Principal Component Analysis and Cluster Analysis of Hydroponic Adaptation Potential in Different Pakchoi (Brassica campestris ssp. Chinensis) Parent Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Environment
2.2. Agronomic Characteristic Measurement
2.3. Nutrition Content
2.4. Statistical Analysis
3. Results
3.1. Agronomic Characteristics
3.2. Nutritional Quality
3.3. Principal Component Analysis (PCA)
3.4. Cluster Analysis
4. Discussion
4.1. Genetic Diversity and Breeding Potential of Pakchoi Germplasm Resources
4.2. Evaluation and Analysis of Agronomic Traits in Pakchoi Germplasm
4.3. Evaluation and Analysis of Nutritional Quality in Pakchoi Germplasm
4.4. Comprehensive Application of Multivariate Statistical Tools in Germplasm Resource Assessment
4.5. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, X.; Li, Y.; Liu, T. Advances in genetic breeding and molecular biology of non-heading Chinese cabbage. J. Nanjing Agric. Univ. 2022, 45, 864–873. [Google Scholar]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zuo, J.; Xu, D.; Gao, L.; Wang, Q.; Jiang, A. Low intensity white light-emitting diodes (LED) application to delay senescence and maintain quality of postharvest pakchoi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). Sci. Hortic. 2020, 262, 109060. [Google Scholar] [CrossRef]
- Selma, M.V.; Luna, M.C.; Martínez-Sánchez, A.; Tudela, J.A.; Beltrán, D.; Baixauli, C.; Gil, M.I. Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biol. Technol. 2012, 63, 16–24. [Google Scholar] [CrossRef]
- Fussy, A.; Papenbrock, J. An overview of soil and soilless cultivation techniques—Chances, challenges and the neglected question of sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Chiomento, J.L.T.; Lima Júnior, E.P.; D’Agostini, M.; De Nardi, F.S.; Trentin, T.d.S.; Dornelles, A.G.; Huzar-Novakowiski, J.; Calvete, E.O. Horticultural potential of nine strawberry cultivars by greenhouse production in Brazil: A view through multivariate analysis. Sci. Hortic. 2021, 279, 109738. [Google Scholar] [CrossRef]
- Hanson, P.; Yang, R.Y.; Chang, L.C.; Ledesma, L.; Ledesma, D. Contents of carotenoids, ascorbic acid, minerals and total glucosinolates in leafy brassica pakchoi (Brassica rapa L. chinensis) as affected by season and variety. J. Sci. Food Agric. 2009, 89, 906–914. [Google Scholar] [CrossRef]
- Huang, Z. Detection and Analyses of Plant Type Related Genes in Non-Heading Chinese Cabbage; Nanjing Agricultutal University: Nanjing, China, 2013. [Google Scholar]
- Li, J.; Abbas, K.; Wang, W.; Gong, B.; Wang, L.; Hou, S.; Xia, H.; Wu, X.; Chen, L.; Gao, H. Drought tolerance evaluation and verification of fifty pakchoi (Brassica rapa ssp. chinensis) varieties under water deficit condition. Agronomy 2023, 13, 2087. [Google Scholar] [CrossRef]
- Zhao, M.; Han, R.; Wang, Z.; Ren, Y. Diversity of agronomic characters of 20 pakchoi varieties in introduction experiment. J. South. Agric. 2020, 51, 1960–1969. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Z.; Gerendás, J.; Zimmermann, N. Glucosinolates in Chinese Brassica campestris vegetables: Chinese cabbage, purple cai-tai, choysum, pakchoi, and turnip. HortScience 2008, 43, 571–574. [Google Scholar] [CrossRef]
