Phenotypic Diversity and Biochemical Properties of Pyrus elaeagnifolia Pall. Genotypes: A Comprehensive Study from Western Türkiye
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Location and Plant Material
2.2. Pomological Analyses
2.3. Spectrophotometric Analyses
2.4. HPLC Analyses
2.5. Data Analysis
3. Results
3.1. Variance Analysis and Descriptive Statistics
3.2. Correlation Analysis
3.3. Principal Component Analysis (PCA)
3.4. Cluster Analysis
4. Discussion
4.1. Analysis of Variance
4.2. Correlation Analysis
4.3. Principal Component and Cluster Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bell, R.L.; Quamme, H.A.; Layne, R.E.C.; Skirvin, R.M. Pears. In Fruit Breeding Vol. I Tree and Tropical Fruits; Janick, J., Moore, J.N., Eds.; John Wiley & Sons: New York, NY, USA, 1996; pp. 441–514. [Google Scholar]
- Morgan, J. The Book of Pears: The Definitive History and Guide to over 500 Varieties; Chelsea Green Publishing: Vermont, VT, USA, 2015. [Google Scholar]
- USDA; Agricultural Research Service; National Plant Germplasm System. Germplasm Resources Information Network (GRIN Taxonomy). 2023. Available online: https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=30491 (accessed on 26 January 2025).
- Aygün, A.; Kırca, L. Ahlat (Pyrus elaeagnifolia). In Minör Meyveler II; Sülüşoğlu Durum, M., Polat, M., Eds.; İKSAD Publishing House: Ankara, Türkiye, 2023; pp. 61–91. [Google Scholar]
- Dumanoğlu, H.; Aygün, A.; Alay, A.; Güneş, N.T.; Özkaya, M.T. Ahlatın (Pyrus elaeagnifolia Pall.) Yeşil Çeliklerinde Köklenme ve Sürme Üzerine Çelik Alma Zamanı IBA ve Putrescine’in Etkileri. Turk. J. Agric. For. 1999, 23, 559–565. [Google Scholar]
- Özçağıran, R.; Ünal, A.; Özeker, E.; İsfendiyaroğlu, M. Ilıman iklim meyve türleri: Yumuşak çekirdekli meyveler; Ege Üniversitesi Yayınları: İzmir, Türkiye, 2014. [Google Scholar]
- Bell, R.L.; Stuart, L.C. Resistance in Eastern European Pyrus germplasm to pear psylla nymphal feeding. HortScience 1990, 25, 789–791. [Google Scholar] [CrossRef]
- Özlük, A. Selection of Wild Pear (Pyrus elaeagnifolia L.) Naturally Grow in Merzifon District. Master’s Thesis, Institute of Science, Tokat, Türkiye, 2015. [Google Scholar]
- Salkić, B.; Salkić, A.; Imširović, E.; Salkić, E.; Salihović, E. Examination of compatibility of autochthonous pear cultivars from the region of northeastern bosnia with vegetative rootstock of the genus Cydonia sp. Int. J. Plant Soil Sci. 2022, 34, 35–39. [Google Scholar] [CrossRef]
- Cansaran, A.; Kaya, Ö.F.; Yıldırım, C. Ovabaşı, Akpınar, Güllüce ve Köseler Köyleri (Gümüşhacıköy/Amasya) Arasında Kalan Bölgede Etnobotanik Bir Araştırma. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2007, 19, 243–257. [Google Scholar]
- Baltas, N. Investigation of a wild pear species (Pyrus elaeagnifolia subsp. elaeagnifolia) from Antalya, Turkey: Polyphenol oxidase properties and anti-xanthine oxidase, antiurease, and antioxidant activity. Int. J. Food Prop. 2017, 20, 585–595. [Google Scholar] [CrossRef]
- Şengül, M.; Topdaş, E.F.; Doğan, H.; Serencam, H. Artvin ilinde geleneksel olarak üretilen farklı marmelat çeşitlerinin bazı fiziksel ve kimyasal özellikleri, antioksidan aktiviteleri ve fenolik profilleri. Akademik Gıda 2018, 16, 51–59. [Google Scholar] [CrossRef]
- Erçetin, H.K.; Güneş, E.; Olcay, G.S. Use of Ahlat Flour in Cookie Production. J. Tour. Gastron. Stud. 2021, 9, 674–686. [Google Scholar] [CrossRef]
