Synchronous Detection Method of Physical Quality for Korla Fragrant Pear with Different Damage Types During Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Korla Fragrant Pear Damage Experiment
2.2.1. Impact Damage Experiment
2.2.2. Static Pressure Damage Experiment
2.2.3. Combined Load Damage Experiment
2.2.4. Pear Damaged Volume Calculation
2.3. Pear Measurement of Weight Loss Rate
2.4. Pear Color Measurement
2.5. Korla Fragrant Pear Storage Experiment
2.6. Construction of the Korla Fragrant Pear Multi-Output Model
2.6.1. PLSR
2.6.2. SVR
2.6.3. LSTM
2.6.4. Model Evaluation
3. Results and Analysis
3.1. The Change Rule of Weight Loss Rate in Korla Fragrant Pears
3.2. The Variation Pattern of Pear Color
3.2.1. Variation Pattern of L*
3.2.2. Variation Pattern of a*
3.2.3. Variation Pattern of b*
3.3. Pear Quality Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PLSR | Partial least squares regression |
SVR | Support vector regression |
LSTM | Long short-term memory |
RMSE | Root mean square error |
RPD | Residual predictive deviation |
References
- Che, J.; Liang, Q.; Xia, Y.; Liu, Y.; Li, H.; Hu, N.; Cheng, W.; Zhang, H.; Zhang, H.; Lan, H. The Study on Nondestructive Detection Methods for Internal Quality of Korla Fragrant Pears Based on Near-Infrared Spectroscopy and Machine Learning. Foods 2024, 13, 3522. [Google Scholar] [CrossRef]
- An, J.; Luo, X.; Xiong, L.; Tang, X.; Lan, H. Discrimination of Inner Injury of Korla Fragrant PearBased on Multi-Electrical Parameters. Foods 2023, 12, 1805. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Y.; Jiang, W.; An, S.J.; Ma, L.; Wang, Z.D.; Zheng, Q.Q.; Yan, P.; Chen, Q.L. Proteomic mechanism of sugar and organic acid metabolism during Korla fragrant pear (Pyrus sinkiangensis Yü) fruit development. Sci. Rep. 2025, 15, 26935. [Google Scholar] [CrossRef]
- Feng, Y.C.; Zou, T.G.; Zhang, Z.K. Study on the quality change of crown pear during storage. BIO Web Conf. 2023, 72, 01010. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, X.; Li, M.; Zhang, N.; Dong, C.; Ji, H.; Zheng, P.; Ban, Z.; Mei, X.; Gu, C.; et al. Analysis of the Antioxidant Mechanism of Ozone Treatment to Extend the Shelf Life and Storage Quality of ‘Korla’ Fragrant Pears Based on Label-Free Proteomics. Horticulturae 2024, 10, 424. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Niu, H.; Zhang, H.; Lan, H.; Zeng, Y.; Jia, F. Prediction method for nutritional quality of Korla pear during storage. Int. J. Agric. Biol. Eng. 2021, 14, 247–254. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, H.; Lv, F.; Tao, Y.; Zhu, L. Combining transfer learning and hyperspectral imaging to identify bruises of pears across different bruise types. J. Food Sci. 2024, 89, 2597–2610. [Google Scholar] [CrossRef]
- Yu, S.; Lan, H.; Li, X.; Zhang, H.; Zeng, Y.; Niu, H.; Niu, X.; Xiao, A.; Liu, Y. Prediction method of shelf life of damaged Korla fragrant pears. J. Food Process Eng. 2021, 44, e13902. [Google Scholar] [CrossRef]
- NY/T 585-2002; Agricultural Industry Standard. Ministry of Agriculture of the PRC: Beijing, China, 2002; p. 3. Available online: http://www.csres.com/detail/71433.html (accessed on 20 December 2002).
