Genome-Wide Identification and Characterization of Universal Stress Protein (USP) Family Members in Lycium barbarum and Transcriptional Pattern Analysis in Response to Salt Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Analysis of Physical and Chemical Properties of LbUSP Genes
2.2. Multiple Sequence Alignment and Phylogenetic Analysis
2.3. Analysis of Gene Structure, Protein Conserved Motif, and Promoter Cis-Acting Elements
2.4. Collinearity and Ka/Ks Analysis of USP Genes
2.5. Preparation of Plant Materials and Application of Salt Treatment for Transcriptome Sequencing and RT-qPCR
2.6. Data Analysis
3. Results
3.1. Genome-Wide Identification of USP Members in L. barbarum
3.2. Chromosome Distribution and Molecular Characterization of USPs in L. barbarum
3.3. Phylogenetic Analysis of USP Gene Family
3.4. Protein and Gene Structure Analyses of USPs in L. barbarum
3.5. Analyses of Collinearity and Ka/Ks of USPs
3.6. Analysis of Cis-Acting Elements in Promoter of LbUSP Genes
3.7. Expression Profiling Analysis of LbUSPs in Response to Salt Stress
4. Discussion
4.1. Molecular Characterization Revealing Diverse Functional Differentiation in L. barbarum USP Family
4.2. Gene Duplication-Driven Evolution and Expansion of USP Gene Family in L. barbarum
4.3. Mining Key LbUSP Members’ Response to Salt Stress via Expression Profiling in Root and Stem of L. barbarum
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
aa | Amino acid |
ABA | Abscisic acid |
ARE | Anaerobic response element |
DEG | Differentially expressed gene |
DRE | Dehydration-responsive element |
GRAVY | Grand average of hydropathicity |
HMM | Hidden Markov model |
Ka | Non-synonymous |
Ks | Synonymous |
LTR | Low-temperature responsive |
MBS | MYB-binding site |
ML | Maximum likelihood |
MW | Molecular weight |
PDB | Protein Data Bank |
pI | Theoretical isoelectric point |
RLK | Receptor-like kinase |
ROS | Reactive oxygen species |
STRE | Stress-responsive element |
USP | Universal stress protein |
W-box | WRKY-box |
WUN-motif | Wound-responsive motif |
References
- Mittler, R.; Zandalinas, S.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Kawaoka, A.; Nishikubo, N.; Osakabe, K. Responses to environmental stresses in woody plants: Key to survive and longevity. J. Plant Res. 2012, 125, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nyström, T.; Neidhardt, F. Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Escherichia coli. Mol. Microbiol. 1992, 6, 3187–3198. [Google Scholar] [CrossRef]
- Gutiérrez-Beltrán, E.; Personat, J.; de la Torre, F.; Del Pozo, O. A universal stress protein involved in oxidative stress is a phosphorylation target for protein kinase CIPK6. Plant Physiol. 2017, 173, 836–852. [Google Scholar] [CrossRef]
- Yan, T.; Li, M.; Wang, Q.; Wang, M.; Liu, L.; Ma, C.; Xiang, X.; Zhou, Q.; Liu, Z.; Gong, Z. Structures, functions, and regulatory networks of universal stress proteins in clinically relevant pathogenic bacteria. Cell. Signal. 2024, 116, 111032. [Google Scholar] [CrossRef]