- Çakılcıoğlu, U.; Şengün, M.T.; Türkoğlu, D. An ethnobotanical survey of medicinal plants of Yazıkonak and Yurtbaşı districts of Elazığ province, Turkey. J. Med. Plants Res. 2010, 4, 567–572. [Google Scholar]
- Şeker, M.; Yücel, Z.; Nurdan, E. Phenolic compounds and antioxidant activities of local wild pear (Pyrus elaeagrifolia). Int. J. Agric. Biol. 2016, 18, 483–488. [Google Scholar]
- Fidan, M.S.; Oz, M.; Ucuncu, O.; Baltaci, C.; Karatas, S.M. Composition of antimicrobial and antioxidant activities and chemical components of essential oil from flowers and leaves of Pyrus elaeagnifolia Pallas in Turkey. Fresenius Environ. Bull. 2022, 31, E363–E371. [Google Scholar]
- Kayhan, R.; Bulduk, I.; Korcan, S.E.; Abed, A.B.; Ünal, A. Flavonoids, Phenolics and Antioxidant Evaluation of Different Parts of Three Wild Pyrus Species from Turkey. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2024, 94, 903–911. [Google Scholar] [CrossRef]
- Yilmaz, H.; Ercişli, S. Antibacterial and antioxidant activity of fruits of some rose species from Turkey. Rom. Biotechnol. Lett. 2011, 16, 6407–6411. [Google Scholar]
- İlhan, M.; Akkol, E.K.; Taştan, H.; Dereli, F.T.G.; Tümen, İ. Efficacy of Pyrus elaeagnifolia subsp. elaeagnifolia in acetic acid-induced colitis model. Open Chem. 2019, 17, 13–22. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wydro, U.; Wołejko, E.; Świderski, G.; Lewandowski, W. Biological activity of new cichoric acid-metal complexes in bacterial strains, yeast-like fungi, and human cell cultures in vitro. Nutrients 2020, 12, 154. [Google Scholar] [CrossRef]
- Peng, B.R.; Tang, X.Y.; Chen, Y.S.; Lai, K.H.; Lee, M.H. Exploring the wound-healing potential and seasonal chemical variability of the Formosan Callery pear Pyrus calleryana: Implications for therapeutic applications. Pharm. Biol. 2024, 62, 621–633. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; dos Santos, A.R.F.; Ramos-Cabrer, A.M.; Sau, F.; Díaz-Hernández, M.B. Morphological variation in local pears from north-western Spain. Sci. Hortic. 2012, 138, 176–182. [Google Scholar] [CrossRef]
- Voltas, J.; Pemán, J.; Fusté, F. Phenotypic diversity and delimitation between wild and cultivated forms of the genus Pyrus in North-eastern Spain based on morphometric analyses. Genet. Resour. Crop Evol. 2007, 54, 1473–1487. [Google Scholar] [CrossRef]
- Gültekin, H.C. Ahlatlar (Pyrus L.). Orman ve Av Dergisi 2014, 91, 49–53. [Google Scholar]
- Jakobek, L.; Ištuk, J.; Buljeta, I.; Voća, S.; Žlabur, J.Š.; Babojelić, M.S. Traditional, indigenous apple varieties, a fruit with potential for beneficial effects: Their quality traits and bioactive polyphenol contents. Foods 2020, 9, 52. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, K.; Qiu, Z.; Zhuang, W.; Li, Q.; Wen, X. Effects of different rain shelter coverings on volatile organic compounds in mature fruit and postharvest quality of sweet cherry. CyTA J. Food 2021, 19, 465–475. [Google Scholar] [CrossRef]
- Jahufer, M.Z.Z.; Casler, M.D. Application of the Smith-Hazel selection index for improving biomass yield and quality of switchgrass. Crop Sci. 2015, 55, 1212–1222. [Google Scholar] [CrossRef]
- Olivoto, T.; Nardino, M. MGIDI: Towards an effective multivariate selection in biological experiments. Bioinformatics 2020, 37, 1383–1389. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022, 40, 412–431. [Google Scholar] [CrossRef]
- Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Müller, J.V.; Toll, J. Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecol. Sustain. Food Syst. 2014, 38, 369–377. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Biodiversity for Food and Agriculture. In FAO Commission on Genetic Resources for Food and Agriculture Assessments; Bélanger, J., Pilling, D., Eds.; FAO: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Yilmaz, K.U.; Ercisli, S.; Cam, M.; Uzun, A.; Yilmaztekin, M.; Kafkas, E.; Pinar, H. Fruit weight, total phenolics, acidity and sugar content of edible wild pear (Pyrus elaeagnifolia Pall.) fruits. Erwerbs-Obstbau 2015, 57, 179–184. [Google Scholar] [CrossRef]
- Yilmaz, K.U.; Uzun, A.; Cam, M.; Ercisli, S. Some morphological and fruit characteristics of naturally grown Pyrus elaeagrifolia Pall. of Kayseri Province (Central Anatolia, Turkey). Genet. Resour. Crop Evol. 2015, 62, 711–720. [Google Scholar] [CrossRef]
- Murathan, Z.T.; Erbil, N.; Düzgüner, V.; Arslan, M. Şakok Armudunun (Pyrus elaeagnifila Pallas) Antioksidan, Antimikrobiyal ve Mutajenik Özelliklerinin İncelenmesi. Erzincan Univ. J. Sci. Technol. 2019, 12, 447–456. [Google Scholar] [CrossRef]
- Bozhüyük, M.R. Morphological diversity of Pyrus elaeagrifolia Pall. ecotypes in Eastern Anatolia Region. Int. J. Agric. Wildl. Sci. 2021, 7, 368–372. [Google Scholar] [CrossRef]
- Sagbas, H.I.; Ilhan, G.; Ercisli, S.; Anjum, M.A.; Holubec, V. Characterization of Oleaster-Leafed Pear (Pyrus elaeagnifolia Pall. subsp. elaeagnifolia) Fruits in Turkey. Agronomy 2021, 11, 430. [Google Scholar] [CrossRef]
- Uzun, A.; Pinar, H.; Yaman, M.; Yigit, M.A.; Cakiroglu, Y.; Karakaya, A.; Ercisli, S. Identification of genetic diversity in wild pear (Pyrus elaeagnifolia Pall.) Genotypes collected from different regions of Turkey with SSR marker system. Genetika 2022, 54, 109–118. [Google Scholar] [CrossRef]
- Dahlia, F.; Benito, C.; Boussaid, M. Genetic diversity of fruits in wild jujube (Ziziphus lotus L. Desf.) natural populations from Algeria. Poljoprivreda i Sumarstvo 2019, 65, 165–183. [Google Scholar] [CrossRef]
- Eken, B.U.; Kirdök, E.; Velioğlu, E.; Çiftçi, Y.Ö. Assessment of genetic variation of natural populations of wild cherry (Prunus avium L.) via SSR markers. Turk. J. Bot. 2022, 46, 14–25. [Google Scholar] [CrossRef]
- Nishimwe, G.; Augustino, S.; Dahlin, A.S.; Niyitanga, F. Characterization of yield and physico-chemical parameters of selected wild indigenous fruits in Rwanda. Resources 2024, 13, 101. [Google Scholar] [CrossRef]
- Karaçalı, İ. Bahçe Ürünlerinin Muhafaza ve Pazarlanması; Ege Üniversitesi Basımevi: İzmir, Türkiye, 2009; 472p. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Yen, G.; Chen, H. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Cemeroğlu, B. Meyve Sebze İşleme Teknolojisi 1. Cilt; Bizim Grup Basımevi: Ankara, Türkiye, 2017; 707p. [Google Scholar]
- Cemeroğlu, B. Gıda Analizleri; Gıda Teknolojisi Derneği Yayınları: Ankara, Türkiye, 2007; pp. 168–171. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2024. Available online: https://www.r-project.org/ (accessed on 31 January 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 31 January 2024).
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Available online: https://cran.r-project.org/package=factoextra (accessed on 31 January 2024).
- Husson, F.; Josse, J.; Le, S.; Mazet, J. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. 2024. Available online: https://cran.r-project.org/package=FactoMineR (accessed on 31 January 2024).
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix. 2021. Available online: https://github.com/taiyun/corrplot (accessed on 31 January 2024).
