The Potential Postharvest Treatments to Delay Flower Senescence and Improve Botrytis Resistance in Cut Peony Flowers
Abstract
:1. Introduction
2. Chemical Treatments Improve Longevity and Quality of Peony Flowers
2.1. Application of Ethylene Antagonists Affected Flower Quality
2.2. Antimicrobial Agents in Vase Solutions
2.2.1. ClO2 and Rapamycin Treatments Improve Quality of Peony Flowers
2.2.2. Nanotechnology Application in Peony Flowers
2.3. Other Chemicals Used as Holding Solutions
2.3.1. Chrysal and Floralife Treatments
2.3.2. Effectiveness of 8-HQC in Vase Life Extension in Peony Flowers
2.3.3. Carbohydrate Sources Significantly Prolonged Vase Life of Cut Peony Flowers
2.3.4. Silicon Treatment Improved Lignin Content and Delayed Flower Senescence
2.3.5. Melatonin Treatment Improved Flower Stem Strength and Retarded Flower Senescence
2.3.6. Polyphenols Extracted from Herbaceous Peony Improved the Postharvest Quality of Peonies
Chemicals (Single or Combined Treatment) | Concentrations | Cultivars | Extended Vase Life (Days) | References |
---|---|---|---|---|
1-MCP | 1 µL L−1 | ‘Luo Yang Hong’ | 0.4 | [17,18] |
ClO2 | 50 mg L−1 | ‘Luoyanghong’ | 2.12 | [28] |
Rapamycin | 0.01 µM L−1 | ‘Luoyanghong’ | 0.8 | [29] |
Ag-NPs (green synthesis) | 10 mg L−1 | ‘Luoyanghong’ | 1 | [35] |
Nanosilver (NS) | 20 µg L−1 | ‘Bartzella’ | 1.9 | [36] |
Nanosilver (NS) | - | ‘Hongyan Zhenghui’ | 4.0 | [8] |
Nanosilver (Cold storage + Low O2) | 2.3 mg L−1 | ‘Qihua Lushuang’ | 5.8 | [37] |
Nanosilver + Sucrose | 10 mg L−1 | ‘Hania’ | 1.5 | |
‘Duchese de Nemorous’ | 1.5 | [38] | ||
‘Ursynów’ | 1.8 | |||
‘Wiesbaden’ | 2.4 | |||
Chrysal Clear Sachet | 5 g L−1 | ‘Hania’ | 1.3 | |
‘Königin Wilhelmina’ | 1.9 | [38] | ||
‘Ursynów’ | 2.3 | |||
Floralife 300 | 10 mL L−1 | ‘Hania’ | 1.5 | [38] |
Floralife | 0.5% | ‘Mons Jules Elie’ | 1.2 | [41] |
‘John C. Lee’ | 1.4 | |||
1.0% | ‘Mons Jules Elie’ | 1.7 | [41] | |
‘John C. Lee’ | 1.6 | |||
Foralife® Express 200+ Foralife® Bulb 100 | 10 mL L−1 + 2 mL L−1 | ‘Jules Elie’ | 1.3 | |
‘Festiva Max’ | 2.8 | [40] | ||
8-HQC + Sucrose | 200 mg L−1 + 20 g L−1 | ‘Graziella’ | 2 | [38] |
‘Wiesbaden’ | 2.2 | |||
8-HQC + Sucrose (non-stored condition) | 200 mg L−1 + 20 g L−1 | ‘Sarah Bernhardt’ | 0.6 | [39] |
8-HQC + Sucrose (stored condition) | 200 mg L−1 + 20 g L−1 | ‘Sarah Bernhardt’ | 0.7 | [39] |
8-HQC (Cold storage + Low O2) | 0.05 mg mL−1 | ‘Qihua Lushuang’ | 5.7 | [37] |
Glucose | 20 g L−1 | ‘Hong Feng’ | 1.5 | [37] |
Sucrose | 20 g L−1 | ‘Hong Feng’ | 1.7 | [37] |
Trehalose | 20 g L−1 | ‘Hong Feng’ | 2.2 | |
Silicon (Na2SiO3) | 75 mg L−1 | ‘Taebaek’ | 2 | [47] |
‘Euiseong’ | 4 | |||
Melatonin | 50 µM | ‘Da Fu Gui’ | 1.2 | [61] |
‘Qi Hua Lu Shang’ | 1.6 | |||
75 µM | ‘Da Fu Gui’ | 0.8 | [61] | |
25 µM | ‘Qi Hua Lu Shang’ | 1 | [61] | |
Melatonin + Sucose | 0.5 mM + 0.5% | ‘Sarah’ | 2 | [62] |
Polyphenols | 8% | ‘Hongyan Zhenghui’ | 2 | [69] |
2.4. Chemical Treatments to Reduce the Susceptibility of Peony Flowers to Botrytis
Chemical Treatment | Concentrations | Cultivars | Response to Botrytis | References |
---|---|---|---|---|
1-MCP | 1 µL L−1 | ‘Luo Yang Hong’ | Reducing Botrytis susceptibility | [17,18] |