- Zhang, R.; Li, S.; Liu, Y.; Li, G.; Jiang, X.; Fan, X. Construction of Color Prediction Model for Damaged Korla Pears during Storage Period. Appl. Sci. 2023, 13, 7885. [Google Scholar] [CrossRef]
- Shao, X. Study on Compression Damage and Quality Deterioration Mechanism of Citrus Reticulata Blanco. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2020. [Google Scholar]
- Pathare, P.B.; Al-Dairi, M.; Al-Yahyai, R.; Al-Mahdouri, A. Physiological Response of Stored Pomegranate Fruit Affected by Simulated Impact. Foods 2023, 12, 1122. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.H.; Wang, W.H.; Du, Y.M.; Tong, W.; Wang, Z.H.; Gul, H. Optimal storage temperature and 1-MCP treatment combinations for different marketing times of Korla Xiang pears. J. Integr. Agric. 2018, 17, 693–703. [Google Scholar] [CrossRef]
- Dai, L.M.; Chen, Y.; Li, C. Postharvest preservation effects of starch-based self-reinforcing nanocomposite coatings on mechanically graded Huangguan pear. LWT 2025, 224, 117852. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Monjur, O.; Khaliduzzaman, A.; Kamruzzaman, M. A comprehensive review of deep learning-based hyperspectral image reconstruction for agri-food quality appraisal. Artif. Intell. Rev. 2025, 58, 96. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, S.; Zhou, D.; Ding, C.; Wang, J.; Zhou, H.; Tu, K.; Pan, L.; Li, P. Nondestructive Detection of Weight Loss Rate, Surface Color, Vitamin C Content, and Firmness in Mini-Chinese Cabbage with Nanopackaging by Fourier Transform-Near Infrared Spectroscopy. Foods 2021, 10, 2309. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, Y.; Zhang, H.; Che, J.; Liang, Q. Study on Color Detection of Korla Fragrant Pears by Near-Infrared Spectroscopy Combined with PLSR. Horticulturae 2025, 11, 352. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Park, B.; Kang, R.; Chen, Q.S. Simultaneous quantification of chemical constituents in matcha with visible-near infrared hyperspectral imaging technology. Food Chem. 2021, 350, 129141. [Google Scholar] [CrossRef]
- Peng, H.Y.; Yi, L.Z.; Fan, X.J.; Zhang, J.W.; Gu, Y.; Wang, S. Near-infrared spectroscopy assisted by random forest for predicting the physicochemical indicators of yak milk powder. Food Chem. 2025, 478, 143555. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, T.; Wang, Y.; Duan, X.; Pu, L.; Zhang, Y.; Li, Q.; Liu, Y. Accurate Prediction of Tea Catechin Content with Near-Infrared Spectroscopy by Deep Learning Based on Channel and Spatial Attention Mechanisms. Chemosensors 2024, 12, 184. [Google Scholar] [CrossRef]
- Zhu, Z.; Qi, G.; Lei, Y.; Jiang, D.; Mazur, N.; Liu, Y.; Wang, D.; Zhu, W. A Long Short-Term Memory Neural Network Based Simultaneous Quantitative Analysis of Multiple Tobacco Chemical Components by Near-Infrared Hyperspectroscopy Images. Chemosensors 2022, 10, 164. [Google Scholar] [CrossRef]
- Du, D.D.; Wang, B.; Wang, J.; Yao, F.Q.; Hong, X.Z. Prediction of bruise susceptibility of harvested kiwifruit (Actinidia chinensis) using finite element method. Postharvest Biol. Technol. 2019, 152, 36–44. [Google Scholar] [CrossRef]
- Li, B.; Wan, X.; Zou, J.-P.; Wan, Y.-R.; Xiao, Y.-H.; Chen, N. Study on Visualization of Impact Damage Characteristics of Honey Peaches Based on Finite Element Method. J. Food Sci. 2024, 89, 7132–7142. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, W.J.; He, Y.; Wanger, T.C.; Cen, H.Y. Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets. Remote Sens. Environ. 2022, 269, 112826. [Google Scholar] [CrossRef]