- Karatas, S.; Ercisli, S. Fruit characteristics of Pyrus elaeagrifolia Pall. genotypes in Eastern Turkey. In Proceedings of the X International Symposium on Agricultural Sciences AgroReS 2021, Sarajevo, Bosnia and Herzegovina, 27–29 May 2021; pp. 30–32. [Google Scholar]
- Valladares, F.; Sanchez-Gomez, D.; Zavala, M.A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 2006, 94, 1103–1116. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; van Kleunen, M. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef]
- Sevindik, E.; Efe, F.; Murathan, Z.T. Molecular genetic diversity and phylogenetic investigation of Pyrus communis L. (Rosaceae) genotypes using cpDNA sequences with RAPD and ISSR analyses. Erwerbs-Obstbau 2023, 65, 231–240. [Google Scholar] [CrossRef]
- Çoban, A.; Değirmenci, F.Ö.; Uluğ, A.; Ateş, M.A.; Yüksel, E.; Eminağaoğlu, Ö.; Kaya, Z. Genetic analysis of village pear (Pyrus communis L.) cultivar populations in northeastern Türkiye. Plant Genet. Resour. 2024, 22, 408–416. [Google Scholar] [CrossRef]
- Gercekcioglu, R.; Ozluk, A.; Atasever, O. Selection of Pyrus elaeagnifolia Pall. from Merzifon district. Bahce 2016, 2, 69–73. [Google Scholar]
- Kececi, L.D. Determination of Some Horticultural Characteristics of Pyrus elaeagrifolia L. Genotypes from Hakkari Region. Master’s Thesis, Adnan Menderes University, Aydın, Türkiye, 2017. [Google Scholar]
- Javadisaber, J.; Dumanoğlu, H.; Şahin, Ö.; Sarıkamış, G.; Ergül, A.; Çakır Aydemir, B. Salt stress tolerance of Pyrus spp. and Cydonia oblonga genotypes assessed by morphological, biochemical and dehydrin gene expression analysis. J. Plant Growth Regul. 2024, 43, 165–177. [Google Scholar] [CrossRef]
- Deligiannidou, E.; Boutsika, A.; Plesias, I.; Xanthopoulou, A.; Moysiadis, T.; Mellidou, I.; Ganopoulos, I. Microsatellite genotyping and genetic diversity of a greek pear (Pyrus communis L.) germplasm collection. Plants 2025, 14, 1816. [Google Scholar] [CrossRef]
- Mertoğlu, K. Investigation of genetic parameters and phytochemical characteristics in plum under altitude change. Genetika 2022, 54, 73–89. [Google Scholar] [CrossRef]
- Wei, T.; Zhong, S.; Huang, B.; Zha, K.; Li, J.; Wen, Q. Influence of Environmental Conditions Associated with Low and High Altitudes on Economic and Quality Characteristics of Fruit Ripening of Camellia chekiangoleosa Hu. Foods 2025, 14, 2266. [Google Scholar] [CrossRef]
- New, A.M.; Cerulus, B.; Govers, S.K.; Perez-Samper, G.; Zhu, B.; Boogmans, S.; Verstrepen, K.J. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol. 2014, 12, e1001764. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Rahman, F.; Tranchina, D.; Gresham, D. Fluctuating environments maintain genetic diversity through neutral fitness effects and balancing selection. Mol. Biol. Evol. 2021, 38, 4362–4375. [Google Scholar] [CrossRef]
- Sridhar, V.; Jagan, P.; Rao, M.R.; Saikiran, V.; Kishore, N.; Reddy, M.R.; Kumar, G.P. Development of stable black-gram [Vigna mungo (L.) hepper] genotypes by deciphering genotype × environment interaction using eberhart-russell and ammi models. Electron. J. Plant Breed. 2023, 14, 52–59. [Google Scholar] [CrossRef]
- Islam, S.S.; Sarker, M.B.U.; Rana, M.M.; Hasan, A.K.; Karim, M.; Khomphet, T. Comprehensive assessment of the genotype-environment interaction and yield stability of boro rice genotypes under four environments in Bangladesh using ammi analysis. Scientifica 2024, 2024, 7800747. [Google Scholar] [CrossRef] [PubMed]
- Özay, C.; Pehlivan, E. Bitki sekonder metabolitlerinin biyosentezini ve akümülasyonunu etkileyen faktörler. Ankara Üniversitesi Eczacılık Fakültesi Dergisi 2024, 48, 1248–1263. [Google Scholar] [CrossRef]