Silver nanoparticles (Ag-NPs) | 10 mg L−1 | ‘Luoyanghong’ | Inhibiting Botrytis infection | [35] |
Nanosilver (NS) | 20 µg L−1 | ‘Bartzella’ | Reducing Botrytis infection | [36] |
Nanosilver (Green Synthesize) | 20 µg L−1 | ‘Hongyan Zhenghui’ | Prevents Botrytis infection by suppressing ethylene response and microbial proliferation | [8] |
Chlorine Dioxide (ClO2) | 50 mg L−1 | ‘Luoyanghong’ | Reducing Botrytis infection and microbial growth | [28] |
8-HQC | 200 mg L−1 | ‘Graziella’ | Reducing Botrytis susceptibility through antimicrobial action | [38] |
Fluazinam | 25 mg L−1 | ‘Sarah Bernhardt’ | Fungicide activity reduced Botrytis infection | [20] |
Prochloraz | 50 mg L−1 | ‘Hania’ | Fungicide activity inhibited Botrytis development | [20] |
Azoxystrobin | 10 mg L−1 | ‘Wiesbaden’ | Fungal inhibitor inhibiting Botrytis cinerea growth | [20] |
Iprodione | 10 mg L−1 | ‘Ursynów’ | Fungicide with proven effects against Botrytis infection | [20] |
Pyrimethanil | 30% | ‘Sarah Bernhardt’ ‘The Fawn’ | Decreasing the gray mold disease incidence rate | [71] |
STS | 0.5 mM | ‘Hania’ | Preventing ethylene-mediated senescence and reducing Botrytis infection | [72] |
MeJA | 100 µM | ‘Wiesbaden’ | Inducing resistance through the jasmonic acid pathway, reducing Botrytis infection | [72] |
3. Physical Treatments Delayed Flower Senescence and Reduced Botrytis Susceptibility in Peony Flowers
3.1. Temperature Management During Storage
3.2. Controlled Atmosphere Storage
Physical Treatments | Conditions | Cultivars | Botrytis Resistance | References |
---|---|---|---|---|
Cold Storage | 4 °C for 7 days | ‘Sarah Bernhardt’ | Moderate | [39] |
Low temperature pretreatment | 1 °C for 12 h before vase | ‘Hongyan Zhenghui’ | Moderate | [38] |
Modified Atmosphere Packaging | Low O2 (2–3%), high CO2 | ‘Qihua Lushuang’ | High | [37] |
Modified Atmosphere | Average concentrations of CO2 and O2 of approximately 3% | ‘Sarah Bernhardt’ ‘The Fawn’ | Moderate | [71] |
3.3. Dry Storage Influenced Postharvest Quality of Peony Flowers
4. Conclusions and Future Direction
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holloway, P.S.; Buchholz, K. The State of the Alaska Peony Industry 2012; AFES Miscellaneous Publication: Kabul, Afghanistan, 2013. [Google Scholar]
- Kamenetsky-Goldstein, R.; Yu, X. Cut peony industry: The first 30 years of research and new horizons. Hortic. Res. 2022, 9, uhac079. [Google Scholar] [CrossRef]
- Li, P.; Shen, J.; Wang, Z.; Liu, S.; Liu, Q.; Li, Y.; He, C.; Xiao, P. Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. J. Ethnopharmacol. 2021, 269, 113708. [Google Scholar] [CrossRef]
- Yan, Z.; Xie, L.; Li, M.; Yuan, M.; Tian, Y.; Sun, D.; Zhang, Y.; Niu, L. Phytochemical components and bioactivities of novel medicinal food—Peony roots. Int. Food Res. 2021, 140, 109902. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Dole, J.M. Herbaceous Peony (Paeonia): Genetics, physiology and cut flower production. Floricult. Ornam. Biotechnol. 2012, 6, 62–77. [Google Scholar]