- Aravind, L.; Anantharaman, V.; Koonin, E. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: Implications for protein evolution in the RNA. Proteins 2002, 48, 1–14. [Google Scholar] [CrossRef]
- Sousa, M.; McKay, D. Structure of the universal stress protein of Haemophilus influenzae. Structure 2001, 9, 1135–1141. [Google Scholar] [CrossRef]
- Chi, Y.; Koo, S.; Oh, H.; Lee, E.; Park, J.; Phan, K.; Wi, S.; Bae, S.; Paeng, S.; Chae, H.; et al. The physiological functions of universal stress proteins and their molecular mechanism to protect plants prom environmental stresses. Front. Plant Sci. 2019, 10, 750. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, N.; Diez, A.; Nyström, T. The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol. Microbiol. 2002, 43, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Guo, J.; Jin, X.; Kim, J.; Ji, Y.; Fan, S.; Ha, N.; Quan, C. Crystal structure and functional implications of the tandem-type universal stress protein UspE from Escherichia coli. BMC Struct. Biol. 2016, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Nachin, L.; Nannmark, U.; Nyström, T. Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J. Bacteriol. 2005, 187, 6265–6272. [Google Scholar] [CrossRef]
- Nabi, B.; Kumawat, M.; Ahlawat, N.; Ahlawat, S. Molecular, structural, and functional diversity of universal stress proteins (USPs) in bacteria, plants, and their biotechnological applications. Protein J. 2024, 43, 437–446. [Google Scholar] [CrossRef]
- Zarembinski, T.; Hung, L.; Mueller-Dieckmann, H.; Kim, K.; Yokota, H.; Kim, R.; Kim, S. Structure-based assignment of the biochemical function of a hypothetical protein: A test case of structural genomics. Proc. Natl. Acad. Sci. USA 1998, 95, 15189–15193. [Google Scholar] [CrossRef]
- Kvint, K.; Nachin, L.; Diez, A.; Nyström, T. The bacterial universal stress protein: Function and regulation. Curr. Opin. Microbiol. 2003, 6, 140–145. [Google Scholar] [CrossRef]
- Forêt, S.; Seneca, F.; de Jong, D.; Bieller, A.; Hemmrich, G.; Augustin, R.; Hayward, D.; Ball, E.; Bosch, T.; Agata, K.; et al. Phylogenomics reveals an anomalous distribution of USP genes in metazoans. Mol. Biol. Evol. 2011, 28, 153–161. [Google Scholar] [CrossRef]
- Sauter, M.; Rzewuski, G.; Marwedel, T.; Lorbiecke, R. The novel ethylene-regulated gene OsUsp1 from rice encodes a member of a plant protein family related to prokaryotic universal stress proteins. J. Exp. Bot. 2002, 53, 2325–2331. [Google Scholar] [CrossRef]
- Bhuria, M.; Goel, P.; Kumar, S.; Singh, A. Genome-wide identification and expression profiling of genes encoding universal stress proteins (USP) identify multi-stress responsive USP genes in Arabidopsis thaliana. Plant Physiol. Rep. 2019, 24, 434–445. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, A.; Li, Z.; Wang, H.; Wang, J.; Dong, Z.; Yao, L.; Han, X.; Wei, F. Characterization and gene expression analysis reveal universal stress proteins respond to abiotic stress in Gossypium hirsutum. BMC Genom. 2024, 25, 98. [Google Scholar] [CrossRef]