- Dibek, E.; Babayeva, A.; Kürkçü, M.S.; Çöl, N.A.; Çöl, B. Bor içeren bazı antibiyotikler. J. Boron 2020, 5, 29–39. [Google Scholar] [CrossRef]
- Vidaković, A.; Poljak, I. Fruit morphological variability and chemical composition in European wild pear (Pyrus pyraster (L.) Burgsd.) natural populations. Genet. Resour. Crop Evol. 2024, 71, 4315–4330. [Google Scholar] [CrossRef]
- Simionca Mărcășan, L.I.; Pop, R.; Somsai, P.A.; Oltean, I.; Popa, S.; Sestras, A.F.; Sestras, R.E. Comparative evaluation of Pyrus species to identify possible resources of interest in pear breeding. Agronomy 2023, 13, 1264. [Google Scholar] [CrossRef]
- Piluzza, G.; Campesi, G.; D’hallewin, G.; Molinu, M.G.; Re, G.A.; Sanna, F.; Sulas, L. Antioxidants in fruit fractions of Mediterranean ancient pear cultivars. Molecules 2023, 28, 3559. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, T.; Muskała, M.; Merecz-Sadowska, A.; Sikora, J.; Picot, L.; Sitarek, P. Anti-inflammatory and anticancer effects of anthocyanins in in vitro and in vivo studies. Antioxidants 2024, 13, 1143. [Google Scholar] [CrossRef]
- Żbikowska, B.; Kotowska, M.; Gamian, A.; Patek, K.; Matuła, K.; Augustyniak, D.; Sroka, Z. Antimicrobial and Anti-radical Activity of Extracts from Leaves of Various Cultivars of Pyrus communis and Pyrus pyrifolia. Biomolecules 2025, 15, 821. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Q.; Yang, L.; Ran, Y.; Hu, Q.; Hong, Y.; Tian, M. Phytochemical analysis, antioxidant, anti-inflammatory and enzyme inhibitory activities of bean pear (Pyrus calleryana fruit). Front. Plant Sci. 2025, 16, 1521990. [Google Scholar] [CrossRef]
- Erbil, N.; Murathan, Z.T.; Arslan, M.; Ilcim, A.; Sayin, B. Antimicrobial, antioxidant, and antimutagenic activities of five Turkish pear cultivars. Erwerbs-Obstbau 2018, 60, 203–209. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Kłopotowska, D.; Rutkowski, K.P.; Skorupińska, A.; Kruczyńska, D.E. Bioactive compounds and health-promoting properties of pear (Pyrus communis L.) fruits. Molecules 2020, 25, 4444. [Google Scholar] [CrossRef]
- Kırca, L.; Kırca, S.; Aygün, A. Organic acid, phenolic compound and antioxidant contents of fresh and dried fruits of pear (Pyrus communis L.) cultivars. Erwerbs-Obstbau 2023, 65, 677–691. [Google Scholar] [CrossRef]
- Wani, S.G.; Shafi, F.; Jabeen, A.; Malik, M.A. Physicochemical, antioxidant and antimicrobial properties of peel, pulp and seeds of different pear cultivars. Food Humanit. 2025, 4, 100521. [Google Scholar] [CrossRef]
- Demir, T.; Akpınar, Ö.; Kara, H.; Güngör, H. Nar (Punica granatum L.) Kabuğunun İn Vitro Antidiyabetik, Antienflamatuar, Sitotoksik, Antioksidan ve Antimikrobiyal Aktivitesi. Akademik Gıda 2019, 17, 61–71. [Google Scholar] [CrossRef]
- Ruiz-Alcaraz, A.J.; Baquero, L.; Pérez-Munar, P.M.; Oliva-Bolarín, A.; Sánchez-Martínez, M.A.; Ramos-Molina, B.; Moreno, D.A. In vitro study of the differential anti-inflammatory activity of dietary phytochemicals upon human macrophage-like cells as a previous step for dietary intervention. Int. J. Mol. Sci. 2024, 25, 10728. [Google Scholar] [CrossRef] [PubMed]
- Abaci, Z.; Sevindik, E.; Ayvaz, M. Comparative study of bioactive components in pear genotypes from Ardahan/Turkey. Biotechnol. Biotechnol. Equip. 2015, 30, 36–43. [Google Scholar] [CrossRef]