- Zhang, J.; Wang, X.; Zhang, D.; Qiu, S.; Wei, J.; Guo, J.; Li, D.; Xia, Y. Evaluating the comprehensive performance of herbaceous peonies at low latitudes by the integration of long-running quantitative observation and multi-criteria decision making approach. Sci. Rep. 2019, 9, 15079. [Google Scholar] [CrossRef]
- Yu, X.N.; Guo, P.; Lu, G.-p.; Zhang, Q.-X.J. Optimum harvesting time of herbaceous peony buds for cutting flowers. J. For. Res. 2011, 22, 137–140. [Google Scholar] [CrossRef]
- Zhao, D.; Cheng, M.; Tang, W.; Liu, D.; Zhou, S.; Meng, J.; Tao, J. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma 2018, 255, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Rihn, A.; Hall, C.; Behe, B. Consumer preferences for longevity information and guarantees on cut flower arrangements. Hort. Sci. 2014, 49, 769–778. [Google Scholar] [CrossRef]
- Gast, K.; McLaren, J.; Kampjes, R. Identification of bud maturity indicators for fresh-cut peony flowers. Acta Hortic. 2001, 543, 317–325. [Google Scholar] [CrossRef]
- Vereniging van Bloemenveilingen in Nederlad (VBN), Paeonia Evaluation Card. Association of Dutch Flower Auctions. 2007. Available online: https://www.vbn.nl/evaluation-cards-flowers/attachment/paeonia-evaluation-card/ (accessed on 10 November 2024).
- Halevy, A.H.; Mayak, S. Senescence and postharvest physiology of cut flowers, Part 1. In Horticultural Reviews; Wiley Online Library: Hoboken, NJ, USA, 1979; pp. 204–236. [Google Scholar]
- Fanourakis, D.; Pieruschka, R.; Savvides, A.; Macnish, A.J.; Sarlikioti, V.; Woltering, E.J. Sources of vase life variation in cut roses: A review. Postharvest Biol. Technol. 2013, 78, 1–15. [Google Scholar] [CrossRef]
- Zhao, D.; Luan, Y.; Shi, W.; Tang, Y.; Huang, X.; Tao, J. Melatonin enhances stem strength by increasing lignin content and secondary cell wall thickness in herbaceous peony. J. Exp. Bot. 2022, 73, 5974–5991. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Sun, M.; Zhu, W.; Zheng, Y.; Zhu, S.; Chen, L.; Chen, X.; Teixeira da Silva, J.A.; Dong, G.; et al. Melatonin enhances vase life and alters physiological responses in peony (Paeonia lactiflora Pall.) cut flowers. Postharvest Biol. Technol. 2024, 212, 112896. [Google Scholar] [CrossRef]
- van Doorn, W.G. Water relations of cut flowers: An update. Hortic. Rev. 2012, 18, 55–106. [Google Scholar]
- Peiyi, J.; Li, D.; Lin, Z. Response of tree-peony cultivars to exogenous ethylene and 1-MCP. Acta Hortic. 2009, 847, 171–178. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, C.; Wang, X.; Guo, J.; Dong, L. Ethylene-influenced development of tree peony cut flowers and characterization of genes involved in ethylene biosynthesis and perception. Postharvest Biol. Technol. 2017, 125, 150–160. [Google Scholar] [CrossRef]
- Garfinkel, A.R.; Chastagner, G.A. Diseases of peonies. In Handbook of Florists’ Crops Diseases; McGovern, R.J., Elmer, W.H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–31. [Google Scholar]
- Kaye, D. A Review into Management Practices of Botrytis in Peony; RSK ADAS Horticulture. AHDB: Coventry, UK. Available online: https://archive.ahdb.org.uk/knowledge-library/management-of-botrytis-in-cut-flower-peony-crops (accessed on 31 October 2020).