- Qi, T.; He, F.; Zhang, X.; Wang, J.; Zhang, Z.; Jiang, H.; Zhao, B.; Du, C.; Che, Y.; Feng, X.; et al. Genome-wide identification and expression profiling of potato (Solanum tuberosum L.) universal stress proteins reveal essential roles in mechanical damage and deoxynivalenol stress. Int. J. Mol. Sci. 2024, 25, 1341. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, P.; Hu, Y.; Chen, C.; Liu, Q.; Guan, P.; Zhang, J. Genome-wide analysis of the Universal stress protein A gene family in Vitis and expression in response to abiotic stress. Plant Physiol. Biochem. 2021, 165, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Bhuria, M.; Goel, P.; Kumar, S.; Singh, A. AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. Physiol. Plant. 2022, 174, e13635. [Google Scholar] [CrossRef] [PubMed]
- Udawat, P.; Jha, R.; Sinha, D.; Mishra, A.; Jha, B. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front. Plant Sci. 2016, 7, 518. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Che, S.; Zhang, Y.; Wang, H.; Wei, T.; Yan, G.; Song, W.; Yu, W. Universal stress protein in Malus sieversii confers enhanced drought tolerance. J. Plant Res. 2019, 132, 825–837. [Google Scholar] [CrossRef]
- Singh, A.; Singhal, C.; Sharma, A.; Khurana, P. Identification of universal stress proteins in wheat and functional characterization during abiotic stress. Plant Cell Rep. 2023, 42, 1487–1501. [Google Scholar] [CrossRef]
- Varshney, R.; Chen, W.; Li, Y.; Bharti, A.; Saxena, R.; Schlueter, J.; Donoghue, M.; Azam, S.; Fan, G.; Whaley, A.; et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 2012, 30, 83–89. [Google Scholar] [CrossRef]
- Zong, N.; Zhao, H.; Liu, K.; Lu, R.; Fan, Y.; Miao, M. Study on tomato USP1 in response to drought and high temperature stress. J. Anhui Agric. Univ. 2021, 48, 916–922. [Google Scholar] [CrossRef]
- Song, Y.; Ma, B.; Guo, Q.; Zhou, L.; Zhou, X.; Ming, Z.; You, H.; Zhang, C. MYB pathways that regulate UV-B-induced anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). Front. Plant Sci. 2023, 14, 1125382. [Google Scholar] [CrossRef]
- Lenman, M.; Sörensson, C.; Andreasson, E. Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis. Mol. Plant Microbe Interact. 2008, 21, 1275–1284. [Google Scholar] [CrossRef]
- Merkouropoulos, G.; Andreasson, E.; Hess, D.; Boller, T.; Peck, S.C. An Arabidopsis protein phosphorylated in response to microbial elicitation, AtPHOS32, is a substrate of MAP kinases 3 and 6. J. Biol. Chem. 2008, 283, 10493–10499. [Google Scholar] [CrossRef] [PubMed]
- Chou, M.; Wei, X.; Chen, D.; Zhou, J. A novel nodule-enhanced gene encoding a putative universal stress protein from Astragalus sinicus. J. Plant Physiol. 2007, 164, 764–772. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, X.; Ni, Z.; Thakur, K.; Wang, W.; Yan, Y.; Cao, Y.; Zhang, J.; Rengasamy, K.; Wei, Z. Lycium barbarum (Goji) as functional food: A review of its nutrition, phytochemical structure, biological features, and food industry prospects. Crit. Rev. Food Sci. Nutr. 2023, 63, 10621–10635. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Hu, Y.; Zhu, L.; Jiang, X.; Zhang, H.; Liu, J.; Zhao, Y. Lycium barbarum polysaccharide-derived nanoparticles dprotect visual function by inhibiting RGC ferroptosis and microglial activation in retinal ischemia-reperfusion mice. Adv. Healthc. Mater. 2024, 13, e2304285. [Google Scholar] [CrossRef]