- Ariza, M.; Reboredo-Rodríguez, P.; Mazzoni, L.; Forbes-Hernández, T.; Giampieri, F.; Afrin, S.; Gasparrini, M.; Soria, C.; Martínez-Ferri, E.; Battino, M.; et al. Strawberry achenes are an important source of bioactive compounds for human health. Int. J. Mol. Sci. 2016, 17, 1103. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, C.; Xu, Z.; Liu, X.; Han, X. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J. Agric. Sci. 2012, 4, 262–273. [Google Scholar] [CrossRef]
- Qi, Y.; Jiang, F.; Zhou, R.; Wu, Y.; Hou, X.; Li, J.; Lin, W.; Wu, Z. Effects of reduced nitrogen with bio-organic fertilizer on soil properties, yield and quality of non-heading Chinese cabbage. Agronomy 2021, 11, 2196. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, X.; Jiang, T.; Cai, S.; Han, Y. Analysis of mineral elements and amino acids in 6 lines of hydroponic green cabbages. J. Beijing Univ. Agric. 2023, 37, 37–42. [Google Scholar] [CrossRef]
- Wang, L.P.; Xiang, C.P.; Wang, Y.H. Studies on the nitrate content of different pak-choi genotypes. Acta Hortic. Sin. 2004, 31, 43–46. [Google Scholar]
- Li, G.; Tan, J.; Chen, H.; Lu, M.; Zhang, Y.; Li, T.; Ye, Y.; Zhang, H. Comparison of nutrional quality of different varieties of Chinese cabbage. Guangdong Agric. Sci. 2016, 43, 26–32. [Google Scholar] [CrossRef]
- Donde, R.; Kumar, J.; Gouda, G.; Gupta, M.K.; Mukherjee, M.; Baksh, S.Y.; Mahadani, P.; Sahoo, K.K.; Behera, L.; Dash, S.K. Assessment of genetic diversity of drought tolerant and susceptible rice genotypes using microsatellite markers. Rice Sci. 2019, 26, 239–247. [Google Scholar] [CrossRef]
- Jaeger, A.; Banks, D. Cluster analysis: A modern statistical review. WIREs Comput. Stat. 2022, 15, e1597. [Google Scholar] [CrossRef]
- Yin, L.; Zhao, J. Resources evaluation of transplanted non-heading Chinese cabbage varieties for autumn-winter cultivation in Jiangsu. Acta Agric. Shanghai 2023, 39, 21–27. [Google Scholar] [CrossRef]
- Hong, C.; Zhao, J.; Cheng, C.; Zheng, W.; Geng, S.; Du, H.; Zhang, X. Comprehensive evaluation of agronomic traits of pepper germplasm resources. China Veg. 2024, 33–41. [Google Scholar] [CrossRef]
- Han, Z.; Jiang, B. A study on comprehensive evaluation of the processing tomato varieties multiple traits. Sci. Agric. Sin. 2014, 47, 357–365. [Google Scholar] [CrossRef]
- Wan, S.; Song, F.; Hao, J.; Zhang, X.; Li, H.; Shao, Y.; Zhao, A. Genetic diversity of agronomic traits in 271 pea germplasm resources. J. Plant Genet. Resour. 2017, 18, 10–18. [Google Scholar]
- Kuang, L.; Wang, Z.; Zhang, J.; Li, H.; Xu, G.; Li, J. Factor analysis and cluster analysis of mineral elements contents in different blueberry cultivars. J. Food Compos. Anal. 2022, 109, 104507. [Google Scholar] [CrossRef]
- Li, H. Principles and Techniques of Plant Physiological and Biochemical Experiments; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Pelletier, O. Vitamin C, (L-ascorbic and dehydro-L-ascorbic acids). In Methods of Vitamin Assay; Augustin, J., Klein, B.P., Becker, D.A., Venugopa, l.P.B., Eds.; Wiley: New York, NY, USA, 1985; pp. 303–347. [Google Scholar]
- Dreywood, R. Qualitative test for carbohydrate material. Ind. Eng. Chem. Anal. Ed. 1946, 18, 499–500. [Google Scholar] [CrossRef]
- AOAC International. Official Method 942.15: Acidity (Titratable) of Fruit Products. In Official Methods of Analysis of AOAC International; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Hu, H.; Wang, J.; Hu, T.; Wang, W.; Wei, Q.; Bao, C. Phenotypic diversity of non-heading Chinese cabbage germplasm resources in Zhejiang province. Int. J. Hortic. 2020, 10, 19–27. [Google Scholar] [CrossRef]
