Kiwifruit Peelability (Actinidia spp.): A Review
Abstract
1. Introduction
2. Survey Methodology
3. Research Evolution in Kiwifruit Peelability Studies
4. Genotypic Divergences in Kiwifruit Peelability
5. Quantitative Evaluation of Kiwifruit Peelability
6. Possible Mechanisms of Peelability in Kiwifruit
6.1. Speculative Mechanisms Underlying Cell Wall Polysaccharide Regulation
6.2. Putative Indirect Pathways Through the Phytohormone Signaling Network
7. Artificial Manipulation of Kiwifruit Peelability
7.1. Manual Peeling Benchmarking
7.2. Lye Peeling Optimization
7.3. Thermal Peeling
8. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, C.; Huang, W.; Wang, Z.; Li, L.; Li, D.; Zhang, Q.; Zhao, T.; Zhang, P. The breeding progress and development status of the kiwifruit industry in China. Acta Hortic. 2022, 1332, 445–454. [Google Scholar] [CrossRef]
- Ziv, C.; Fallik, E. Postharvest storage techniques and quality evaluation of fruits and vegetables for reducing food loss. Agronomy 2021, 11, 1133. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Ye, Z.; Liu, X.; Zhu, Y.; Yang, S.; Wang, X.; Liu, M.; Zhao, X. Ease of peeling and its relationship with cell wall polysaccharides in mandarin fruit. Acta Hortic. Sin. 2021, 48, 2336–2348. [Google Scholar] [CrossRef]
- Asadi, M.; Ghasemnezhad, M.; Bakhshipour, A.; Olfati, J.; Atak, A. Breeding of new kiwifruit (Actinidia chinensis) cultivars with yellow (golden) fleshed and superior characteristics. BMC Plant Biol. 2024, 24, 1045. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.F.; Lou, J.; Wang, Y.; Zou, S.; Huang, H. Kiwifruit in the omics age: Advances in genomics, breeding, and beyond. Plants 2024, 13, 2156. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Jiang, D.; Zhu, S.; Cao, L.; Liu, X.; Shen, W.; Zhao, W.; Zhao, X. Genetic diversity of the ease of peeling in mandarins. Sci. Hortic. 2021, 278, 109852. [Google Scholar] [CrossRef]
- Lu, X.M.; Yu, X.F.; Li, G.Q.; Qu, M.H.; Wang, H.; Liu, C.; Man, Y.P.; Jiang, X.H.; Li, M.Z.; Wang, J.; et al. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits. Plant Commun. 2024, 5, 100856. [Google Scholar] [CrossRef]
- Hallett, I.; Sutherland, P. Kiwifruit skins: The fruit’s natural packaging. Acta Hortic. 2007, 753, 89–96. [Google Scholar] [CrossRef]
- Atkinson, R.G.; Sharma, N.N.; Hallett, I.C.; Johnston, S.L.; Schröder, R. Actinidia eriantha: A parental species for breeding kiwifruit with novel peelability and health attributes. New Zealand J. For. Sci. 2009, 39, 207–216. [Google Scholar]
- Harker, F.R.; Hallett, I.C.; White, A.; Seal, A.G. Measurement of fruit peelability in the genus Actinidia. J. Texture Stud. 2011, 42, 237–246. [Google Scholar] [CrossRef]
- Huang, L.; Wu, M.; Zhong, W.; Tao, J.; Jia, H.; Huang, C. Study on fruit peeling characters of different kiwifruit varieties. J. Fruit Sci. 2024, 41, 2463–2471. [Google Scholar] [CrossRef]
- Tao, J.; Jia, H.; Wu, M.; Zhong, W.; Huang, Y.; Huang, L.; Xu, Y.; Huang, C. Integrated metabolome and transcriptome analysis reveals the mechanism related to the formation of peelability in Actinidia eriantha. Sci. Hortic. 2024, 330, 113072. [Google Scholar] [CrossRef]