- He, C.; Shi, X.; Lin, H.; Li, Q.; Xia, F.; Shen, G.; Feng, J. The combination of HSI and NMR techniques with deep learning for identification of geographical origin and GI markers of Lycium barbarum L. Food Chem. 2024, 461, 140903. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, Q.; Zhan, X.; He, J.; Feng, H. Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production. Agric. Water Manag. 2019, 213, 636–645. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, F.; Song, J.; Luo, C.; Li, K.; Wang, Y.; Chen, L. Research progress on the role of microorganisms in the remediation of saline-alkali land. Guangdong Agric. Sci. 2025, 52, 14–30. [Google Scholar]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Arabia, S.; Sami, A.; Akhter, S.; Sarker, R.; Islam, T. Comprehensive in silico characterization of universal stress proteins in rice (Oryza sativa L.) with insight into their stress-specific transcriptional modulation. Front. Plant Sci. 2021, 12, 712607. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Li, H.; Huang, W.; Liu, X.; Zhu, X.; Ren, X.; An, W.; Zhou, J.; Zhao, J. Screening and validation of reference genes for real-time quantitative PCR in Lycium. Jiangsu Agric. Sci. 2023, 51, 41–51. [Google Scholar] [CrossRef]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hurst, L. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Mengarelli, D.; Zanor, M. Genome-wide characterization and analysis of the CCT motif family genes in soybean (Glycine max). Planta 2021, 253, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, Y.; Li, H.; An, W.; Yin, Y.; Wang, B.; Wang, L.; Wang, B.; Duan, L.; Ren, X.; et al. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). Plant Biotechnol. J. 2024, 22, 1435–1452. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Rai, R.; Chatterjee, A.; Rai, S.; Yadav, S.; Agrawal, C.; Rai, L. Molecular characterization of two novel proteins All1122 and Alr0750 of Anabaena PCC 7120 conferring tolerance to multiple abiotic stresses in Escherichia coli. Gene 2019, 685, 230–241. [Google Scholar] [CrossRef]
- Phan, K.; Paeng, S.; Chae, H.; Park, J.; Lee, E.; Wi, S.; Bae, S.; Kim, M.; Yun, D.; Kim, W.; et al. Universal stress protein regulates the circadian rhythm of central oscillator genes in Arabidopsis. FEBS Lett. 2022, 596, 1871–1880. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, P.; Chen, C.; Zhang, J. VyUSPA3, a universal stress protein from the Chinese wild grape Vitis yeshanensis, confers drought tolerance to transgenic V. vinifera. Plant Cell Rep. 2023, 42, 181–196. [Google Scholar] [CrossRef]
- Fan, M.; Gao, S.; Yang, Y.; Yang, S.; Wang, H.; Shi, L. Genome-wide identification and expression analysis of the universal stress protein (USP) gene family in Arabidopsis thaliana, Zea mays, and Oryza sativa. Genetica 2024, 152, 119–132. [Google Scholar] [CrossRef]