- Ha, S.T.T.; In, B.-C. Combined nano silver, α-aminoisobutyric acid, and 1-methylcyclopropene treatment delays the senescence of cut roses with different ethylene sensitivities. Horticulturae 2022, 8, 482. [Google Scholar] [CrossRef]
- Serek, M.; Sisler, E.C.; Reid, M.S. Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regul. 1995, 16, 93–97. [Google Scholar] [CrossRef]
- Naing, A.H.; Win, N.M.; Kyu, S.Y.; Kang, I.-K.; Kim, C.K. Current progress in application of 1-Methylcyclopropene to improve postharvest quality of cut flowers. Hortic. Plant J. 2022, 8, 676–688. [Google Scholar] [CrossRef]
- Elhindi, K.M. Evaluation of several holding solutions for prolonging vase-life and keeping quality of cut sweet pea flowers (Lathyrus odoratus L.). Saudi J. Biol. Sci. 2012, 19, 195–202. [Google Scholar] [CrossRef]
- Ha, S.T.T.; Lim, J.-H.; In, B.-C. Simultaneous inhibition of ethylene biosynthesis and binding using AVG and 1-MCP in two rose cultivars with different sensitivities to ethylene. J. Plant Growth Regul. 2020, 39, 553–563. [Google Scholar] [CrossRef]
- Hoffman, G.D.; Mattinson, D.S.; Fellman, J.K. 1-MCP shortens peony vase life. Acta Hortic. 2010, 857, 169–178. [Google Scholar] [CrossRef]
- van Doorn, W.G.; Jules, J. Water Relations of Cut Flowers; John Wiley & Sons, Inc.: Oxford, UK, 1996. [Google Scholar]
- Nian, L.K.; Meng, H.Y.; Su, X.L.; Shi, G.A. Effects of adding chlorine dioxide to vase solution on fresh-keeping of tree peony cut flower. Plant Physiol. J. 2017, 53, 2022–2030. [Google Scholar] [CrossRef]
- Wang, K.X.; Wang, Y.; Shi, T.; Ding, X.N.; Yuan, J.H.; Shi, G.A.; Hu, Y.H. Physiological effects of rapamycin pretreatment on delaying the senescence of cut flower in tree peony ‘Luoyanghong’. Acta Hortic. Sin. 2020, 47, 1596. [Google Scholar] [CrossRef]
- Liu, J.; Lai, L.; Liu, H.; Li, H.; Yu, G.; Sun, Y.; He, S. Nano-silver treatment reduces bacterial proliferation and stem bending in cut gerbera flowers: An in vitro and in vivo evaluation. Postharvest Biol. Technol. 2021, 180, 111595. [Google Scholar] [CrossRef]
- Park, D.Y.; Naing, A.H.; Ai, T.N.; Han, J.-S.; Kang, I.-K.; Kim, C.K. Synergistic effect of nano-sliver with sucrose on extending vase life of the carnation cv. Edun. Front. Plant Sci. 2017, 8, 1601. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Naing, A.H.; Soe, M.T.; Kyu, S.Y.; Kim, C.K. Nano-silver controls transcriptional regulation of ethylene- and senescence-associated genes during senescence in cut carnations. Sci. Hortic. 2021, 287, 110280. [Google Scholar] [CrossRef]
- Liu, J.; He, S.; Zhang, Z.; Cao, J.; Lv, P.; He, S.; Cheng, G.; Joyce, D.C. Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol. Technol. 2009, 54, 59–62. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, K.; Guo, W.; Yu, W.; Wang, J.; Li, J. Green synthesis of silver nanoparticles using Eucommia ulmoides leaf extract for inhibiting stem end bacteria in cut tree peony flowers. Front. Plant Sci. 2023, 14, 1176359. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Wang, Y.; Tian, S.; Cao, S.; Zhao, Y.; Shang, S.; Hu, S. Nano silver and ethephon pretreatment regulates the quality of cut flowers of itoh peony ‘Bartzella’. Sci. Silvae Sin. 2022, 58, 79–89. [Google Scholar] [CrossRef]
- Sun, J.; Guo, H.; Tao, J. Effects of harvest stage, storage, and preservation technology on postharvest ornamental value of cut peony (Paeonia lactiflora) Flowers. Agronomy 2022, 12, 230. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A.; Łukaszewska, A. Postharvest treatments improve quality of cut peony flowers. Agronomy 2020, 10, 1583. [Google Scholar] [CrossRef]