- Mo, Q.; Li, J.; Jiang, Q.; Ye, K.; Gong, H.; Li, R.; Liang, M. A new easy-peeling kiwifruit cultivar ‘Guifei’. China Fruits 2016, 80–82. [Google Scholar]
- Zhang, H.; Yao, X.; Lu, L.; Gu, X.; Song, G.; Xie, M. Breeding of a kiwifruit cultivar Sweet White (Actinidia eriantha). J. Fruit Sci. 2023, 40, 400–403. [Google Scholar] [CrossRef]
- Liao, G.; Huang, C.; Jia, D.; Zhong, M.; Gao, H.; Xu, X. Research progress on germplasm resources of Actinidia eriantha. China Fruits 2024, 32–38. [Google Scholar] [CrossRef]
- Xu, X.; Liao, G.; Huang, C.; Jia, D.; Zhong, M.; Qu, X.; Liu, Q.; Gao, H. A novel sweet aromatic cultivar of Actinidia eriantha ‘Ganlü No. 1’. J. Fruit Sci. 2024, 41, 358–361. [Google Scholar] [CrossRef]
- Huang, C.; Xu, X.; Qu, X.; Zhong, M.; Lang, B.; Chen, C.; Xie, M.; Zhang, W. Wild easy-to-peel new elite line of Actinidia eriantha ‘YH-3’. South China Fruits 2015, 44, 103–104. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, M.; Xiao, J.; Zhou, L.; Song, G. Characterization of fruit development of the diploid kiwifruit, Actinidia eriantha ‘White’. J. Fruit Sci. 2015, 32, 238–246+350. [Google Scholar] [CrossRef]
- Goldberg, T.; Agra, H.; Ben-Arie, R. Non-destructive measurement of fruit firmness to predict the shelf-life of ‘Hayward’ kiwifruit. Sci. Hortic. 2019, 244, 339–342. [Google Scholar] [CrossRef]
- Zdunek, A.; Kozioł, A.; Pieczywek, P.M.; Cybulska, J. Evaluation of the nanostructure of pectin, hemicellulose and cellulose in the cell walls of pears of different texture and firmness. Food Bioprocess Technol. 2014, 7, 3525–3535. [Google Scholar] [CrossRef]
- Deng, H.; Wang, X.; Wang, Y.; Xiang, Y.; Chen, M.; Zhang, H.; Luo, X.; Xia, H.; Liang, D.; Lv, X.; et al. Dynamic changes in cell wall polysaccharides during fruit development and ripening of two contrasting loquat cultivars and associated molecular mechanisms. Foods 2023, 12, 309. [Google Scholar] [CrossRef]
- Niu, X.; Tao, Y.; Wang, Q.; Xu, M.; Zhang, F.; Xie, Y.; Xiao, H. Postharvest ripening-induced modification of cell wall polysaccharide affects plum phenolic bioavailability. Food Chem. 2025, 479, 143780. [Google Scholar] [CrossRef]
- Gao, H.; Wang, L.; Sun, C.; Huang, L. Research progress on postharvest fruit softening and pectin degradation in climacteric fruits. J. Fruit Sci. 2022, 39, 1922–1934. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, R.; Suo, J.; Ding, Y.; Tan, J.; Zhu, Q.; Ma, Y. Understanding quality differences between kiwifruit varieties during softening. Food Chem. 2024, 430, 136983. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Bi, J.; Wang, H.; Wang, M.; Ji, W. Effect of cell wall polysaccharides on the peelability in table grape berries. Front. Plant Sci. 2025, 16, 1605812. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Gao, Z.; Wang, X.; Mao, J.; Pan, L.; Gong, X.; Yao, D.; Zhong, H.; Huo, H. Identification of two postharvest ripening regulatory models in kiwifruit: Based on plant hormones, physiology, and transcriptome analysis. BMC Plant Biol. 2024, 24, 1121. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.; Hallett, I.C.; Wong, S.F.; Johnston, S.L.; O’Donoghue, E.M.; McAtee, P.A.; Seal, A.G.; Atkinson, R.G.; Schröder, R. Cell separation in kiwifruit without development of a specialised detachment zone. BMC Plant Biol. 2017, 17, 86. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, W.; Zhong, Y.; Xie, X.; Liu, H.; Huang, H.; Wang, Q.; Xiao, G. Involvement of branched RG-I pectin with hemicellulose in cell–cell adhesion of tomato during fruit softening. Food Chem. 2023, 413, 135574. [Google Scholar] [CrossRef]
- Yi, Z.; Sharif, R.; Gulzar, S.; Huang, Y.; Ning, T.; Zhan, H.; Meng, Y.; Xu, C. Changes in hemicellulose metabolism in banana peel during fruit development and ripening. Plant Physiol. Bioche. 2024, 215, 109025. [Google Scholar] [CrossRef]
- Radhika, J.; Bons, H.K. Dynamic changes in pectin composition, flesh firmness and oxidoreductase enzymes across different stages of fruit development in loquat cultivars. Appl. Fruit Sci. 2024, 66, 2393–2401. [Google Scholar] [CrossRef]
- Wang, D.; Yeats, T.H.; Uluisik, S.; Rose, J.K.C.; Seymour, G.B. Fruit softening: Revisiting the role of pectin. Trends Plant Sci. 2018, 23, 302–310. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Liu, X.; Ren, Y.; Jiang, D.; Shen, W.; Zhao, X.; Cao, L. Comparative transcriptomic profile of two mandarin varieties during maturation reveals pectinase regulating peelability. Sci. Hortic. 2024, 331, 113148. [Google Scholar] [CrossRef]
- Richardson, A.C.; Boldingh, H.L.; McAtee, P.A.; Gunaseelan, K.; Luo, Z.; Atkinson, R.G.; David, K.M.; Burdon, J.N.; Schaffer, R.J. Fruit development of the diploid kiwifruit, Actinidia chinensis “Hort16A”. BMC Plant Biol. 2011, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.H.; Shi, X.J.; Liu, X.M.; Srivastava, A.K.; Shi, X.J.; Zhang, Y.Q.; Hu, C.X.; Zhang, F.S. Calcium application regulates fruit cracking by cross-linking of fruit peel pectin during young fruit growth stage of citrus. Sci. Hortic. 2025, 340, 113922. [Google Scholar] [CrossRef]
- Zhang, A.; Hu, X.; Kuang, S.; Ge, H.; Yin, X.; Chen, K. Isolation, classification and transcription profiles of the Ethylene Response Factors (ERFs) in ripening kiwifruit. Sci. Hortic. 2016, 199, 209–215. [Google Scholar] [CrossRef]
- Jabbar, A.; East, A.R. Quantifying the ethylene induced softening and low temperature breakdown of ‘Hayward’ kiwifruit in storage. Postharvest Biol. Technol. 2016, 113, 87–94. [Google Scholar] [CrossRef]
- Huang, W.; Chen, M.; Zhao, T.; Han, F.; Zhang, Q.; Liu, X.; Jiang, C.; Zhong, C. Genome-wide identification and expression analysis of polygalacturonase gene family in Kiwifruit (Actinidia chinensis) during fruit softening. Plants 2020, 9, 327. [Google Scholar] [CrossRef]
- Lohani, S.; Trivedi, P.K.; Nath, P. Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: Effect of 1-MCP, ABA and IAA. Postharvest Biol. Technol. 2004, 31, 119–126. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, S.; Li, N.; Li, H.; Liu, Z.; Xu, D.; Mo, H. Transcriptome analysis unveils the molecular mechanisms of ethylene-induced ready-to-eat kiwifruit-picking ripening. Foods 2025, 14, 2026. [Google Scholar] [CrossRef]