- Cao, H.; Tian, Q.; Ju, M.; Duan, Y.; Li, G.; Ma, Q.; Zhang, H.; Zhang, X.; Miao, H. Genome-wide analysis of the U-box E3 ubiquitin ligase family role in drought tolerance in sesame (Sesamum indicum L.). Front. Plant Sci. 2023, 14, 1261238. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Jiang, J.; Chen, Q.; Liu, H.; Ju, X.; Wang, H. Analysis and prediction of interactions between transmembrane and non-transmembrane proteins. BMC Genom. 2024, 25, 401. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Su, P.; Meng, X.; Liu, P. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genom. 2023, 24, 224. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Gu, W.; Jiang, Z.; Wang, J.; Zou, H.; Zong, C.; Ma, L. Comprehensive analysis of universal stress protein family genes and their expression in Fusarium oxysporum response of Populus davidiana × P. alba var. pyramidalis Louche based on the transcriptome. Int. J. Mol. Sci. 2023, 24, 5405. [Google Scholar] [CrossRef]
- Song, Y.; Ma, B.; Feng, X.; Guo, Q.; Zhou, L.; Zhang, X.; Zhang, C. Genome-wide analysis of the universal stress protein gene family in blueberry and their transcriptional responses to UV-B irradiation and abscisic acid. Int. J. Mol. Sci. 2023, 24, 16819. [Google Scholar] [CrossRef]
- Gross, J.; Cho, W.; Lezhneva, L.; Falk, J.; Krupinska, K.; Shinozaki, K.; Seki, M.; Herrmann, R.; Meurer, J. A plant locus essential for phylloquinone (Vitamin K1) biosynthesis originated from a fusion of four Eubacterial Genes. J. Biol. Chem. 2006, 281, 17189–17196. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Zhang, A.; Zhou, W.; Jiang, R.; Yang, Z.; Yang, H.; Qin, X.; Ding, S.; Lu, Q.; et al. The phytol phosphorylation pathway is essential for the biosynthesis of phylloquinone, which is required for photosystem I stability in Arabidopsis. Mol. Plant 2017, 10, 183–196. [Google Scholar] [CrossRef]
- van Oostende, C.; Widhalm, J.; Furt, F.; Ducluzeau, A.; Basset, G. Chapter 6-vitamin K1 (phylloquinone): Function, enzymes and genes. Adv. Bot. Res. 2011, 59, 229–261. [Google Scholar] [CrossRef]
- Li, N.; He, Q.; Wang, J.; Wang, B.; Zhao, J.; Huang, S.; Yang, T.; Tang, Y.; Yang, S.; Aisimutuola, P.; et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 2023, 55, 852–860. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, F.; Zhang, J.; Shang, H.; Liu, L.; Wang, H.; Zhao, G.; Shen, H.; Yan, Y.H. Dating whole genome duplication in Ceratopteris thalictroides and potential adaptive values of retained gene duplicates. Int. J. Mol. Sci. 2019, 20, 1926. [Google Scholar] [CrossRef]
- Wang, P.; Liu, W.; Han, C.; Wang, S.; Bai, M.; Song, C. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. J. Integr. Plant Biol. 2024, 66, 330–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Z.; Zhang, Z.; Li, Y.; Guo, J.; Liu, L.; Wang, C.; Fan, H.; Wang, B.; Han, G. Root hair development and adaptation to abiotic stress. J. Agric. Food Chem. 2023, 71, 9573–9598. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Melencion, S.; Lee, E.; Park, J.; Alinapon, C.; Oh, H.; Yun, D.; Chi, Y.; Lee, S. Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Front. Plant Sci. 2015, 6, 1141. [Google Scholar] [CrossRef] [PubMed]
