A High-Efficiency Transient Expression System Reveals That CjMYB5 Positively Regulates Anthocyanin Biosynthesis in Camellia japonica
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. RNA Extraction, Gene Cloning, and Plasmid Construction
2.3. Sequence Alignment and Phylogenetic Analysis
2.4. Preparation and Infiltration of the Agrobacterium Culture
2.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.6. Quantitative Analysis of Total Anthocyanin and Proanthocyanin Contents
2.7. Bimolecular Fluorescent Complementation (BiFC) Assay
2.8. Dual-Luciferase Reporter Assay
2.9. Statistical Analysis
3. Results
3.1. Effects of Genotype and Flower Developmental Stage on Transient Overexpression
3.2. Optimizing the Experimental Conditions for Petals at the Flower Bud Stage
3.3. CjMYB5 Encodes an R2R3-MYB Transcription Factor
3.4. Transient Transformation of CjMYB5 Promotes Proanthocyanin and Anthocyanin Accumulation in Camellia Petals
3.5. CjMYB5 Interacts with CjGL3 to Activate DFR Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wang, S.Y.; Liu, X.; Wang, R.M.; Chen, W.J.; Suo, J.W.; Yan, J.W.; Wu, J.S. Agrobacterium-mediated transient expression in Torreya grandis cones: A simple and rapid tool for gene expression and functional gene assay. Sci. Hortic. 2024, 338, 113664. [Google Scholar] [CrossRef]
- Norkunas, K.; Harding, R.; Dale, J.; Dugdale, B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 2018, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qiu, L.; Zhang, Y.; Wang, Y.; Fu, C.; Dai, S.; Sun, M. A high-efficiency transient expression system mediated by Agrobacterium tumefaciens in Spinacia oleracea leaves. Plant Methods 2024, 20, 100. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yue, M.; Liu, Y.; Zhang, N.; Lin, Y.; Zhang, Y.; Wang, Y.; Li, M.; Luo, Y.; Zhang, Y.; et al. A novel R2R3-MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria × ananassa). Plant Biotechnol. J. 2023, 21, 1140–1158. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, Y.C.; Yu, S.; Geng, L.F.; Lin, S.; Ouyang, L.; Jiang, X.Q. RcbHLH59-RcPRs module enhances salinity stress tolerance by balancing Na+/K+ through callose deposition in rose (Rosa chinensis). Hortic. Res. 2023, 10, uhac291. [Google Scholar] [CrossRef] [PubMed]
- An, J.P.; Zhang, X.W.; You, C.X.; Bi, S.Q.; Wang, X.F.; Hao, Y.J. MdWRKY40 promotes wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergoes MdBT2-mediated degradation. New Phytol. 2019, 224, 380–395. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Fang, C.X.; Liu, Y.T.; Wang, Y.T.; Xue, L.L.; Shi, J.X.; Ren, T.F.; Zhang, J.W.; Bao, M.Z.; Zhang, J.; et al. Construction of Transient Transformation System of Petals in Prunus mume. Acta Hortic. Sin. 2025, 54, 4. [Google Scholar]
- Pan, J.J.; Zhang, D.M.; Meng, J.; Gao, S.N.; Zhu, K.J.; Liu, J.W.; Li, G.H. Optimization and Validation of PpPDS Gene Silencing Induced by Prunus Necrotic Ring Spot Virus in Prunus persica. Acta Hortic. Sin. 2023, 50, 1587–1600. [Google Scholar]
- Yasmin, A.; Debener, T. Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell Tissue Organ. Plant Cell Tissue Organ Cult. 2010, 102, 245–250. [Google Scholar] [CrossRef]
- Meng, N.; Liu, Y.L.; Dou, X.X.; Liu, H.L.; Li, F.Y. Establishment of a transient transformation system for petals of Phalaenopsis. Northwest J. Bot. 2018, 38, 1017–1023. (In Chinese) [Google Scholar]
- Fan, M.; Zhang, Y.; Yang, M.; Wu, S.; Yin, H.; Li, J.; Li, X. Transcriptomic and Chemical Analyses Reveal the Hub Regulators of Flower Color Variation from Camellia japonica Bud Sport. Horticulturae 2022, 8, 129. [Google Scholar] [CrossRef]
- Hu, Z.; Fan, Z.; Li, S.; Wang, M.; Huang, M.; Ma, X.; Liu, W.; Wang, Y.; Yu, Y.; Li, Y.; et al. Genomics insights into flowering and floral pattern formation: Regional duplication and seasonal pattern of gene expression in Camellia. BMC Biol. 2024, 22, 50. [Google Scholar] [PubMed]