- Skutnik, E.; Rabiza-Świder, J.; Jędrzejuk, A.; Łukaszewska, A. The effect of the long-term cold storage and preservatives on senescence of cut herbaceous peony flowers. Agronomy 2020, 10, 1631. [Google Scholar] [CrossRef]
- Legnani, G. Peony Hydration Prior to Storage and Shipping Increases Vase Life; Research Update Floralife; Floralife: Walterboro, SC, USA, 2022. [Google Scholar]
- Heuser, C.W.; Evensen, K.B. Cut flower longevity of Peony. J. Am. Soc. Hortic. Sci. 1986, 111, 896–899. [Google Scholar] [CrossRef]
- Pozza, E.A.; Pozza, A.A.A.; Botelho, D.M.d.S. Silicon in plant disease control. Rev. Ceres 2015, 62, 323–331. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.; Hu, J.; Jeong, B.R. Method of silicon application affects quality of strawberry daughter plants during cutting propagation in hydroponic substrate system. Agronomy 2020, 10, 1753. [Google Scholar] [CrossRef]
- Chérif, M.; Benhamou, N.; Menzies, J.G.; Bélanger, R. Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol. Mol. Plant Pathol. 1992, 41, 411–425. [Google Scholar] [CrossRef]
- Fortunato, A.A.; Rodrigues, F.Á.; Baroni, J.C.P.; Soares, G.C.B.; Rodriguez, M.A.D.; Pereira, O.L. Silicon suppresses Fusarium wilt development in banana plants. J. Phytopathol. 2012, 160, 674–679. [Google Scholar] [CrossRef]
- Zhao, D.; Hao, Z.J.; Tao, J.; Han, C. Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.). Sci. Hortic. 2013, 151, 165–172. [Google Scholar] [CrossRef]
- Song, J.; Li, Y.; Hu, J.; Lee, J.; Jeong, B.R. Pre- and/or postharvest silicon application prolongs the vase life and enhances the quality of cut peony (Paeonia lactiflora Pall.) Flowers. Plants 2021, 10, 1742. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, J.; Jeong, B.R. Synergistic effects of silicon and preservative on promoting postharvest performance of cut flowers of peony (Paeonia lactiflora Pall.). Int. J. Mol. Sci. 2022, 23, 13211. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Wu, Y.; Pan, Y.; Ban, Z.; Li, L.; Li, X.H. Insights into exogenous melatonin associated with phenylalanine metabolism in postharvest strawberry. Postharvest Biol. Technol. 2020, 16, 111244. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, Q.; Yu, X.; Huang, L.; Xu, S.; Wang, R.; Shen, W.; Shen, W. Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Ann. Bot. 2018, 121, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Hern’andez-Ruiz, J.; Marino, A.B. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy 2018, 8, 33. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernandez-Ruiz, J. Melatonin and its relationship to plant hormones. Ann. Bot. 2018, 121, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Xie, C.; Zhang, H.; Arnao, M.B.; Ali, M.; Ali, Q.; Muhammad, I.; Shalmani, A.; Nawaz, M.A.; Chen, P.; et al. Melatonin and its effects on plant systems. Molecules 2018, 14, 2352. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Li, Q.; Feng, S.; Lei, Q.; Abbas, F.; Yao, Y.; Chen, W.; Li, X.; Zhu, X. Melatonin maintains fruit quality and reduces anthracnose in postharvest papaya via enhancement of antioxidants and inhibition of pathogen development. Antioxidants 2022, 11, 804. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Z.K.; Chai, H.K.; Chen, N.; Yang, Y.; Wang, D.N.; Yang, T.; Cao, W. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 2016, 118, 103–110. [Google Scholar] [CrossRef]