- Xie, X.; Zheng, X.; Lin, F.; Shao, G. Evaluation of 46 non-heading Chinese cabbage germplasm resources. Acta Agric. Jiangxi 2018, 30, 16–20. [Google Scholar] [CrossRef]
- Lai, J.; Huang, L.; Wei, S.; Dai, S.; Zhang, Q.; Li, Q.; Liu, J.; Ye, P. Yield per plant and main agronomic traits of non-heading Chinese cabbage: Grey relational degree analysis. Chin. Agric. Sci. Bull. 2019, 35, 36–41. [Google Scholar]
- Sun, L.; Zhao, F.; Li, Z.; Wang, G.; Wu, S. Genetic analysis and correlation analysis on agronomic traits of twenty-two Chinese cabbage. North. Hortic. 2014, 1–4. [Google Scholar]
- Zhang, C. Studies on Identification and Evaluation of Characteristic of some Regional Headless Chinese Cabbage Germplasm; Zhejiang University: Hangzhou, China, 2018. [Google Scholar]
- Xu, J.; Zhao, X. The changing trend of Chinese cabbage variety market demand. China Veg. 2005, 39–40. [Google Scholar]
- Zhang, X. Diagnosis Model of Hydroponic Lettuce Deficiency based on Machine Learning; Northwest A&F University: Yangling, China, 2022. [Google Scholar]
- Hou, X. Advances in breeding of non-heading Chinese cabbage. J. Nanjing Agric. Univ. 2003, 26, 111–115. [Google Scholar]
- Xie, F.; Zha, J.; Tang, H.; Xu, Y.; Liu, X.; Wan, Z. Combining ability and heterosis analysis for mineral elements by using cytoplasmic male-sterile systems in non-heading Chinese cabbage (Brassica rapa). Crop Pasture Sci. 2018, 69, 296. [Google Scholar] [CrossRef]
- Zeng, G.; Cao, S. Analysis of genetic effects of some nutrient quality characters in non-heading Chinese cabbage. Acta Agric. 1997, 24, 43–47. [Google Scholar]
- Yu, J.; Li, P.; Tu, S.; Feng, N.; Chang, L.; Niu, Q. Identification of heat-resistant varieties of non-headed Chinese cabbage and discovery of heat-resistant physiological mechanisms. Horticulturae 2023, 9, 619. [Google Scholar] [CrossRef]
- Nie, S.; Peng, L.; Wang, X.; Ji, L. Genetic diversity of agronomic traits in chickpea (Cicer arietinum L.) germplasm resources. J. Plant Genet. Resour. 2015, 16, 64–70. [Google Scholar]
- Yang, R. Analysis of linear and non-linear genotype × environment interaction. Front. Genet. 2014, 5, 227. [Google Scholar] [CrossRef]
- Kozlov, K.; Singh, A.; Berger, J.; Bishop-von Wettberg, E.; Kahraman, A.; Aydogan, A.; Cook, D.; Nuzhdin, S.; Samsonova, M. Non-linear regression models for time to flowering in wild chickpea combine genetic and climatic factors. BMC Plant Biol. 2019, 19, 94. [Google Scholar] [CrossRef]
- Huang, K.; Jahani, M.; Gouzy, J.; Legendre, A.; Carrere, S.; Lázaro-Guevara, J.M.; Segovia, E.G.G.; Todesco, M.; Mayjonade, B.; Rodde, N.; et al. The genomics of linkage drag in inbred lines of sunflower. Proc. Natl. Acad. Sci. USA 2023, 120, e2205783119. [Google Scholar] [CrossRef]
- Cooper, M.; Eeuwijk, F.A.v.; Hammer, G.L.; Podlich, D.W.; Messina, C. Modeling QTL for complex traits: Detection and context for plant breeding. Curr. Opin. Plant Biol. 2009, 12, 231–240. [Google Scholar] [CrossRef]
- Pikaard, C.S.; Mittelsten Scheid, O. Epigenetic Regulation in Plants. Cold Spring Harb. Perspect. Biol. 2014, 6, a019315. [Google Scholar] [CrossRef]
- Wang, Q. Research on Prediction Modol of Heterosis of Brassica napus L.; Southwest University: Chongqing, China, 2024. [Google Scholar]