- Melencion, S.; Chi, Y.; Pham, T.; Paeng, S.; Wi, S.; Lee, C.; Ryu, S.; Koo, S.; Lee, S. RNA chaperone function of a universal stress protein in Arabidopsis confers enhanced cold stress tolerance in plants. Int. J. Mol. Sci. 2017, 18, 2546. [Google Scholar] [CrossRef]
- Bhuria, M.; Goel, P.; Kumar, S.; Singh, A. The promoter of AtUSP is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 1957. [Google Scholar] [CrossRef]
- Maqbool, A.; Zahur, M.; Husnain, T.; Riazuddin, S. GUSP1 and GUSP2, two drought-responsive genes in Gossypium arboreum have homology to universal stress proteins. Plant Mol. Biol. Rep. 2009, 27, 109–114. [Google Scholar] [CrossRef]
- Hafeez, M.; Khan, M.; Sarwar, B.; Hassan, S.; Ali, Q.; Husnain, T.; Rashid, B. Mutant Gossypium universal stress protein-2 (GUSP-2) gene confers resistance to various abiotic stresses in E. coli BL-21 and CIM-496-Gossypium hirsutum. Sci. Rep. 2021, 11, 20466. [Google Scholar] [CrossRef]
- Hu, P.; Zhao, D. Cloning and functional analysis of universal stress protein gene EuUSP1 in Eucommia ulmoides. Plant Physiol. J. 2024, 60, 130–140. [Google Scholar] [CrossRef]
- Oudelaar, A.; Higgs, D.R. The relationship between genome structure and function. Nat. Rev. Genet. 2021, 22, 154–168. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, J.; Zhao, Y.; Wei, Y.; Tang, Y.; Wu, Y. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 2012, 506, 10–17. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, H.; Zhang, Y.; Zhao, Y.; Zhang, Y.; Feng, X.; Lin, H. Diverse roles of MYB transcription factors in plants. J. Integr. Plant Biol. 2025, 67, 539–562. [Google Scholar] [CrossRef]
- Alabd, A.; Cheng, H.; Ahmad, M.; Wu, X.; Peng, L.; Wang, L.; Yang, S.; Bai, S.; Ni, J.; Teng, Y. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. Plant Physiol. 2023, 192, 1982–1996. [Google Scholar] [CrossRef]
- Han, Q.; Chen, K.; Yan, D.; Hao, G.; Qi, J.; Wang, C.; Dirk, L.; Bruce Downie, A.; Gong, J.; Wang, J.; et al. ZmDREB2A regulates ZmGH3.2 and ZmRAFS, shifting metabolism towards seed aging tolerance over seedling growth. Plant J. 2020, 104, 268–282. [Google Scholar] [CrossRef] [PubMed]
- She, M.; Zheng, D.; Zhang, S.; Ke, Z.; Wu, Z.; Zou, H.; Zhang, Z. Functional analysis of maize GRAS transcription factor gene ZmGRAS72 in response to drought and salt stresses. Agric. Commun. 2024, 2, 100054. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Shen, Z.; Wu, M.; Huang, M.; Hong, S.; Xu, L.; Zang, Y. Advances in functional studies of plant MYC transcription factors. Theor. Appl. Genet. 2024, 137, 195. [Google Scholar] [CrossRef]
- Wu, T.; Al-Mamun, H.; Edwards, D.; Batley, J.; Dolatabadian, A. Genome-wide identification and prediction of disease resistance genes in Hirschfeldia incana. Agric. Commun. 2024, 2, 100049. [Google Scholar] [CrossRef]
Protein Name | Length (aa) | Molecular Weight (kDa) | Isoelectric Point | Instability Index | Aliphatic Index | Grand Average of Hydropathicity | Subcellular Location |
