Amaranth Microgreen Cultivation: Seeding Density, Substrate Type, Electrical Conductivity, and Application Interval of Nutrient Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site, Experimental Design, and Growth Conditions
2.2. Evaluated Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alloggia, F.P.; Bafumo, R.F.; Ramirez, D.A.; Maza, M.A.; Camargo, A.B. Brassicaceae microgreens: A novel and promissory source of sustainable bioactive compounds. Curr. Res. Food Sci. 2023, 6, 100480. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; Hong, J.C.; Pisani, C.; Petropoulos, S.A.; Bai, J.; Rosskopf, E.N. Yield performance, mineral profile, and nitrate content in a selection of seventeen microgreen species. Front. Plant Sci. 2023, 14, 1220691. [Google Scholar] [CrossRef] [PubMed]
- Partap, M.; Sharma, D.; Hn, D.; Thakur, M.; Verma, V.; Ujala; Bhargava, B. Microgreen: A tiny plant with superfood potential. J. Funct. Foods 2023, 107, 105697. [Google Scholar] [CrossRef]
- Bonato, A.; Lemos, G.R.; Callegaro, G.M.; Nagel, J.C.; Sommer, L.R. Substratos e qualidade de luz na produção de microverdes. Res. Soc. Dev. 2022, 11, e239111335448. [Google Scholar] [CrossRef]
- Li, T.; Lalk, G.T.; Arthur, J.D.; Johnson, M.H.; Bi, G. Shoot production and mineral nutrients of five microgreens as affected by hydroponic substrate type and post-emergent fertilization. Horticulturae 2021, 7, 129. [Google Scholar] [CrossRef]
- Balik, S.; Dasgan, H.Y.; Ikiz, B.; Gruda, N.S. The performance of growing-media-shaped microgreens: The growth, yield, and nutrient profiles of broccoli, red beet, and black radish. Horticulturae 2024, 10, 1289. [Google Scholar] [CrossRef]
- Li, T.; Arthur, J.D.; Bi, G.; White, S. Hydroponic fiber mats altered shoot growth and mineral nutrient composition of five herbal microgreens. Horticulturae 2024, 10, 1298. [Google Scholar] [CrossRef]
- Freitas, I.S.; Mello, S.C.; Nemali, K. Supplemental light quality affects optimal seeding density of microgreens. Urban Agric. Region Food Syst. 2024, 9, e20064. [Google Scholar] [CrossRef]
- Signore, A.; Somma, A.; Leoni, B.; Santamaria, P. Optimising sowing density for microgreens production in rapini, kale and cress. Horticulturae 2024, 10, 274. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Gaspari, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Nutrient supplementation configures the bioactive profile and production characteristics of three Brassica L. microgreens species grown in peat-based media. Agronomy 2021, 11, 346. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; El-Nakhel, C.; Graziani, G.; Kyriacou, M.C.; Rouphael, Y. The effects of nutrient solution feeding regime on yield, mineral profile, and phytochemical composition of spinach microgreens. Horticulturae 2021, 7, 162. [Google Scholar] [CrossRef]
- Li, T.; Arthur, J.D.; Bi, G. Shoot yield and mineral nutrient concentrations of six microgreens in the Brassicaceae family affected by fertigation rate. Horticulturae 2023, 9, 1217. [Google Scholar] [CrossRef]
- Rajan, P.; Lada, R.R.; MacDonald, M.T. Advancement in indoor vertical farming for microgreen production. Am. J. Plant Sci. 2019, 10, 1397–1408. [Google Scholar] [CrossRef]