- Huang, W.; Billing, D.; Cooney, J.; Wang, R.; Burdon, J. The role of ethylene and abscisic acid in kiwifruit ripening during postharvest dehydration. Postharvest Biol. Technol. 2021, 178, 111559. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, L.; Liu, L.; Chen, W.; Yang, Z.; Li, X.; Cao, S.; Shi, L. Inhibition of DNA methylation delays softening in harvested kiwifruit by inhibiting ethylene biosynthesis to delay the degradation of starch and cell wall polysaccharides. J. Stored Prod. Res. 2025, 114, 102718. [Google Scholar] [CrossRef]
- Yin, X.R.; Allan, A.C.; Chen, K.S.; Ferguson, I.B. Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol. 2010, 153, 1280–1292. [Google Scholar] [CrossRef]
- Yin, X.; Chen, K.; Allan, A.C.; Wu, R.; Zhang, B.; Lallu, N.; Ferguson, I.B. Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. J. Exp. Bot. 2008, 59, 2097–2108. [Google Scholar] [CrossRef]
- Fu, B.L.; Wang, W.Q.; Liu, X.F.; Duan, X.W.; Allan, A.C.; Grierson, D.; Yin, X.R. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. New Phytol. 2021, 232, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Yang, S.; Chai, L.; Wu, C.; Zhou, J.; Liu, Y.; Xue, Z. Abscisic acid and fruit ripening: Multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. Sci. Hortic. 2021, 281, 109999. [Google Scholar] [CrossRef]
- Chen, K.; Li, F.; Zhang, S.; Gavin, S.R. Role of abscisic acid and indole-3-acetic acid in kiwifruit ripening. Acta Hortic. Sin. 1999, 26, 81–86. [Google Scholar]
- Sorce, C.; Montanaro, G.; Bottega, S.; Spanò, C. Indole-3-acetic acid metabolism and growth in young kiwifruit berry. Plant Growth Regul. 2017, 82, 505–515. [Google Scholar] [CrossRef]
- Gan, Z.; Yuan, X.; Shan, N.; Wan, C.; Chen, C.; Zhu, L.; Xu, Y.; Kai, W.; Zhai, X.; Chen, J. AcERF1B and AcERF073 positively regulate indole-3-acetic acid degradation by activating AcGH3.1 transcription during postharvest kiwifruit ripening. J. Agric. Food Chem. 2021, 69, 13859–13870. [Google Scholar] [CrossRef]
- Gan, Z.; Fei, L.; Shan, N.; Fu, Y.; Chen, J. Identification and expression analysis of Gretchen Hagen 3 (GH3) in kiwifruit (Actinidia chinensis) during postharvest process. Plants 2019, 8, 473. [Google Scholar] [CrossRef]
- Guan, W.; Cao, M.; Chen, W.; Yang, Z.; Li, X.; Wang, L.; Shi, L. Indole-3-acetic acid treatment promotes postharvest kiwifruit softening by regulating starch and cell wall metabolism. Front. Plant Sci. 2024, 15, 1485678. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, Z.; Wang, Y.; Deng, L.; Wang, T.; Cao, D.; Liao, L.; Xiong, B.; Tu, M.; Wang, Z.; et al. Variety effect on peelability and mechanisms of action of late-ripening citrus fruits. Plants 2025, 14, 1349. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, M.; García-Quiroga, M.; Arbones-Maciñeira, E.; Vázquez-Odériz, M.L.; Romero-Rodríguez, M.A. Comparison of different peeling systems for kiwifruit (Actinidia deliciosa, cv Hayward). Int. J. Food Sci. Technol. 2014, 49, 107–113. [Google Scholar] [CrossRef]