- Ouyang, H.; Tang, L.; Ma, J.; Pang, T. Application of Hyperspectral Technology with Machine Learning for Brix Detection of Pastry Pears. Plants 2024, 13, 1163. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Wakahara, S.; Miao, Y.; McNearney, M.; Rosen, C.J. Non-destructive potato petiole nitrate-nitrogen prediction using chlorophyll meter and multi-source data fusion with machine learning. Eur. J. Agron. 2025, 164, 127483. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, L.; Kang, C. Near-infrared spectroscopy and machine learning-based technique to predict quality-related parameters in instant tea. Sci. Rep. 2022, 12, 3833. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Wang, X.; Jiang, Y.; Han, Y.; Ma, B.; Chu, C. Novel IAPSO-LSTM neural network for risk analysis and early warning of food safety. Expert. Syst. Appl. 2023, 230, 120747. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Wu, Q.Y.; Kamruzzaman, M.H. Portable NIR spectroscopy and PLS based variable selection for adulterati ondetection in quinoa flour. Food Control 2022, 138, 108970. [Google Scholar] [CrossRef]
- Tian, H.; Chen, H.; Li, X. Mechanical Damage Caused by Compression and Its Effects on Storage Quality of Mandarin. Foods 2024, 13, 892. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, H.; Liang, Q.; Xia, Y.; Che, J.; Liu, Y. Non-Destructive Testing of the Internal Quality of Korla Fragrant Pears Based on Dielectric Properties. Horticulturae 2024, 10, 572. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Chen, C.K.; Wu, C.; Kou, X.H.; Xue, Z.H. Storage quality prediction of winter jujube based on particle swarm optimization-backpropagation-artificial neural network (PSO-BP-ANN). Sci. Hortic. 2024, 331, 112789. [Google Scholar] [CrossRef]
- Ali, M.M.; Hashim, N.; Aziz, S.A.; Lasekan, L. Quality prediction of different pineapple (Ananas comosus) varieties during storage using infrared thermal imaging technique. Food Control 2022, 138, 108988. [Google Scholar] [CrossRef]
- Li, Y.M.; Sun, H.J.; Yan, W.Z.; Zhang, X.Q. Multi-output parameter-insensitive kernel twin SVR model. Neural Netw. 2020, 121, 276–293. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Kieliszek, M. Mango kernel starch-based edible coating with lemongrass oil: A sustainable solution for extending tomato shelf life. J. Food Meas. Charact. 2025, 19, 1929–1945. [Google Scholar] [CrossRef]
- Zhu, D.Q.; Sun, D.D.; Heng, B.; Geng, Z.X.; Wang, L.; Kuang, F.; Xiong, W. The effects of drop impact on the quality changes of ‘Huangguan’ pear during the storage period. J. Food Meas. Charact. 2024, 18, 2359–2371. [Google Scholar] [CrossRef]
- Spricigo, P.C.; Freitas, T.P.; Purgatto, E.; Ferreira, M.D.; Correa, D.S.; Bai, J.H.; Brecht, J.K. Visually imperceptible mechanical damage of harvested tomatoes changes ethylene production, color, enzyme activity, and volatile compounds profile. J. Postharvest Biol. 2021, 176, 111503. [Google Scholar] [CrossRef]
- Al Lawati, R.; Al Shukaili, Z.; Al-Dairi, M.; Pathare, P.B. Effect of aloe-vera coating on the quality of mechanically damaged zucchini during long-term storage. Sustain. Chem. Pharmacy 2024, 101603, 2352–5541. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, X.Y.; Tang, Y.R.; Li, S.Y.; Lan, H.P.; Niu, H. Internal Quality Prediction Method of Damaged Korla Fragrant Pears during Storage. Horticulturae 2023, 9, 666. [Google Scholar] [CrossRef]
- Sheng, L.; Zhou, X.; Liu, Z.Y.; Wang, J.W.; Zhou, Q.; Wang, L.; Zhang, Q.; Ji, S.J. Changed activities of enzymes crucial to membrane lipid metabolism accompany pericarp browning in ‘Nanguo’ pears during refrigeration and subsequent shelf life at room temperature. Postharvest Biol. Technol. 2016, 117, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Fan, X. Relationship between activated oxygen metabolism and browning of “Yali” pears during storage. J. Food Process. Preserv. 2020, 44, e14392. [Google Scholar] [CrossRef]
