Plant-Based, Proximal and Remote Sensing in Orchards and Vineyards—State of the Art, Challenges, Data Fusion and Integration
Author Contributions
Conflicts of Interest
List of Contributions
- Gonzalez Nieto, L.; Wallis, A.; Clements, J.; Miranda Sazo, M.; Kahlke, C.; Kon, T.M.; Robinson, T.L. Evaluation of Computer Vision Systems and Applications to Estimate Trunk Cross-Sectional Area, Flower Cluster Number, Thinning Efficacy and Yield of Apple. Horticulturae 2023, 9, 880. https://doi.org/10.3390/horticulturae9080880
- Sun, L.; Hu, G.; Chen, C.; Cai, H.; Li, C.; Zhang, S.; Chen, J. Lightweight Apple Detection in Complex Orchards Using YOLOV5-PRE. Horticulturae 2022, 8, 1169. https://doi.org/10.3390/horticulturae8121169
- Neupane, C.; Koirala, A.; Walsh, K.B. In-Orchard Sizing of Mango Fruit: 1. Comparison of Machine Vision Based Methods for On-the-Go Estimation. Horticulturae 2022, 8, 1223. https://doi.org/10.3390/horticulturae8121223
- Amaral, M.H.; Walsh, K.B. In-Orchard Sizing of Mango Fruit: 2. Forward Estimation of Size at Harvest. Horticulturae 2023, 9, 54. https://doi.org/10.3390/horticulturae9010054
- Khosravi, A.; Zucchini, M.; Mancini, A.; Neri, D. Continuous Third Phase Fruit Monitoring in Olive with Regulated Deficit Irrigation to Set a Quantitative Index of Water Stress. Horticulturae 2022, 8, 1221. https://doi.org/10.3390/horticulturae8121221
- Lakso, A.N.; Santiago, M.; Stroock, A.D. Monitoring Stem Water Potential with an Embedded Microtensiometer to Inform Irrigation Scheduling in Fruit Crops. Horticulturae 2022, 8, 1207. https://doi.org/10.3390/horticulturae8121207
- Tapia-Zapata, N.; Winkler, A.; Zude-Sasse, M. Occurrence of Wetness on the Fruit Surface Modeled Using Spatio-Temporal Temperature Data from Sweet Cherry Tree Canopies. Horticulturae 2024, 10, 7. https://doi.org/10.3390/horticulturae10070757
- Williams, S.R.; Agrahari Baniya, A.; Islam, M.S.; Murphy, K. A Data Ecosystem for Orchard Research and Early Fruit Traceability. Horticulturae 2023, 9, 1013. https://doi.org/10.3390/horticulturae9091013
- Bodor-Pesti, P.; Taranyi, D.; Nyitrainé Sárdy, D.Á.; Le Phuong Nguyen, L.; Baranyai, L. Correlation of the Grapevine (Vitis vinifera L.) Leaf Chlorophyll Concentration with RGB Color Indices. Horticulturae 2023, 9, 899. https://doi.org/10.3390/horticulturae9080899
References
- Singh, R.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Twala, B. Horticulture 4.0: Adoption of Industry 4.0 Technologies in Horticulture for Meeting Sustainable Farming. Appl. Sci. 2022, 12, 12557. [Google Scholar] [CrossRef]
- Ludwig-Ohm, S.; Hildner, P.; Isaak, M.; Dirksmeyer, W.; Schattenberg, J. The contribution of Horticulture 4.0 innovations to more sustainable horticulture. Procedia Comput. Sci. 2023, 217, 465–477. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Tahir, M.N.; Raghavan, V.; Awais, M.; Hu, J.; Said, Y.; Othman, N.A.; Ashurov, M.; Khan, M.I. AI-enhanced IoT sensors for real-time crop monitoring: An era towards self-monitored agriculture. Telecommun. Syst. 2025, 88, 100. [Google Scholar] [CrossRef]
- Visconti, P.; de Fazio, R.; Velázquez, R.; Del-Valle-Soto, C.; Giannoccaro, N.I. Development of Sensors-Based Agri-Food Traceability System Remotely Managed by a Software Platform for Optimized Farm Management. Sensors 2020, 20, 3632. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, R.; Moncur, Q. Small-Scale Farming: A Review of Challenges and Potential Opportunities Offered by Technological Advancements. Sustainability 2023, 15, 15478. [Google Scholar] [CrossRef]
- Zude-Sasse, M.; Fountas, S.; Gemtos, T.A.; Abu-Khalaf, N. Applications of precision agriculture in horticultural crops. Eur. J. Hortic. Sci. 2016, 81, 78–90. [Google Scholar] [CrossRef]
- Scalisi, A.; O’Connell, M.G.; Stefanelli, D.; Zhou, S.; Pitt, T.; Graetz, D.; Dodds, K.; Han, L.; De Bei, R.; Stanley, J.; et al. Narrow orchard systems for pome and stone fruit—A review. Sci. Hortic. 2024, 338, 113815. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalisi, A.; O’Connell, M.G.; Goodwin, I. Plant-Based, Proximal and Remote Sensing in Orchards and Vineyards—State of the Art, Challenges, Data Fusion and Integration. Horticulturae 2025, 11, 1031. https://doi.org/10.3390/horticulturae11091031
Scalisi A, O’Connell MG, Goodwin I. Plant-Based, Proximal and Remote Sensing in Orchards and Vineyards—State of the Art, Challenges, Data Fusion and Integration. Horticulturae. 2025; 11(9):1031. https://doi.org/10.3390/horticulturae11091031
Chicago/Turabian StyleScalisi, Alessio, Mark G. O’Connell, and Ian Goodwin. 2025. "Plant-Based, Proximal and Remote Sensing in Orchards and Vineyards—State of the Art, Challenges, Data Fusion and Integration" Horticulturae 11, no. 9: 1031. https://doi.org/10.3390/horticulturae11091031
APA StyleScalisi, A., O’Connell, M. G., & Goodwin, I. (2025). Plant-Based, Proximal and Remote Sensing in Orchards and Vineyards—State of the Art, Challenges, Data Fusion and Integration. Horticulturae, 11(9), 1031. https://doi.org/10.3390/horticulturae11091031