- Song, L.L.; Liu, S.W.; Yu, H.T.; Yu, Z.F. Exogenous melatonin ameliorates yellowing of postharvest pak choi (Brassica rapa subsp. chinensis) by modulating chlorophyll catabolism and antioxidant system during storage at 20 °C. Sci. Hortic. 2023, 311, 111808. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Jannatizadeh, A.; Nojadeh, M.S.; Ebrahimzadeh, A. Exogenous melatonin ameliorates chilling injury in cut anthurium flowers during low temperature storage. Postharvest Biol. Technol. 2019, 148, 184–191. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Moosa, A.; Darras, A.; Nafees, M.; Ferrante, A.; Siddique, K.H.M. Preharvest melatonin foliar treatments enhance postharvest longevity of cut tuberose via altering physio-biochemical traits. Front. Plant Sci. 2013, 14, 1151722. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Luo, L.; Miao, P.; Dong, Q.; Cheng, H.; Wang, Y.; Li, D.; Pan, C. A novel perspective to investigate how nanoselenium and melatonin lengthen the cut carnation vase shelf. Plant Physiol. Biochem 2023, 196, 982–992. [Google Scholar] [CrossRef]
- Yu, Z.; Li, S.; Hong, Y. Influence of tea polyphenols, chitosan, and melatonin as the eco-friendly post-harvest treatments on the vase life of the cut chrysanthemum ‘Pingpong’ group. Agriculture 2024, 14, 1507. [Google Scholar] [CrossRef]
- Wang, N.; Fang, H.; Yang, Q.; Liu, Z.; Feng, H.; Ji, S. Exogenous melatonin alleviated leaf yellowing via inhibiting respiration and ethylene biosynthesis during shelf life in Pakchoi. Plants 2022, 11, 2102. [Google Scholar] [CrossRef]
- Chen, T.; Tian, C.; Ren, X.; Zhang, X.; Xue, J.; Hao, R. A composite vase solution improved vase quality of cut peony after long-term cold storage by maintaining better physiological activities and enhancing the absorption of water. Postharvest Biol. Technol. 2024, 213, 112945. [Google Scholar] [CrossRef]
- Hughes, D.A. Plant polyphenols: Modifiers of immune function and risk of cardiovascular disease. Nutrition 2005, 21, 422–423. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.R.; Zhang, Y.; Jiang, B. Extraction and electrochemical analysis of polyphenols in plant samples. Electrochem 2019, 14, 7410–7422. [Google Scholar] [CrossRef]
- Bae, J.Y.; Seo, Y.H.; Oh, S.W. Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Sci. Biotechnol. 2022, 31, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.T.; Tian, C.R.; Luo, J.Y.; Zhou, R.; Sun, X.Y.; Ma, J.J. Influence of technical processing units on polyphenols and antioxidant capacity of carrot (Daucus carrot L.) juice. Food Chem. 2013, 141, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.M.; Yagiz, Y.; Hsu, W.Y.; Simonne, A.; Lu, J.; Marshall, M.R. Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. J. Agric. Food Chem. 2014, 62, 6640–6649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.D.; Liu, M.C.; Xu, L.Q.; Zhao, C.Z.; Li, H. Research of tea polyphenols on post-harvest biochemical metabolism and preservation in cut rose flowers. Storage Process 2007, 6, 13–18. [Google Scholar]
- Li, P.; Zhang, W.; Tao, J.; Zhao, D. Herbaceous peony polyphenols extend the vase life of cut flowers. Agriculture 2023, 13, 122. [Google Scholar] [CrossRef]
- Ohlander, M.; Watson, D. Experimental storage of cut peony flowers. Proc. Am. Soc. Hortic. Sci. 1951, 58, 371–376. [Google Scholar]
- Christiaens, A.; Blindeman, L.; Van de Vondel, L.; Ragaert, P.; Devlieghere, F.; Gobin, B.; Van Labeke, M.-C. Modified atmosphere storage of cut peony flowers to extend the sales period. Acta Hortic. 2023, 1368. [Google Scholar] [CrossRef]
- Gast, K. Methyl jasmonate and long term storage of fresh cut peony flowers. Acta Hortic. 2001, 543, 327–330. [Google Scholar] [CrossRef]