---|---|---|---|---|---|---|---|
LbUSP1 | 248 | 27.00 | 5.68 | 38.91 | 76.65 | −0.475 | Cytoplasm |
LbUSP2 | 227 | 24.49 | 9.40 | 57.31 | 75.51 | −0.265 | Nucleus |
LbUSP3 | 209 | 23.86 | 10.00 | 46.20 | 98.85 | −0.170 | Nucleus |
LbUSP4 | 230 | 26.15 | 10.07 | 44.44 | 78.78 | −0.499 | Chloroplast |
LbUSP5 | 209 | 23.56 | 8.55 | 52.41 | 96.03 | −0.329 | Cytoplasm |
LbUSP6 | 156 | 16.73 | 7.15 | 28.43 | 93.65 | 0.128 | Cytoplasm |
LbUSP7 | 142 | 15.50 | 8.36 | 42.16 | 100.42 | −0.006 | Chloroplast |
LbUSP8 | 162 | 17.74 | 6.30 | 30.31 | 98.64 | 0.051 | Cytoplasm |
LbUSP9 | 157 | 17.14 | 7.08 | 8.34 | 88.09 | 0.038 | Cytoplasm |
LbUSP10 | 170 | 18.29 | 6.43 | 41.89 | 90.06 | −0.057 | Cytoplasm |
LbUSP11 | 164 | 18.43 | 6.90 | 25.87 | 98.60 | −0.155 | Cytoplasm |
LbUSP12 | 164 | 18.69 | 5.67 | 34.65 | 91.52 | −0.274 | Cytoplasm |
LbUSP13 | 221 | 24.72 | 9.28 | 55.78 | 95.97 | −0.301 | Cytoplasm |
LbUSP14 | 234 | 26.97 | 10.08 | 38.17 | 80.30 | −0.639 | Chloroplast |
LbUSP15 | 209 | 23.90 | 10.06 | 55.43 | 97.94 | −0.274 | Cytoplasm |
LbUSP16 | 158 | 17.27 | 7.71 | 15.08 | 84.56 | −0.114 | Cytoplasm |
LbUSP17 | 797 | 88.77 | 6.48 | 42.75 | 115.46 | 0.335 | Plasma membrane |
LbUSP18 | 164 | 18.03 | 6.09 | 39.20 | 96.95 | −0.060 | Cytoplasm |
LbUSP19 | 167 | 18.33 | 6.43 | 49.68 | 96.41 | −0.066 | Cytoplasm |
LbUSP20 | 246 | 27.18 | 9.65 | 52.63 | 89.19 | −0.343 | Mitochondrion |
LbUSP21 | 311 | 34.52 | 5.76 | 39.84 | 90.64 | −0.334 | Cytoplasm |
LbUSP22 | 173 | 18.84 | 5.94 | 23.37 | 93.47 | −0.135 | Cytoplasm |
LbUSP23 | 497 | 55.60 | 7.19 | 30.51 | 96.62 | 0.014 | Cytoplasm |
LbUSP24 | 166 | 18.18 | 7.70 | 36.09 | 87.53 | −0.086 | Cytoplasm |
LbUSP25 | 165 | 17.92 | 7.14 | 31.82 | 93.27 | 0.068 | Cytoplasm |
LbUSP26 | 165 | 18.58 | 6.42 | 24.93 | 95.64 | −0.277 | Cytoplasm |
LbUSP27 | 262 | 27.74 | 9.66 | 38.33 | 87.21 | −0.109 | Nucleus |
LbUSP28 | 834 | 92.04 | 5.26 | 42.48 | 107.41 | 0.309 | Plasma membrane |
LbUSP29 | 307 | 34.48 | 9.23 | 43.66 | 81.63 | −0.426 | Nucleus |
LbUSP30 | 265 | 29.80 | 5.22 | 49.88 | 87.58 | −0.326 | Nucleus |
LbUSP31 | 269 | 3027 | 4.88 | 57.19 | 83.23 | −0.345 | Nucleus |
LbUSP32 | 162 | 17.70 | 6.73 | 17.59 | 108.15 | 0.037 | Cytoplasm |
LbUSP33 | 237 | 25.99 | 4.70 | 32.32 | 83.00 | −0.393 | Chloroplast |
LbUSP34 | 221 | 24.56 | 5.06 | 45.29 | 85.52 | −0.333 | Cytoplasm |
LbUSP35 | 176 | 19.63 | 5.87 | 27.73 | 79.09 | −0.266 | Cytoplasm |
LbUSP36 | 231 | 25.22 | 5.42 | 37.67 | 74.33 | −0.579 | Chloroplast |
LbUSP37 | 811 | 89.00 | 5.94 | 36.91 | 114.08 | 0.432 | Plasma membrane |
LbUSP38 | 244 | 26.48 | 5.15 | 39.46 | 78.24 | −0.470 | Cytoplasm |
LbUtyK1 | 828 | 91.37 | 6.60 | 53.91 | 75.66 | −0.537 | Nucleus |
LbUtyK2 | 775 | 85.31 | 5.87 | 39.69 | 93.34 | −0.246 | Nucleus |
LbUtyK3 | 817 | 91.43 | 5.84 | 43.29 | 87.27 | −0.393 | Nucleus |
LbUtyK4 | 765 | 85.30 | 6.85 | 44.53 | 82.30 | −0.410 | Chloroplast |
LbUtyK5 | 751 | 84.66 | 6.52 | 48.65 | 92.81 | −0.343 | Nucleus |
LbUtyK6 | 880 | 99.01 | 8.06 | 53.11 | 81.90 | −0.463 | Chloroplast |