- Azzini, E.; Maiani, G.; Durazzo, A.; Foddai, M.S.; Intorre, F.; Venneria, E.; Forte, V.; Lucchetti, S.; Ambra, R.; Pastore, G.; et al. Giovanni Varieties (Pyrus communis L.): Antioxidant Properties and Phytochemical Characteristics. Oxidative Med. Cell. Longev. 2019, 2019, 6714103. [Google Scholar] [CrossRef]
- Parvin, P.; Gharaghani, A.; Khosravi, A.; Eshghi, S. Phenotypic characterization of Pyrus glabra Boiss. and P. syriaca Boiss.: Implications for conservation and utilization. Trees 2023, 37, 1537–1554. [Google Scholar] [CrossRef]
- Rana, J.C.; Chahota, R.K.; Sharma, V.; Rana, M.; Verma, N.; Verma, B. Genetic diversity and structure of Pyrus accessions of Indian Himalayan region based on morphological and SSR markers. Tree Genet. Genomes 2015, 11, 821. [Google Scholar] [CrossRef]
- Khadivi, A.; Mirheidari, F.; Moradi, Y.; Paryan, S. Morphological and pomological characterizations of Pyrus syriaca Boiss. germplasm. Sci. Hortic. 2020, 271, 109424. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Envirotyping for deciphering environmental impacts on crop plants. Theor. Appl. Genet. 2016, 129, 653–673. [Google Scholar] [CrossRef]
- Cooper, M.; Messina, C.D.; Podlich, D.; Totir, L.R.; Baumgarten, A.; Hausmann, N.J.; Graham, G. Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop Pasture Sci. 2014, 65, 311–336. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Longman: London, UK, 1996. [Google Scholar]
- Lynch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits; Sinauer Associates: Sunderland, MA, USA, 1998. [Google Scholar]
- Khadivi-Khub, A.; Anjam, K. Morphological characterization of Prunus scoparia using multivariate analysis. Plant Syst. Evol. 2014, 300, 1361–1372. [Google Scholar] [CrossRef]
- Altekin, H.; Demirbaş, N. Üreticilerin Dip Zeytin Hasat Kararı Üzerinde Etkili Olan Faktörlerin Belirlenmesi: İzmir İli Örneği. ÇOMÜ Ziraat Fak. Derg. 2021, 9, 229–236. [Google Scholar] [CrossRef]
- Montanari, S.; Postman, J.; Bassil, N.V.; Neale, D.B. Reconstruction of the largest pedigree network for pear cultivars and evaluation of the genetic diversity of the USDA-ARS national Pyrus collection. G3 2020, 10, 3285–3297. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Component Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
Genotypes | Fruit Size | Fruit Width | Fruit Shape | Fruit Weight | Seed Size | Seed Width | Seed Weight | Number of Seeds | Fruit Stalk Length | Friut Flesh Firmness |
---|---|---|---|---|---|---|---|---|---|---|
Acıpayam | 26.50 ± 3.87 fg | 32.07 ± 5.39 c–f | 0.84 ± 0.16 d–g | 11.62 ± 0.90 de | 4.95 ± 0.75 | 3.42 ± 0.52 b | 0.88 ± 0.14 | 6.04 ± 0.35 | 23.90 ± 7.85 cd | 12.41 ± 1.66 b–d |
Babadağ | 29.48 ± 1.61 d–g | 31.26 ± 3.82 c–f | 0.96 ± 0.15 b–f | 19.20 ± 3.88 b | 5.88 ± 0.96 | 4.06 ± 0.67 b | 0.85 ± 0.08 | 6.13 ± 0.43 | 25.03 ± 8.56 bc | 12.47 ± 1.87 a–d |
Baklan | 32.71 ± 1.62 cd | 32.03 ± 5.81 c–f | 1.05 ± 0.19 b–d | 12.40 ± 1.77 c–e | 5.87 ± 1.06 | 4.05 ± 0.73 b | 0.94 ± 0.14 | 5.88 ± 0.49 | 27.86 ± 6.57 a–c | 12.69 ± 1.17 a–c |
Beyağaç | 29.56 ± 1.56 d–f | 30.13 ± 4.33 f | 1.00 ± 0.15 b–f | 11.95 ± 2.43 e | 5.41 ± 0.80 | 6.24 ± 1.85 a | 0.88 ± 0.12 | 6.24 ± 0.52 | 36.44 ± 8.90 a | 10.68 ± 1.41 d–f |
Bozkurt | 33.15 ± 4.53 cd | 46.5 ± 8.53 a | 0.73 ± 0.13 fg | 20.08 ± 2.54 b | 5.18 ± 1.07 | 3.56 ± 0.77 b | 0.91 ± 0.10 | 6.00 ± 0.37 | 34.86 ± 8.08 ab | 14.41 ± 1.54 a |
Buldan | 38.17 ± 1.22 b | 37.52 ± 5.54 a–f | 1.04 ± 0.14 b–e | 17.74 ± 4.17 b–d | 5.41 ± 0.70 | 3.73 ± 0.48 b | 0.95 ± 0.14 | 6.02 ± 0.64 | 18.45 ± 3.04 c–e | 12.17 ± 0.73 b–e |