- Barros, I.S.; Silva, M.G.; Souza, E.S.; Rodrigues, A.S.; Silva, T.I.; Gheyi, H.R.; Pereira, G.S.J.; Sacramento, L.S.; Andrade, A.S.; Oliveira, P.S.; et al. Densidade de semeio de microverdes de amaranto sob diferentes condutividades elétricas das soluções nutritivas. Water Resour. Irrig. Manag. 2025, 14, 14–29. [Google Scholar] [CrossRef]
- Yadav, L.P.; Koley, T.K.; Tripathi, A.; Singh, S. Antioxidant potentiality and mineral content of summer season leafy greens: Comparison at mature and microgreen stages using chemometric. Agric. Res. 2019, 8, 165–175. [Google Scholar] [CrossRef]
- Hamilton, A.N.; Fraser, A.M.; Gibson, K.E. Barriers to implementing risk management practices in microgreens growing operations in the United States: Thematic analysis of interviews and survey data. Food Control 2023, 152, 109836. [Google Scholar] [CrossRef]
- Pescarini, H.B.; Silva, V.G.; Mello, S.C.; Purquerio, L.F.V.; Sala, F.C.; Cesar, T.Q.Z. Updates on microgreens grown under artificial lighting: Scientific advances in the last two decades. Horticulturae 2023, 9, 864. [Google Scholar] [CrossRef]
- Dubey, S.; Harbourne, N.; Harty, M.; Hurley, D.; Elliott-Kingston, C. Microgreens production: Exploiting environmental and cultural factors for enhanced agronomical benefits. Plants 2024, 13, 2631. [Google Scholar] [CrossRef] [PubMed]
- Seth, T.; Mishra, G.P.; Chattopadhyay, A.; Roy, P.D.; Devi, M.; Sahu, A.; Sarangi, S.K.; Mhatre, C.S.; Lyngdoh, Y.A.; Chandra, V.; et al. Microgreens: Functional food for nutrition and dietary diversification. Plants 2025, 14, 526. [Google Scholar] [CrossRef] [PubMed]
- Eswaranpillai, U.; Murugesan, P.; Karuppiah, P. Assess the impact of cultivation substrates for growing sprouts and microgreens of selected four legumes and two grains and evaluation of its nutritional properties. Plant Sci. Today 2023, 10, 160–169. [Google Scholar] [CrossRef]
- Santos, J.R.; Lima, C.S.M.; Rosa, G.G. Diferentes substratos no cultivo de microverdes de rúcula (Eruca sativa Miller). Rev. Iberoam. Tecnol. Postcosecha 2022, 23, 66–73. [Google Scholar]
- Nagel, J.C.; Sommer, L.R.; Freitag, S.F.; Driemeier, D.S.; Heinzmann, N.; Valandro, G.B. Produção de microverdes de alface Deva em diferentes substratos. Rev. Soc. Cient. 2024, 7, 2507–2515. [Google Scholar] [CrossRef]
- Marta, A.E.; Stoica, F.; Ostaci, Ș.; Jităreanu, C.D. The antioxidant profile of some species of microgreens cultivated on hemp and coconut substrate under the action of a biostimulator based on humic acids. Horticulturae 2024, 10, 1238. [Google Scholar] [CrossRef]
- Negri, M.; Bulgari, R.; Santoro, P.; Ferrante, A. Evaluation of different growing substrates for microgreens production. Acta Hortic. 2021, 1305, 109–116. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A. Microgreen vegetables’ production can be optimized by combining the substrate and nutrient solution in a PFAL. Sci. Hortic. 2024, 333, 113277. [Google Scholar] [CrossRef]
- Santos, F.L.; Costa, E.S.; Lima, C.S.M. Diferentes substratos no desenvolvimento e na pós-colheita de microverdes de beterraba (Beta vulgaris L.). Rev. Iberoam. Tecnol. Postcosecha 2020, 21, 1–11. [Google Scholar]
- Bulgari, R.; Negri, M.; Santoro, P.; Ferrante, A. Quality evaluation of indoor-grown microgreens cultivated on three different substrates. Horticulturae 2021, 7, 96. [Google Scholar] [CrossRef]