- Czarnocka, W.; Karpinski, S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, T.; Qin, G.; Li, B.; Tian, S. Synergistic action of antioxidative systems contributes to the alleviation of senescence in kiwifruit. Postharvest Biol. Technol. 2016, 111, 15–24. [Google Scholar] [CrossRef]
- Walton, E.F.; Boldingh, H.L.; McLaren, G.F.; Williams, M.H.; Jackman, R. The dynamics of starch and sugar utilization in cut peony (Paeonia lactiflora Pall.) stems during storage and vase life. Postharvest Biol. Technol. 2010, 58, 142–146. [Google Scholar] [CrossRef]
- Celikel, F.G.; Reid, M.S. Storage temperature affects the quality of cut flowers from the Asteraceae. HortScience 2002, 37, 148–150. [Google Scholar] [CrossRef]
- Prisa, D.; Burchi, G.; van Doorn, W.G. Effects of low temperature storage and sucrose pulsing on the vase life of Lilium cv. Brindisi inflorescences. Postharvest Biol. Technol. 2013, 79, 39–46. [Google Scholar] [CrossRef]
- Faragher, J.D.; Mayak, S.; Tirosh, T. Physiological response of cut flowers to cold storage. Physiol. Plant. 1986, 67, 205–210. [Google Scholar] [CrossRef]
- Gast, K. Fresh-Cut Peonies; Report of Progress 864; Kansas State University: Manhattan, KS, USA, 1999. Available online: https://www.ksre.k-state.edu/historicpublications/pubs/SRP864.pdf (accessed on 31 October 2020).
- Post, K.; Fischer, C.W., Jr. Commercial Storage of Cut Flowers; Cornell Extension Bulletin 853; Cornell University: Ithaca, NY, USA, 1952. [Google Scholar]
- Xue, J.; Tang, Y.; Wang, S.; Xue, Y.; Liu, X.; Zhang, X. Evaluation of dry and wet storage on vase quality of cut peony based on the regulation of starch and sucrose metabolism. Postharvest Bio. Technol. 2019, 155, 11–19. [Google Scholar] [CrossRef]
- Eason, J.; Pickney, T.; Heyes, J.; Brash, D.; Bycroft, B. Effect of storage temperature and harvest bud maturity on bud opening and vase life of Paeonia lactiflora cultivars. N. Z. J. Crop Hortic. Sci. 2002, 30, 61–67. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, H.; Liu, B.; Cao, J.; Jiang, W. Improving fresh apricot (Prunus armeniaca L.) quality and antioxidant capacity by storage at near freezing temperature. Sci. Hortic. 2018, 231, 1–10. [Google Scholar] [CrossRef]
- Liu, B.; Jiao, W.; Wang, B.; Shen, J.; Zhao, H.; Jiang, W. Near freezing point storage compared with conventional low temperature storage on apricot fruit flavor quality (volatile, sugar, organic acid) promotion during storage and related shelf life. Sci. Hortic. 2019, 249, 100–109. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, B.; Cui, K.; Cao, J.; Jiang, W. Improving postharvest quality and antioxidant capacity of sweet cherry fruit by storage at near-freezing temperature. Sci. Hortic. 2019, 246, 68–78. [Google Scholar] [CrossRef]
- Zhao, H.; Shu, C.; Fan, X.; Cao, J.; Jiang, W. Near-freezing temperature storage prolongs storage period and improves quality and antioxidant capacity of nectarines. Sci. Hortic. 2018, 228, 196–203. [Google Scholar] [CrossRef]
- Barzilay, A.; Zemah, H.; Kamenetsky, R. Annual life cycle and floral development of ‘Sarah Bernhardt’ peony in Israel. HortScience 2002, 37, 300–303. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Shi, J.; Gao, S.; Wang, Z.; Shi, G. Changes of cold resistance of floral organs during sprout in different tree peony cultivars. China Acad. J. 2013, 21, 52–56. (In Chinese) [Google Scholar]
- Walton, E.F.; McLaren, G.F.; Boldingh, H.L. Seasonal patterns of starch and sugar accumulation in herbaceous peony (Paeonia lactiflora Pall.). J. Hortic. Sci. Biotechnol. 2007, 82, 365–370. [Google Scholar] [CrossRef]