- Fan, M.; Yang, K.; Zhou, R.; Liu, Q.; Guo, X.; Sun, Y. Temporal transcriptome profiling reveals candidate genes involved in cold acclimation of Camellia japonica (Naidong). Plant Physiol. Biochem. 2021, 167, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Li, X.; Zhang, Y.; Wu, S.; Song, Z.; Yin, H.; Liu, W.; Fan, Z.; Li, J. Floral organ transcriptome in Camellia sasanqua provided insight into stamen petaloid. BMC Plant Biol. 2022, 22, 474. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Li, X.; Zhang, Y.; Yang, M.; Wu, S.; Yin, H.; Liu, W.; Fan, Z.; Li, J. Novel insight into anthocyanin metabolism and molecular characterization of its key regulators in Camellia sasanqua. Plant Mol. Biol. 2023, 111, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhang, R.; Jiang, S.; Wang, H.; Ming, F. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Hortic. Res. 2023, 10, uhad080. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wang, D.; Fu, J.; Zhang, Z.; Qin, Y.; Hu, G.; Zhao, J. Agrobacterium rhizogenes-mediated hairy root transformation as an efficient system for gene function analysis in Litchi chinensis. Plant Methods 2021, 17, 103. [Google Scholar] [CrossRef]
- Wang, X.C.; Wu, J.; Guan, M.L.; Zhao, C.H.; Geng, P.; Zhao, Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J. 2020, 101, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, N.; Liu, J.; Qu, C.; Wang, Y.; Jiang, S.; Lu, N.; Wang, D.; Zhang, Z.; Chen, X. The molecular mechanism under lying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Mol. Biol. 2017, 94, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Huang, K.; Zheng, G.; Hou, H.; Wang, P.; Jiang, H.; Zhao, X.; Li, M.; Zhang, S.; Liu, Y.; et al. CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis. Plant Sci. 2018, 270, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Tang, X.; Song, M.; Guo, Y.; Liu, L.; Xue, H.; Dai, H.; Zhang, Z. Functional identification of MdMYB5 involved in secondary cell wall formation in apple. Fruit Res. 2021, 1, 6. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Liu, X.; Ma, H.P.; Liu, X.H.; Huang, Y.; Lu, X.; Cheng, Y.W. R2R3-MYB transcription factor CjMYB114 interacts with CjbHLH1 to jointly regulate anthocyanins in Camellia japonica. L ‘Fendan’. Sci. Hortic. 2024, 328, 112897. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutierrez, S.; Silla-Martınez, J.M.; Gabaldon, T. TRIMAL: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Wang, S.; Xie, J.; Tan, P.; Han, L. Discontinuous low temperature stress and plant growth regulators during the germination period promote roots growth in alfalfa (Medicago sativa L.). Plant Physiol. Biochem. 2023, 197, 107624. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Kopperud, K.; Chakrabarty, R.; Banerjee, R.; Brooks, R.; Goodin, M.M. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J. 2009, 59, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Zhao, M.; Leavitt, J.M.; Lloyd, A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008, 53, 814–827. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Baek, K.; Park, C.M. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep. 2009, 28, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zuo, Q.; Sadeghnezhad, E.; Zheng, T.; Chen, X.; Dong, T.; Fang, J. HDAC19 recruits ERF4 to the MYB5a promoter and diminishes anthocyanin accumulation during grape ripening. Plant J. 2023, 113, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dong, Y.; Li, D.; Shi, S.; Zhao, N.; Liao, J.; Liu, Y.; Chen, H. Eggplant transcription factor SmMYB5 integrates jasmonate and light signaling during anthocyanin biosynthesis. Plant Physiol. 2024, 194, 1139–1165. [Google Scholar] [CrossRef] [PubMed]
- Deluc, L.; Bogs, J.; Walker, A.R.; Ferrier, T.; Decendit, A.; Merillon, J.M.; Robinson, S.P.; Barrieu, F. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol. 2008, 147, 2041–2053. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Jiang, H.; Wu, S.; Song, Z.; Zhang, Y.; Li, X.; Wang, Y. A High-Efficiency Transient Expression System Reveals That CjMYB5 Positively Regulates Anthocyanin Biosynthesis in Camellia japonica. Horticulturae 2025, 11, 839. https://doi.org/10.3390/horticulturae11070839
Fan M, Jiang H, Wu S, Song Z, Zhang Y, Li X, Wang Y. A High-Efficiency Transient Expression System Reveals That CjMYB5 Positively Regulates Anthocyanin Biosynthesis in Camellia japonica. Horticulturae. 2025; 11(7):839. https://doi.org/10.3390/horticulturae11070839
Chicago/Turabian StyleFan, Menglong, Hong Jiang, Si Wu, Zhixin Song, Ying Zhang, Xinlei Li, and Yan Wang. 2025. "A High-Efficiency Transient Expression System Reveals That CjMYB5 Positively Regulates Anthocyanin Biosynthesis in Camellia japonica" Horticulturae 11, no. 7: 839. https://doi.org/10.3390/horticulturae11070839
APA StyleFan, M., Jiang, H., Wu, S., Song, Z., Zhang, Y., Li, X., & Wang, Y. (2025). A High-Efficiency Transient Expression System Reveals That CjMYB5 Positively Regulates Anthocyanin Biosynthesis in Camellia japonica. Horticulturae, 11(7), 839. https://doi.org/10.3390/horticulturae11070839