- Wieth, A.R.; Pinheiro, W.D.; Duarte, T.S. Commercial substrates and nutrient concentrations in the production of arugula microgreens. Agron. Colomb. 2021, 39, 5–11. [Google Scholar] [CrossRef]
- Silva, M.G.; Sacramento, L.S.; Pereira, G.S.J.; Ribeiro, M.C.B.O.; Barros, I.S.; Gheyi, H.R. Rocket microgreen cultivation under seeding densities and nutrient solution concentrations. Water Resour. Irrig. Manag. 2024, 13, 60–71. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Llewellyn, D.; Ying, Q.; Zheng, Y. Intensity of sole-source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience 2019, 54, 1168–1174. [Google Scholar] [CrossRef]
- Li, T.; Lalk, G.T.; Bi, G. Fertilization and pre-sowing seed soaking affect yield and mineral nutrients of ten microgreen species. Horticulturae 2021, 7, 14. [Google Scholar] [CrossRef]
- Priti; Sangwan, S.; Kukreja, B.; Mishra, G.P.; Dikshit, H.K.; Singh, A.; Aski, M.; Kumar, A.; Taak, Y.; Stobdan, T.; et al. Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. PLoS ONE 2022, 17, e0268085. [Google Scholar] [CrossRef] [PubMed]
- Thuong, V.T.; Minh, H.G. Effects of growing substrates and seed density on yield and quality of radish (Raphanus sativus) microgreens. Res. Crops 2020, 21, 579–586. [Google Scholar] [CrossRef]
- Lerner, B.L.; Strassburger, A.S.; Schäfer, G. Cultivation of arugula microgreens: Seed densities and electrical conductivity of nutrient solution in two growing seasons. Bragantia 2024, 83, e20230183. [Google Scholar] [CrossRef]
- Ntsoane, M.L.L.; Manhivi, V.E.; Shoko, T.; Seke, F.; Maboko, M.M.; Sivakumar, D. The phytonutrient content and yield of Brassica microgreens grown in soilless media with different seed densities. Horticulturae 2023, 9, 1218. [Google Scholar] [CrossRef]
- Cecílio Filho, A.B.; Pindobeira, W.M.; Alves, T.N.; Ribera, L.M.; Medelo, M.J.Y. How does sowing density affect physiology, yield, and quality of red cabbage microgreens? Bragantia 2025, 84, e20240232. [Google Scholar] [CrossRef]
- Cowden, R.J.; Markussen, B.; Ghaley, B.B.; Henriksen, C.B. The effects of light spectrum and intensity, seeding density, and fertilization on biomass, morphology, and resource use efficiency in three species of Brassicaceae microgreens. Plants 2024, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Wieth, A.R.; Pinheiro, W.D.; Duarte, T.S. Purple cabbage microgreens grown in different substrates and nutritive solution concentrations. Rev. Caatinga 2019, 32, 976–985. [Google Scholar] [CrossRef]
- Santos, O.S. Elaboração de Solução Hidropônica Para Rúculas; Editora UFSM: Santa Maria, Brazil, 2010. [Google Scholar]
- Weber, C.F. Broccoli microgreens: A mineral-rich crop that can diversify food systems. Front. Nutr. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Tavan, M.; Wee, B.; Brodie, G.; Fuentes, S.; Pang, A.; Gupta, D. Optimizing sensor-based irrigation management in a soilless vertical farm for growing microgreens. Front. Sustain. Food Syst. 2021, 4, 622720. [Google Scholar] [CrossRef]
- ISLA Sementes LTDA. Amaranto Microverdes Asteca; Porto Alegre, Brazil. 2025. Available online: https://www.isla.com.br/amaranto-microverdes-asteca-microverdes-pct-longa-vid-500g-309-39 (accessed on 26 June 2025).