- Galindo, F.G.; Sjöholm, I.; Rasmusson, A.G.; Widell, S.; Kaack, K. Plant stress physiology: Opportunities and challenges for the food industry. Crit. Rev. Food Sci. Nutr. 2007, 46, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.S.; Paroschy, J.; McKersie, B.D.; Bowley, S.R. Carbohydrate composition and freezing tolerance of canes and buds in Vitis Vinifera. J. Plant Physiol. 1999, 155, 101–106. [Google Scholar] [CrossRef]
- Patton, A.J.; Cunningham, S.M.; Volenec, J.J.; Reicher, Z.J. Differences in freeze tolerance of Zoysiagrasses: II. Carbohydrate and proline accumulation. Crop Sci. 2007, 47, 2170–2181. [Google Scholar] [CrossRef]
- Ashworth, E.N.; Stirm, V.E.; Volenec, J.J. Seasonal variations in soluble sugars and starch within woody stems of Cornus sericea L. Tree Physiol. 1993, 13, 379–388. [Google Scholar] [CrossRef]
- Yu, D.J.; Hwang, J.Y.; Chung, S.W.; Ohm, H.D.; Yun, S.K.; Lee, H.J. Changes in cold hardiness and carbohydrate content in peach (Prunus persica) trunk bark and wood tissues during cold acclimation and deacclimation. Sci. Hortic. 2017, 219, 45–52. [Google Scholar] [CrossRef]
- Jahke, N.J.; Dole, J.M.; Bergmann, B.A.; Ma, G.; Perkirs-Veazie, P. Extending Cut Paeonia Lactiflora Pall. Storage Duration Using Sub-Zero Storage Temperatures. Agronomy 2020, 10, 1694. [Google Scholar] [CrossRef]
- Burana, C.; Kurokura, T.; Yamane, K. Short-term controlled atmosphere and 1-MCP effects on the vase life of cut flowers. Acta Hortic. 2015, 1071, 635–639. [Google Scholar] [CrossRef]
- Gupta, J.; Dubey, R.K. Factors affecting post-harvest life of flower crops. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 548–557. [Google Scholar] [CrossRef]
- Cefola, M.; Amodio, M.L.; Colelli, G. Extending postharvest life of ready-to-use zucchini flowers: Effects of the atmosphere composition. Acta Hortic. 2016, 1141, 123–130. [Google Scholar] [CrossRef]
- Rashed, N.M.; Memon, S.A.; Turki, S.M.A.; Shalaby, T.A.; El-Mogy, M.M. An analysis of conventional and modern packaging approaches for cut flowers: A review article. Front. Plant Sci. 2024, 15, 1371100. [Google Scholar] [CrossRef]
- Ahmad, I.; Dole, J.M.; Amjad, A.; Ahmad, S. Dry storage effects on postharvest performance of selected cut flowers. HortTechnology 2012, 22, 463–469. [Google Scholar] [CrossRef]
- Xue, J.; Huang, Z.; Wang, S.; Xue, Y.; Ren, X.; Zeng, X.; Zhang, X. Dry storage improves the vase quality of cut peony by increasing water uptake efficiency through aquaporins regulation. Plant Physiol. Biochem. 2020, 148, 63–69. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.; Ha, S. The Potential Postharvest Treatments to Delay Flower Senescence and Improve Botrytis Resistance in Cut Peony Flowers. Horticulturae 2024, 10, 1352. https://doi.org/10.3390/horticulturae10121352
Nguyen T, Ha S. The Potential Postharvest Treatments to Delay Flower Senescence and Improve Botrytis Resistance in Cut Peony Flowers. Horticulturae. 2024; 10(12):1352. https://doi.org/10.3390/horticulturae10121352
Chicago/Turabian StyleNguyen, Toan, and Suong Ha. 2024. "The Potential Postharvest Treatments to Delay Flower Senescence and Improve Botrytis Resistance in Cut Peony Flowers" Horticulturae 10, no. 12: 1352. https://doi.org/10.3390/horticulturae10121352
APA StyleNguyen, T., & Ha, S. (2024). The Potential Postharvest Treatments to Delay Flower Senescence and Improve Botrytis Resistance in Cut Peony Flowers. Horticulturae, 10(12), 1352. https://doi.org/10.3390/horticulturae10121352