Çal | 40.21 ± 1.17 b | 39.43 ± 6.95 a–e | 1.05 ± 0.21 b–d | 18.52 ± 5.87 bc | 5.22 ± 0.75 | 3.60 ± 0.52 b | 0.86 ± 0.11 | 5.78 ± 0.33 | 27.88 ± 7.79 a–c | 10.31 ± 1.56 e–g |
Çameli | 31.21 ± 3.21 cd | 41.35 ± 6.32 ab | 0.78 ± 0.17 e–g | 19.98 ± 4.84 b | 5.22 ± 0.88 | 3.62 ± 0.60 b | 0.94 ± 0.14 | 5.96 ± 0.79 | 34.08 ± 3.35 ab | 9.13 ± 1.02 fg |
Çardak | 34.18 ± 2.04 c | 40.16 ± 6.34 a–d | 0.87 ± 0.15 c–f | 21.37 ± 3.18 ab | 5.00 ± 0.63 | 3.42 ± 0.42 b | 0.89 ± 0.16 | 6.04 ± 0.53 | 22.72 ± 6.02 c–e | 8.61 ± 0.94 g |
Çivril | 38.40 ± 1.86 b | 35.31 ± 7.13 b–f | 1.13 ± 0.27 bc | 20.08 ± 4.95 b | 5.20 ± 0.80 | 3.59 ± 0.55 b | 0.92 ± 0.11 | 5.86 ± 0.60 | 26.32 ± 7.87 bc | 8.82 ± 1.00 g |
Güney | 45.39 ± 1.35 a | 38.29 ± 7.62 a–f | 1.23 ± 0.26 ab | 19.15 ± 5.67 b | 4.94 ± 1.19 | 3.41 ± 0.82 b | 0.90 ± 0.12 | 6.18 ± 0.44 | 26.44 ± 6.88 bc | 12.77 ± 1.02 a–c |
Honaz | 31.06 ± 0.58 c–e | 40.01 ± 7.13 a–c | 0.80 ± 0.14 d–g | 26.94 ± 2.16 a | 5.33 ± 0.93 | 3.62 ± 0.67 b | 0.86 ± 0.12 | 6.12 ± 0.47 | 14.37 ± 3.02 de | 13.15 ± 1.77 ab |
Kale | 26.09 ± 3.41 g | 31.63 ± 4.95 ef | 0.84 ± 0.14 d–f | 17.63 ± 3.91 bc | 5.50 ± 0.87 | 3.62 ± 0.68 b | 0.81 ± 0.15 | 5.88 ± 0.64 | 23.93 ± 6.04 c | 10.93 ± 0.96 de |
Pamukkale | 41.82 ± 2.24 ab | 29.69 ± 5.26 f | 1.44 ± 0.23 a | 19.40 ± 6.16 b | 5.54 ± 0.57 | 3.82 ± 0.40 b | 0.98 ± 0.16 | 5.76 ± 0.62 | 12.52 ± 5.04 e | 13.22 ± 1.03 ab |
Sarayköy | 27.72 ± 3.81 e–g | 19.41 ± 2.08 g | 1.42 ± 0.06 a | 10.73 ± 1.23 e | 5.70 ± 0.76 | 3.86 ± 0.58 b | 0.90 ± 0.09 | 6.16 ± 0.45 | 27.28 ± 6.09 bc | 13.24 ± 0.72 ab |
Serinhisar | 33.99 ± 1.11 c | 30.82 ± 7.32 d–f | 1.16 ± 0.26 b | 18.37 ± 5.15 bc | 5.44 ± 0.88 | 3.75 ± 0.61 b | 0.84 ± 0.11 | 5.94 ± 0.90 | 22.41 ± 5.14 c–e | 11.29 ± 0.92 c–e |
Tavas | 21.73 ± 0.74 h | 35.97 ± 4.59 b–f | 0.61 ± 0.07 g | 20.01 ± 3.76 b | 5.67 ± 0.76 | 3.90 ± 0.53 b | 0.87 ± 0.14 | 5.94 ± 0.70 | 25.16 ± 6.52 c | 10.63 ± 0.69 ef |
HSD | 2.37 | 5.89 | 0.17 | 3.96 | 0.85 | 0.77 | 0.13 | 0.58 | 6.46 | 1.20 |
Descriptive statistics | ||||||||||
Minimum | 21.73 | 19.41 | 0.61 | 10.73 | 4.94 | 3.41 | 0.81 | 5.76 | 12.52 | 8.61 |
Maximum | 45.39 | 46.50 | 1.44 | 26.94 | 5.88 | 6.24 | 0.98 | 6.24 | 36.44 | 14.41 |
Mean | 33.02 | 34.80 | 1.00 | 17.95 | 5.38 | 3.84 | 0.89 | 6.00 | 25.27 | 11.58 |
StDev | 6.21 | 6.21 | 0.23 | 4.14 | 0.29 | 0.65 | 0.04 | 0.14 | 6.43 | 1.71 |
CV % | 18.82 | 17.84 | 23.31 | 23.08 | 5.47 | 16.93 | 4.88 | 2.33 | 25.43 | 14.74 |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | not significant | 0.0001 | not significant | not significant | 0.0001 | 0.0001 |
Genotypes | SSC | pH | TA | Vitamin C | Total Phenolic | Total Flavonoids | DPPH | FRAP | Total Sugar |
---|---|---|---|---|---|---|---|---|---|
Acıpayam | 11.38 ± 0.89 fg | 3.47 ± 0.17 c | 1.15 ± 0.08 a | 23.39 ± 4.99 b–f | 168.33 ± 5.61 j | 33.48 ± 4.63 d–f | 6.19 ± 0.64 e–g | 9.57 ± 0.95 e | 16.01 ± 2.23 bc |
Babadağ | 9.82 ± 0.64 fg | 4.39 ± 0.58 a–c | 0.83 ± 0.05 bc | 20.09 ± 1.04 d–f | 182.66 ± 4.27 j | 31.71 ± 4.48 d–h | 8.21 ± 0.63 b | 16.39 ± 2.94 a–d | 13.95 ± 2.49 cd |
Baklan | 16.70 ± 0.75 ab | 4.04 ± 0.26 bc | 0.90 ± 0.08 bc | 27.84 ± 5.43 a–c | 202.48 ± 5.88 h–j | 21.11 ± 7.19 h | 6.09 ± 0.86 f–h | 19.09 ± 2.39 a–c | 9.39 ± 1.05 de |
Beyağaç | 11.02 ± 1.88 fg | 4.87 ± 0.14 ab | 0.70 ± 0.02 c | 28.71 ± 6.88 ab | 230.17 ± 43.00 f–h | 41.38 ± 2.37 a–d | 7.21 ± 0.64 b–d | 17.79 ± 2.10 a–d | 17.16 ± 3.75 bc |
Bozkurt | 12.00 ± 1.56 ef | 4.02 ± 0.47 bc | 0.93 ± 0.14 a–c | 25.19 ± 2.99 a–e | 245.72 ± 77.20 d–h | 33.30 ± 3.38 d–g | 7.75 ± 0.79 bc | 12.90 ± 1.43 de | 16.27 ± 2.39 bc |