- Domínguez-Domínguez, A.; Herrera-Corredor, J.A.; Argumedo-Macias, A.; Ramírez-Rivera, E.J.; López-Aranda, E.; Romero-Cruz, A.; López-Espíndola, M. Amaranth microgreens as a potential ingredient for healthy salads: Sensory liking and purchase intent. Agroproductividad 2021, 14, 47–51. [Google Scholar] [CrossRef]
- Meas, S.; Luengwilai, K.; Thongket, T. Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Sci. Hortic. 2020, 265, 109204. [Google Scholar] [CrossRef]
- Johnson, S.A.; Prenni, J.E.; Heuberger, A.L.; Isweiri, H.; Chaparro, J.M.; Newman, S.E.; Uchanski, M.E.; Omerigic, H.M.; Michell, K.A.; Bunning, M.; et al. Comprehensive evaluation of metabolites and minerals in 6 microgreen species and the influence of maturity. Curr. Dev. Nutr. 2021, 5, nzaa180. [Google Scholar] [CrossRef] [PubMed]
- Ampim, P.A.Y.; Obeng, E.; Gonzalez, E.O.; Weerasooriya, A.; Osuji, G.O.; Myers, D.J., Sr. The response of Egyptian spinach and vegetable amaranth microgreens to different light regimes. Sci. J. Biol. Life Sci. 2021, 1, 1–5. [Google Scholar] [CrossRef]
- Arya, K.S.; Kutty, M.S.; Pradeepkumar, T. Microgreens of tropical edible-seed species, an economical source of phytonutrients- insights into nutrient content, growth environment and shelf life. Future Foods 2023, 8, 100262. [Google Scholar] [CrossRef]
- Gunjal, M.; Singh, J.; Kaur, J.; Kaur, S.; Nanda, V.; Mehta, C.M.; Bhadariya, V.; Rasane, P. Comparative analysis of morphological, nutritional, and bioactive properties of selected microgreens in alternative growing medium. S. Afr. J. Bot. 2024, 165, 188–201. [Google Scholar] [CrossRef]
- Gudžinskaitė, I.; Laužikė, K.; Pukalskas, A.; Samuoliene, G. Light modulation of photosynthate accumulation in microgreens grown in a controlled environment during storage. Horticulturae 2025, 11, 176. [Google Scholar] [CrossRef]
- Gunjal, M.; Singh, J.; Kaur, S.; Nanda, V.; Ullah, R.; Iqbal, Z.; Ercisli, S.; Rasane, P. Assessment of bioactive compounds, antioxidant properties and morphological parameters in selected microgreens cultivated in soilless media. Sci. Rep. 2024, 14, 23605. [Google Scholar] [CrossRef] [PubMed]
- Furlani, P.R.; Silveira, L.C.P.; Bolonhezi, D.; Faquin, V. Cultivo Hidropônico de Plantas; Instituto Agronômico: Campinas, Brazil, 1999; 52p. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Balik, S.; Daşgan, H.Y. The effect of seed sowing density on growth parameters in six different microgreen. KSU J. Agric. Nat. 2025, 28, 661–671. [Google Scholar] [CrossRef]