- Guldas, M. Peeling and the physical and chemical properties of kiwi fruit. J. Food Process. Preserv. 2007, 27, 271–284. [Google Scholar] [CrossRef]
- Kaleoğlu, M.; Bayindirli, L.; Bayindirli, A. Lye peeling of ‘Tombul’ hazelnuts and effect of peeling on quality. Food Bioprod. Process. 2004, 82, 201–206. [Google Scholar] [CrossRef]
- Zhou, Y.; Vidyarthi, S.K.; Yang, X.; Duan, X.; Liu, Z.; Mujumdar, A.S.; Xiao, H. Conventional and novel peeling methods for fruits and vegetables: A review. Innov. Food Sci. Emerg. Technol. 2022, 77, 102961. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Kashaninejad, M.; Ziaiifar, A.M.; Ghorbani, M. Peeling of kiwifruit using infrared heating technology: A feasibility and optimization study. LWT 2019, 99, 128–137. [Google Scholar] [CrossRef]
- Gavahian, M.; Sastry, S.K. Ohmic-assisted peeling of fruits: Understanding the mechanisms involved, effective parameters, and prospective applications in the food industry. Trends Food Sci. Technol. 2020, 106, 345–354. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, Y.; Li, J.; Ye, K.; Liu, C.; Xia, L.; Gong, H.; Qi, B.; Gao, J.; Jiang, Q.; et al. Precision breeding strategies and challenges. Guihaia 2025, 45, 438–449. [Google Scholar] [CrossRef]
Peelability | Genotypes | Genus | Reference |
---|---|---|---|
Highly peelable | ‘Guifei’ | Actinidia longicarpa | [13] |
Easily peelable | ‘Ganlv 1’, ‘White’, ‘Sweet white’, ‘Ganlv 6’, ‘Ganmi 6’, ‘Ganlv2’, ‘G2’, ‘YH-3’ | Actinidia eriantha | [11,14,17,18] |
‘G3’, ‘G5’ | F1 hybrids of Actinidia deliciosa (♀) and Actinidia eriantha (♂) | [10] | |
Moderately peelable | ‘Jinfeng’(金丰) ‘Jinfeng’(金奉) | Actinidia chinensis var. chinensis | [11] |
Poor peelability | ‘G1’ | Actinidia eriantha | [10] |
‘Skelton’, ‘Hayward’, ‘Tomua’ | Actinidia deliciosa var. deliciosa | [8,10] | |
‘Guichang’, ‘Jinkui’, ‘Miliang 1’, ‘Hayward’ | Actinidia chinensis var. deliciosa | [8,9,11] | |
‘Hongyang’, ‘Donghong’, ‘Hongshi 2’, ‘Jinyuan’, ‘Lushanxiang’, ‘Jinyan’, ‘Jinguo’, ‘Wanding 1’, ‘Yunhai 1’, ‘Zaoxian’, ‘Jingkui’, ‘Kuimi’, ‘Cuiyu’, ‘Puyu’, ‘Hort16A’ | Actinidia chinensis var. chinensis | [10,11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, B.; Li, P.; Li, J.; Zha, M.; Wang, F. Kiwifruit Peelability (Actinidia spp.): A Review. Horticulturae 2025, 11, 927. https://doi.org/10.3390/horticulturae11080927
Qi B, Li P, Li J, Zha M, Wang F. Kiwifruit Peelability (Actinidia spp.): A Review. Horticulturae. 2025; 11(8):927. https://doi.org/10.3390/horticulturae11080927
Chicago/Turabian StyleQi, Beibei, Peng Li, Jiewei Li, Manrong Zha, and Faming Wang. 2025. "Kiwifruit Peelability (Actinidia spp.): A Review" Horticulturae 11, no. 8: 927. https://doi.org/10.3390/horticulturae11080927
APA StyleQi, B., Li, P., Li, J., Zha, M., & Wang, F. (2025). Kiwifruit Peelability (Actinidia spp.): A Review. Horticulturae, 11(8), 927. https://doi.org/10.3390/horticulturae11080927