid-transfer protein DIR1-like | −81.79 |
1612030_at | organ-specific protein S2-like | −59.83 |
1607766_at | 14 kDa proline-rich protein DC2.15-like | −56.96 |
1608800_s_at | 14 kDa proline-rich protein DC2.15-like | −37.05 |
1621879_at | putative lipid-transfer protein DIR1-like | −32.11 |
1612462_at | snakin-1-like | −28.08 |
1610096_at | histone H4-like | −25.10 |
1607732_at | chalcone synthase | −23.88 |
1617019_at | chalcone synthase | −23.72 |
1620332_at | histone H3.2-like | −23.69 |
1616409_at | delta(24)-sterol reductase-like | −20.12 |
1619662_at | 36.4 kDa proline-rich protein-like | −19.06 |
1610607_at | gibberellin-regulated protein 4-like | −16.98 |
1622656_at | glucan endo-1.3-beta-glucosidase-like | −16.69 |
1613827_s_at | fasciclin-like arabinogalactan protein 2-like | −16.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yüksel Özmen, C.; Yılmaz Baydu, F.; Ergül, A. Comparative Analysis of Cabernet Sauvignon (Vitis vinifera L.) and Kober 5BB (V. berlandieri × V. riparia) Root Transcriptomes Reveals Multiple Processes Associated with Drought Tolerance in Grapevines. Horticulturae 2025, 11, 1092. https://doi.org/10.3390/horticulturae11091092
Yüksel Özmen C, Yılmaz Baydu F, Ergül A. Comparative Analysis of Cabernet Sauvignon (Vitis vinifera L.) and Kober 5BB (V. berlandieri × V. riparia) Root Transcriptomes Reveals Multiple Processes Associated with Drought Tolerance in Grapevines. Horticulturae. 2025; 11(9):1092. https://doi.org/10.3390/horticulturae11091092
Chicago/Turabian StyleYüksel Özmen, Canan, Funda Yılmaz Baydu, and Ali Ergül. 2025. "Comparative Analysis of Cabernet Sauvignon (Vitis vinifera L.) and Kober 5BB (V. berlandieri × V. riparia) Root Transcriptomes Reveals Multiple Processes Associated with Drought Tolerance in Grapevines" Horticulturae 11, no. 9: 1092. https://doi.org/10.3390/horticulturae11091092
APA StyleYüksel Özmen, C., Yılmaz Baydu, F., & Ergül, A. (2025). Comparative Analysis of Cabernet Sauvignon (Vitis vinifera L.) and Kober 5BB (V. berlandieri × V. riparia) Root Transcriptomes Reveals Multiple Processes Associated with Drought Tolerance in Grapevines. Horticulturae, 11(9), 1092. https://doi.org/10.3390/horticulturae11091092