- Senevirathne, G.I.; Gama-Arachchige, N.S.; Karunaratne, A.M. Germination, harvesting stage, antioxidant activity and consumer acceptance of ten microgreens. Ceylon J. Sci. 2019, 48, 91–96. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Renna, M.; Crupi, P.; Lovece, A.; Corbo, F.; Santamaria, P. Yield and quality characteristics of Brassica microgreens as affected by the NH4:NO3 molar ratio and strength of the nutrient solution. Foods 2020, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- Moraru, P.I.; Rusu, T.; Mintas, O.S. Trial protocol for evaluating platforms for growing microgreens in hydroponic conditions. Foods 2022, 11, 1327. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | SH | SFM | SFMY | SDM | SDMY | WCS | WP |
---|---|---|---|---|---|---|---|
At 2-h intervals | |||||||
EC | ** | ** | ** | ** | ** | ** | ** |
ST | ** | ** | ** | ** | ** | ** | ** |
SD | ns | ** | ** | ** | ** | ** | ** |
EC × ST | ns | * | * | ns | ns | ns | ** |
EC × SD | ns | ** | ** | ** | ** | ns | ** |
ST × SD | ns | ** | ** | ** | ** | ns | ns |
EC × ST × SD | ns | * | * | ns | ns | ns | ns |
CVplot (%) | 28.19 | 30.46 | 30.32 | 22.42 | 22.56 | 2.52 | 27.70 |
CVsubplot (%) | 9.59 | 21.47 | 21.50 | 14.94 | 14.94 | 1.66 | 23.97 |
At 4-h intervals | |||||||
EC | ** | ** | ** | ** | ** | ns | ** |
ST | ** | ** | ** | ** | ** | ** | ** |
SD | ns | ** | ** | ** | ** | ** | ** |
EC × ST | ns | ** | ** | ns | ns | ** | ns |
EC × SD | ns | ** | ** | ** | ** | ** | ** |
ST × SD | ns | ** | ** | ** | ** | ** | * |
EC × ST × SD | ns | ** | ** | * | * | ** | ** |
CVplot (%) | 11.06 | 12.68 | 12.81 | 7.86 | 7.83 | 0.56 | 25.33 |
CVsubplot (%) | 12.87 | 20.65 | 20.66 | 17.28 | 17.31 | 1.46 | 20.00 |
EC (dS m−1) | ST | Seeding Density (g m−2) | Equation | (R2) # | |||
---|---|---|---|---|---|---|---|
25 | 50 | 75 | 100 | or Mean | |||
SFM (g tray−1) | |||||||
0.3 | CF | 4.10 bA | 9.55 cA | 10.94 bA | 10.71 cA | SFM = −3.5751 + 0.3687**SD − 0.0023*SD2 | 99.05 |
PF | 2.57 aA | 4.50 bB | 4.33 bB | 4.92 bB | SFM = mean = 4.08 | – | |
1.0 | CF | 9.32 aA | 21.22 aA | 23.54 aA | 22.30 aA | SFM = −7.6423 + 0.8221**SD − 0.0052**SD2 | 98.60 |
PF | 6.42 aA | 11.18 aB | 15.36 aB | 9.88 aB | SFM = −5.7216 + 0.5701**SD − 0.0041**SD2 | 89.96 | |
2.0 | CF | 8.89 aA | 15.61 bA | 26.51 aA | 15.76 bA | SFM = −13.0251 + 0.9995**SD − 0.0070**SD2 | 79.10 |
PF | 5.94 aA | 14.55 aA | 15.05 aB | 9.65 aB | SFM = −9.1315 + 0.7473**SD − 0.0056**SD2 | 99.56 | |
SFMY (kg m−2) | |||||||
0.3 | CF | 0.20 bA | 0.47 cA | 0.55 bA | 0.53 cA | SFMY = −0.1819 + 0.0186**SD − 0.0001*SD2 | 99.24 |
PF | 0.13 aA | 0.22 bB | 0.21 bB | 0.24 bB | SFMY = mean = 0.200 | – | |
1.0 | CF | 0.46 aA | 1.06 aA | 1.17 aA | 1.11 aA | SFMY = −0.3912 + 0.0413**SD − 0.0003**SD2 | 98.58 |