- Modesto, J.E.N.; Martins, M.G.; Pereira, G.A.; Chisté, R.C.; Pena, R.D.S. Stability Kinetics of Anthocyanins of Grumixama Berries (Eugenia brasiliensis Lam.) during Thermal and Light Treatments. Foods 2023, 12, 565. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hou, Y.; Xie, X.; Li, H.; Li, X.; Zhu, Y.; Zhai, L.; Zhang, C.; Bian, S. Blueberry MIR156a/SPL12 module coordinates the accumulation of chlorophylls and anthocyanins during fruit ripening. J. Exp. Bot. 2020, 71, 5976–5989. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Zhang, Y.X.; Ge, H.B. The membrane may be an important factor in browning of fresh-cut pear. Food Chem. 2017, 230, 265–270. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, M.; Wang, J.; Jiang, C.Z.; Wang, Q. Application of Exogenous Ethylene Inhibits Postharvest Peel Browning of ‘Huangguan’ Pear. Front. Plant Sci. 2017, 7, 2029. [Google Scholar] [CrossRef]
- Panchbhai, K.J.; Lanjewar, M.G. Portable system for cocoa bean quality assessment using multi-output learning and augmentation. Food Control 2025, 174, 111234. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Chen, Z.G.; Liu, S.; Liu, J.M.; Wang, P.H. Research on rapid non-destructive detection of tannin and protein content in sorghum based on multi-output Gaussian process. J. Food Compos. Anal. 2025, 141, 107326. [Google Scholar] [CrossRef]
- Tran, N.K.; Kühle, L.C.; Klau, G.W. A critical review of multi-output support vector regression. Pattern Recognit. Lett. 2024, 178, 69–75. [Google Scholar] [CrossRef]
- Dagdelen, C.; Aday, M.S. The effect of simulated vibration frequency on the physico-mechanical and physicochemical properties of peach during transportation. LWT 2021, 137, 110497. [Google Scholar] [CrossRef]
Quality Indicator | Model | Training Stage | Prediction Stage | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | ||
weight loss Rate (%) | PLSR | 0.972 | 0.005 | 5.989 | 0.968 | 0.005 | 5.678 |
SVR | 0.987 | 0.004 | 8.766 | 0.984 | 0.003 | 8.025 | |
LSTM | 0.983 | 0.004 | 7.769 | 0.974 | 0.004 | 6.256 | |
L* | PLSR | 0.973 | 0.198 | 6.145 | 0.965 | 0.221 | 5.442 |
SVR | 0.992 | 0.109 | 11.324 | 0.992 | 0.101 | 11.532 | |
LSTM | 0.989 | 0.130 | 9.760 | 0.975 | 0.166 | 6.458 | |
a* | PLSR | 0.973 | 0.620 | 6.176 | 0.971 | 0.646 | 5.919 |
SVR | 0.995 | 0.272 | 14.189 | 0.994 | 0.295 | 12.791 | |
LSTM | 0.995 | 0.265 | 14.947 | 0.988 | 0.374 | 9.398 | |
b* | PLSR | 0.989 | 1.368 | 9.743 | 0.964 | 2.561 | 5.370 |
SVR | 0.984 | 1.691 | 8.045 | 0.984 | 1.654 | 7.940 | |
LSTM | 0.997 | 0.721 | 19.157 | 0.974 | 1.999 | 6.330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhang, H.; Xu, Q.; Liu, Y.; Xue, H.; Dong, S. Synchronous Detection Method of Physical Quality for Korla Fragrant Pear with Different Damage Types During Storage. Horticulturae 2025, 11, 1030. https://doi.org/10.3390/horticulturae11091030
Guo J, Zhang H, Xu Q, Liu Y, Xue H, Dong S. Synchronous Detection Method of Physical Quality for Korla Fragrant Pear with Different Damage Types During Storage. Horticulturae. 2025; 11(9):1030. https://doi.org/10.3390/horticulturae11091030
Chicago/Turabian StyleGuo, Jingchi, Hong Zhang, Quan Xu, Yang Liu, Haonan Xue, and Shengkun Dong. 2025. "Synchronous Detection Method of Physical Quality for Korla Fragrant Pear with Different Damage Types During Storage" Horticulturae 11, no. 9: 1030. https://doi.org/10.3390/horticulturae11091030
APA StyleGuo, J., Zhang, H., Xu, Q., Liu, Y., Xue, H., & Dong, S. (2025). Synchronous Detection Method of Physical Quality for Korla Fragrant Pear with Different Damage Types During Storage. Horticulturae, 11(9), 1030. https://doi.org/10.3390/horticulturae11091030