LbUtyK7 | 804 | 88.39 | 8.26 | 50.44 | 76.47 | −0.474 | Nucleus |
LbUtyK8 | 693 | 76.41 | 5.88 | 50.33 | 91.41 | −0.284 | Nucleus |
LbUtyK9 | 689 | 76.64 | 6.10 | 47.43 | 82.32 | −0.437 | Nucleus |
LbUtyK10 | 689 | 76.07 | 8.88 | 42.36 | 84.40 | −0.434 | Nucleus |
LbUtyK11 | 674 | 74.43 | 8.55 | 45.50 | 80.21 | −0.417 | Nucleus |
LbUtyK12 | 789 | 87.78 | 8.09 | 50.11 | 78.67 | −0.481 | Nucleus |
LbUtyK13 | 792 | 87.67 | 7.01 | 51.93 | 77.85 | −0.460 | Nucleus |
LbUtyK14 | 737 | 82.80 | 6.47 | 50.29 | 93.51 | −0.314 | Cytoplasm |
Gene 1 | Gene 2 | Ka | Ks | Ka/Ks | Average S-Sites | Average N-Sites |
---|---|---|---|---|---|---|
LbUSP1 | LbUSP34 | 0.3349 | 1.9544 | 0.1714 | 147.0833 | 476.9167 |
LbUSP1 | LbUSP38 | 0.2257 | 2.7893 | 0.0809 | 160.3333 | 526.6667 |
LbUSP3 | LbUSP15 | 0.1894 | 0.6635 | 0.2855 | 141.1667 | 482.8333 |
LbUSP4 | LbUSP14 | 0.1924 | 0.7381 | 0.2607 | 149.7500 | 534.2500 |
LbUSP5 | LbUSP13 | 0.1668 | 0.4090 | 0.4079 | 140.0833 | 486.9167 |
LbUSP9 | LbUSP16 | 0.1695 | 0.6923 | 0.2448 | 105.0833 | 365.9167 |
LbUSP9 | LbUSP24 | 0.2152 | 1.0484 | 0.2052 | 105.6667 | 365.3333 |
LbUSP11 | LbUSP26 | 0.1619 | 0.8597 | 0.1884 | 107.5000 | 384.5000 |
LbUSP14 | LbUSP20 | 0.3316 | 1.8479 | 0.1794 | 145.2500 | 508.7500 |
LbUSP16 | LbUSP24 | 0.1798 | 0.5284 | 0.3402 | 105.9167 | 368.0833 |
LbUSP30 | LbUSP31 | 0.2392 | 0.7782 | 0.3073 | 156.4167 | 611.5833 |
LbUSP33 | LbUSP38 | 0.1974 | 1.1845 | 0.1667 | 149.3333 | 501.6667 |
LbUSP34 | LbUSP38 | 0.2828 | 1.3646 | 0.2072 | 149.5833 | 492.4167 |
LbUSP36 | LbUSP38 | 0.1882 | 1.2694 | 0.1483 | 157.4167 | 526.5833 |
LbUtyK5 | LbUtyK14 | 0.1515 | 0.5095 | 0.2975 | 509.3333 | 1695.6667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Bai, M.; Zhao, J.; Meng, D.; Lin, S.; Xiu, Y.; Chen, Y. Genome-Wide Identification and Characterization of Universal Stress Protein (USP) Family Members in Lycium barbarum and Transcriptional Pattern Analysis in Response to Salt Stress. Horticulturae 2025, 11, 960. https://doi.org/10.3390/horticulturae11080960
Lu J, Bai M, Zhao J, Meng D, Lin S, Xiu Y, Chen Y. Genome-Wide Identification and Characterization of Universal Stress Protein (USP) Family Members in Lycium barbarum and Transcriptional Pattern Analysis in Response to Salt Stress. Horticulturae. 2025; 11(8):960. https://doi.org/10.3390/horticulturae11080960
Chicago/Turabian StyleLu, Jintao, Mengyao Bai, Jianhua Zhao, Dong Meng, Shanzhi Lin, Yu Xiu, and Yuchao Chen. 2025. "Genome-Wide Identification and Characterization of Universal Stress Protein (USP) Family Members in Lycium barbarum and Transcriptional Pattern Analysis in Response to Salt Stress" Horticulturae 11, no. 8: 960. https://doi.org/10.3390/horticulturae11080960
APA StyleLu, J., Bai, M., Zhao, J., Meng, D., Lin, S., Xiu, Y., & Chen, Y. (2025). Genome-Wide Identification and Characterization of Universal Stress Protein (USP) Family Members in Lycium barbarum and Transcriptional Pattern Analysis in Response to Salt Stress. Horticulturae, 11(8), 960. https://doi.org/10.3390/horticulturae11080960