PF | 0.32 aA | 0.56 aB | 0.76 abB | 0.49 aB | SFMY = −0.2912 + 0.0286**SD − 0.0002**SD2 | 90.27 | |
2.0 | CF | 0.44 aA | 0.78 bA | 1.32 aA | 0.78 bA | SFMY = −0.6437 + 0.0497**SD − 0.0003**SD2 | 78.89 |
PF | 0.30 aA | 0.72 aA | 0.75 aB | 0.48 aB | SFMY = −0.4500 + 0.0370**SD − 0.0003**SD2 | 99.64 |
EC (dS m−1) | ST | Seeding Density (g m−2) | Equation | (R2) # | |||
---|---|---|---|---|---|---|---|
25 | 50 | 75 | 100 | or Mean | |||
SFM (g tray−1) | |||||||
0.3 | CF | 3.41 bA | 10.52 bA | 13.62 bA | 11.84 cA | SFM = −8.3504 + 0.5577**SD − 0.0035**SD2 | 99.93 |
PF | 2.80 bA | 4.44 bB | 6.35 bB | 5.56 bB | SFM = mean = 4.79 | – | |
1.0 | CF | 9.28 aA | 20.94 aA | 17.73 aA | 25.63 aA | SFM = 6.9370 + 0.1833**SD | 73.78 |
PF | 7.09 aA | 6.69 bB | 10.06 abB | 8.15 bB | SFM = mean = 8.00 | – | |
2.0 | CF | 9.75 aA | 22.49 aA | 15.57 abA | 15.90 bA | SFM = mean = 15.93 | – |
PF | 3.90 abB | 12.55 aB | 12.01 aB | 16.19 aA | SFM = 2.0865 + 0.1452**SD | 81.82 | |
SFMY (kg m−2) | |||||||
0.3 | CF | 0.17 bA | 0.52 bA | 0.68 bA | 0.59 cA | SFMY = −0.4119 + 0.0277**SD − 0.0002**SD2 | 99.94 |
PF | 0.14 bA | 0.22 bB | 0.32 bB | 0.28 bB | SFMY = mean = 0.240 | – | |
1.0 | CF | 0.46 aA | 1.04 aA | 0.88 aA | 1.28 aA | SFMY = 0.3425 + 0.0092**SD | 73.87 |
PF | 0.35 aA | 0.33 bB | 0.50 abB | 0.41 bB | SFMY = mean = 0.397 | – | |
2.0 | CF | 0.48 aA | 1.12 aA | 0.78 abA | 0.79 bA | SFMY = mean = 0.792 | – |
PF | 0.20 abB | 0.62 aB | 0.60 aB | 0.81 aA | SFMY = 0.1037 + 0.0072**SD | 82.02 | |
SDM (g tray−1) | |||||||
0.3 | CF | 0.29 bA | 0.72 bA | 0.97 aA | 0.94 bA | SDM = −0.3862 + 0.0315**SD − 0.0002**SD2 | 99.73 |
PF | 0.22 bA | 0.39 bB | 0.51 bB | 0.41 cB | SDM = mean = 0.38 | – | |
1.0 | CF | 0.55 aA | 1.23 aA | 1.19 aA | 1.65 aA | SDM = 0.3425 + 0.0130**SD | 86.50 |
PF | 0.51 aA | 0.59 bB | 0.91 aB | 0.91 bB | SDM = 0.3537 + 0.0061**SD | 86.37 | |
2.0 | CF | 0.57 aA | 1.29 aA | 1.15 aA | 1.70 aA | SDM = 0.3625 + 0.0130**SD | 80.57 |
PF | 0.30 abB | 0.93 aB | 1.01 aA | 1.21 aB | SDM = −0.3756 + 0.0328**SD − 0.0002**SD2 | 95.08 | |
SDMY (g m−2) | |||||||
0.3 | CF | 14.77 bA | 35.61 bA | 48.52 aA | 46.95 bA | SDMY = −18.9100 + 1.5581**SD − 0.0090**SD2 | 99.70 |
PF | 11.07 bA | 19.26 bB | 25.61 bB | 20.52 cB | SDMY = mean = 19.11 | – | |
1.0 | CF | 27.67 aA | 61.09 aA | 59.49 aA | 82.14 aA | SDMY = 17.1475 + 0.6472**SD | 86.49 |
PF | 25.69 aA | 29.35 bB | 45.48 aB | 45.40 bB | SDMY = 17.6625 + 0.3011**SD | 86.39 | |
2.0 | CF | 28.11 aA | 64.17 aA | 57.13 aA | 84.39 aA | SDMY = 18.0062 + 0.6471**SD | 80.40 |
PF | 15.01 abB | 46.53 aB | 50.30 aA | 60.07 aB | SDMY = −18.9350 + 1.6430**SD − 0.0087**SD2 | 95.00 | |
WCS (%) | |||||||