Buldan | 14.49 ± 2.22 b–e | 4.53 ± 0.87 ab | 0.85 ± 0.21 bc | 21.87 ± 4.06 c–f | 267.20 ± 6.37 d–f | 28.49 ± 2.43 e–h | 5.07 ± 0.71 h–j | 18.92 ± 2.86 a–c | 15.06 ± 3.02 bc |
Çal | 16.25 ± 1.84 a–c | 4.26 ± 0.62 a–c | 0.86 ± 0.16 bc | 19.91 ± 6.10 def | 288.48 ± 6.52 cd | 46.50 ± 2.53 a | 7.50 ± 0.90 bc | 14.49 ± 2.17 b–e | 8.32 ± 1.05 e |
Çameli | 9.24 ± 0.68 g | 4.22 ± 0.65 a–c | 0.89 ± 0.16 bc | 26.11 ± 2.09 a–d | 314.67 ± 10.80 bc | 22.25 ± 5.55 h | 4.92 ± 0.54 ij | 14.23 ± 1.75 c–e | 14.50 ± 2.25 c |
Çardak | 14.86 ± 2.39 a–d | 4.26 ± 0.76 a–c | 0.89 ± 0.21 bc | 17.94 ± 3.56 ef | 333.78 ± 8.19 ab | 22.03 ± 4.37 gh | 4.68 ± 0.33 j | 9.41 ± 0.80 e | 14.57 ± 2.02 bc |
Çivril | 17.30 ± 1.54 a | 4.18 ± 0.87 a–c | 0.94 ± 0.24 ab | 17.40 ± 4.69 f | 357.61 ± 6.99 a | 22.03 ± 3.53 h | 7.08 ± 0.62 b–f | 21.17 ± 2.23 a | 23.15 ± 5.52 a |
Güney | 15.46 ± 1.94 a–d | 4.74 ± 0.72 ab | 0.78 ± 0.14 bc | 20.90 ± 5.35 d–f | 188.18 ± 64.20 ij | 41.19 ± 3.48 a–d | 6.38 ± 0.67 d–g | 16.65 ± 1.42 a–d | 13.20 ± 3.21 cd |
Honaz | 13.79 ± 2.11 de | 5.08 ± 0.65 a | 0.71 ± 0.14 c | 23.37 ± 2.93 b–f | 191.65 ± 7.47 ij | 29.02 ± 4.56 e–h | 6.38 ± 0.57 d–g | 15.03 ± 2.68 b–d | 18.79 ± 1.82 ab |
Kale | 14.80 ± 2.03 b–d | 4.68 ± 0.68 ab | 0.80 ± 0.13 bc | 11.36 ± 1.98 g | 225.07 ± 17.00 g–i | 36.94 ± 13.20 b–e | 7.15 ± 0.79 c–e | 20.75 ± 8.74 a | 16.82 ± 3.61 bc |
Pamukkale | 17.24 ± 1.15 a | 4.27 ± 0.68 a–c | 0.87 ± 0.17 bc | 18.16 ± 5.42 ef | 245.24 ± 6.16 e–g | 23.25 ± 1.87 f–h | 10.63 ± 0.45 a | 14.64 ± 3.19 b–e | 14.45 ± 3.61 bc |
Sarayköy | 11.05 ± 1.03 fg | 4.68 ± 0.76 ab | 0.80 ± 0.15 bc | 25.58 ± 2.37 a–d | 267.81 ± 7.81 de | 34.54 ± 4.02 c–e | 5.93 ± 0.81 g–i | 19.80 ± 4.12 ab | 14.07 ± 2.98 c |
Serinhisar | 14.02 ± 1.82 c–e | 4.17 ± 0.67 a–c | 0.90 ± 0.20 bc | 19.02 ± 4.07 ef | 288.67 ± 6.37 cd | 44.45 ± 3.04 a–c | 4.59 ± 0.17 j | 17.58 ± 3.25 a–d | 7.43 ± 0.87 e |
Tavas | 9.29 ± 0.94 g | 4.74 ± 0.51 ab | 0.78 ± 0.13 bc | 29.90 ± 3.94 a | 329.28 ± 22.60 ab | 43.81 ± 12.00 ab | 6.27 ± 0.87 fg | 15.07 ± 2.23 c | 14.40 ± 3.30 c |
HSD | 1.60 | 0.62 | 0.15 | 4.27 | 26.52 | 6.64 | 0.69 | 3.53 | 2.96 |
Descriptive statistics | |||||||||
Minimum | 9.24 | 3.47 | 0.70 | 11.36 | 168.33 | 21.11 | 4.59 | 9.41 | 7.43 |
Maximum | 17.30 | 5.08 | 1.15 | 29.90 | 357.61 | 46.50 | 10.63 | 21.17 | 23.15 |
Mean | 13.45 | 4.39 | 0.86 | 22.16 | 254.53 | 32.68 | 6.59 | 16.09 | 14.56 |
StDev | 2.78 | 0.39 | 0.10 | 4.80 | 58.12 | 8.71 | 1.50 | 3.46 | 3.77 |
CoefVar % | 20.63 | 8.85 | 12.00 | 21.66 | 22.84 | 26.66 | 22.71 | 21.50 | 25.91 |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kırca, L.; Aygün, A. Phenotypic Diversity and Biochemical Properties of Pyrus elaeagnifolia Pall. Genotypes: A Comprehensive Study from Western Türkiye. Horticulturae 2025, 11, 934. https://doi.org/10.3390/horticulturae11080934
Kırca L, Aygün A. Phenotypic Diversity and Biochemical Properties of Pyrus elaeagnifolia Pall. Genotypes: A Comprehensive Study from Western Türkiye. Horticulturae. 2025; 11(8):934. https://doi.org/10.3390/horticulturae11080934
Chicago/Turabian StyleKırca, Levent, and Ahmet Aygün. 2025. "Phenotypic Diversity and Biochemical Properties of Pyrus elaeagnifolia Pall. Genotypes: A Comprehensive Study from Western Türkiye" Horticulturae 11, no. 8: 934. https://doi.org/10.3390/horticulturae11080934
APA StyleKırca, L., & Aygün, A. (2025). Phenotypic Diversity and Biochemical Properties of Pyrus elaeagnifolia Pall. Genotypes: A Comprehensive Study from Western Türkiye. Horticulturae, 11(8), 934. https://doi.org/10.3390/horticulturae11080934