0.3 | CF | 90.75 bA | 93.18 aA | 92.68 aA | 91.83 aA | WCS = 87.3269 + 0.1749**SD − 0.0013**SD2 | 90.18 |
PF | 91.85 aA | 90.90 aB | 91.81 aA | 92.60 aA | WCS = mean = 91.79 | – | |
1.0 | CF | 93.99 aA | 94.10 aA | 93.16 aA | 93.55 aA | WCS = mean = 93.70 | – |
PF | 92.66 aA | 91.21 aB | 90.85 aB | 88.62 bB | WCS = 93.9600 − 0.0500**SD | 93.06 | |
2.0 | CF | 94.19 aA | 94.26 aA | 92.46 aA | 89.27 bB | WCS = 96.6825 − 0.0662**SD | 83.68 |
PF | 92.21 aB | 92.50 aA | 91.40 aA | 92.38 aA | WCS = mean = 92.12 | – | |
WP (L kg−1) | |||||||
0.3 | CF | 209.17 aA | 60.83 aB | 48.21 aB | 52.17 aB | WP = 403.8781 − 9.5410**SD + 0.0609**SD2 | 96.10 |
PF | 209.46 aA | 130.49 aA | 80.72 aA | 96.82 aA | WP = 345.1275 − 6.3040**SD + 0.0380**SD2 | 99.32 | |
1.0 | CF | 63.03 bA | 24.60 bB | 29.90 aB | 22.15 bB | WP = 102.6031 − 2.0032*SD + 0.0123*SD2 | 85.15 |
PF | 75.26 cA | 83.63 bA | 71.07 abA | 75.11 aA | WP = mean = 76.27 | – | |
2.0 | CF | 60.36 bB | 26.34 bB | 41.72 aA | 37.22 abA | WP = mean = 41.41 | – |
PF | 152.99 bA | 53.31 cA | 49.67 bA | 39.28 bA | WP = 271.6037 − 5.8430**SD + 0.0357**SD2 | 93.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.G.d.; Gheyi, H.R.; Barros, I.d.S.; Souza, E.d.S.; Rodrigues, A.d.S.; Silva, T.I.d.; Sacramento, L.S.; Pereira, G.S.d.J. Amaranth Microgreen Cultivation: Seeding Density, Substrate Type, Electrical Conductivity, and Application Interval of Nutrient Solutions. Horticulturae 2025, 11, 870. https://doi.org/10.3390/horticulturae11080870
Silva MGd, Gheyi HR, Barros IdS, Souza EdS, Rodrigues AdS, Silva TId, Sacramento LS, Pereira GSdJ. Amaranth Microgreen Cultivation: Seeding Density, Substrate Type, Electrical Conductivity, and Application Interval of Nutrient Solutions. Horticulturae. 2025; 11(8):870. https://doi.org/10.3390/horticulturae11080870
Chicago/Turabian StyleSilva, Mairton Gomes da, Hans Raj Gheyi, Izaiana dos Santos Barros, Edna de Souza Souza, Andressa dos Santos Rodrigues, Toshik Iarley da Silva, Luan Silva Sacramento, and Glaucia Silva de Jesus Pereira. 2025. "Amaranth Microgreen Cultivation: Seeding Density, Substrate Type, Electrical Conductivity, and Application Interval of Nutrient Solutions" Horticulturae 11, no. 8: 870. https://doi.org/10.3390/horticulturae11080870
APA StyleSilva, M. G. d., Gheyi, H. R., Barros, I. d. S., Souza, E. d. S., Rodrigues, A. d. S., Silva, T. I. d., Sacramento, L. S., & Pereira, G. S. d. J. (2025). Amaranth Microgreen Cultivation: Seeding Density, Substrate Type, Electrical Conductivity, and Application Interval of Nutrient Solutions. Horticulturae, 11(8), 870. https://doi.org/10.3390/horticulturae11080870