Mineral Element | Large Element (mmol·L−1) | Trace Element (μmol·L−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NO3−-N | NH4+-N | P | K | Ca | Mg | S | Fe | B | Mn | Zn | Cu | Mo | |
Concentration | 15.8 | 2.3 | 1.2 | 5.0 | 5.5 | 1.0 | 1.7 | 95.0 | 11.6 | 9.5 | 0.8 | 0.3 | 0.1 |
Assign Values | Interveinal Chlorosis | Girdling | Compactness of Internode | Leaf Shape | Leaf Color | Blade Flatness | Petiole Shape | Petiole Color | General Impression |
---|---|---|---|---|---|---|---|---|---|
1 | none | none | incompact | ovate | light green | wrinkled | flat | light green | ordinary |
2 | slight | slight | compact | oval | green | moderate | spoon shape | green | good |
3 | serious | good | very compact | long elliptical | dark green | open and flat | – | – | excellent |
No. | Plant Height (cm) | Crown Diameter (cm) | Maximum Leaf Length (cm) | Maximum Leaf Width (cm) | Product of Length and Width in Maximum Leaf (cm2) | Petiole Length of Maximum Leaf (cm) | Projected Petiole Area of Maximum Leaf (cm2) | |
P1 | 20.23 ab | 24.73 a | 12.97 ab | 8.93 ab | 116.69 ab | 7.33 a | 11.39 ab | |
P2 | 17.87 bcde | 21.73 abc | 11.10 cde | 6.87 defg | 76.56 defg | 5.13 bcde | 8.85 bcde | |
P3 | 16.50 def | 18.83 cd | 10.83 cdef | 7.50 bcde | 81.38 def | 4.10 de | 7.15 def | |
P4 | 19.40 abc | 25.00 a | 11.57 bcde | 7.27 cdef | 82.09 def | 5.33 bcde | 8.14 cdef | |
P5 | 16.07 ef | 25.13 a | 9.93 efg | 7.33 cde | 72.78 defgh | 5.20 bcde | 7.80 cdef | |
P6 | 16.73 cde | 25.13 a | 12.63 abc | 9.23 a | 116.01 ab | 5.13 bcde | 10.46 abc | |
P7 | 18.17 abcde | 24.83 a | 12.10 abcd | 8.03 abcd | 96.90 bcd | 6.10 abc | 9.94 abcd | |
P8 | 17.60 bcde | 23.47 ab | 13.10 ab | 8.97 ab | 118.65 ab | 5.27 bcde | 9.35 abcd | |
P9 | 16.10 ef | 25.03 a | 10.53 def | 6.03 efg | 64.12 fgh | 5.57 bcd | 8.63 bcdef | |
P10 | 19.10 abcd | 24.00 ab | 12.53 abc | 8.90 ab | 110.83 abc | 5.13 bcde | 9.04 bcde | |
P11 | 18.77 abcde | 24.70 a | 12.67 abc | 8.57 abc | 108.55 abc | 4.80 cde | 8.63 bcdef | |
P12 | 17.77 bcde | 25.67 a | 11.50 bcde | 6.30 efg | 73.72 defgh | 4.57 cde | 7.91 cdef | |
P13 | 20.10 ab | 22.43 abc | 11.67 bcde | 7.33 cde | 85.50 cdef | 4.37 de | 8.03 cdef | |
P14 | 16.17 ef | 22.00 abc | 10.83 cdef | 6.37 efg | 69.12 efgh | 7.44 a | 10.65 abc | |
P15 | 19.00 abcd | 21.77 abc | 11.90 abcd | 6.70 defg | 79.89 def | 7.22 a | 10.25 abc | |
P16 | 14.03 fg | 15.97 d | 8.40 g | 5.67 g | 47.57 h | 5.04 bcde | 6.96 def | |
P17 | 16.03 ef | 19.23 cd | 10.40 def | 6.93 defg | 72.31 defgh | 5.37 bcde | 6.17 ef | |
P18 | 19.20 abcd | 24.03 ab | 12.67 abc | 7.37 cde | 93.19 bcde | 6.07 abc | 11.49 ab | |
P19 | 20.83 a | 23.77 ab | 13.67 a | 9.10 a | 124.84 a | 6.39 ab | 12.25 a | |
P20 | 12.17 g | 20.30 bc | 9.30 fg | 5.73 fg | 53.28 gh | 3.89 e | 5.67 f | |
CV (%) | 13.75 | 13.27 | 13.44 | 17.82 | 28.64 | 21.78 | 24.28 | |
Genetic diversity index (H’) | 1.80 | 1.54 | 1.83 | 1.66 | 1.89 | 1.72 | 1.89 | |
No. | Petiole Weight (g) | Shoot Fresh Mass (g) | Root Fresh Mass (g) | Shoot Dry Mass (g) | Root Dry Mass (mg) | Petiole-to-Shoot Weight Ratio (%) | Shoot Dry Matter Rate (%) | Root-to-Shoot Ratio (%) |
P1 | 25.15 bcde | 42.24 abc | 1.70 bcde | 2.35 a | 186.67 bcde | 59.50 defg | 5.57 bcd | 7.94 efghi |
P2 | 17.60 fgh | 27.58 efgh | 1.11 efgh | 1.47 c | 151.00 def | 63.75 bc | 5.35 bcdef | 10.31 bcd |
P3 | 21.78 defg | 33.52 cdefg | 1.75 bcd | 1.61 bc | 206.33 abc | 64.98 b | 4.80 f | 12.81 a |
P4 | 19.86 defg | 36.46 bcde | 1.34 cdefg | 1.83 abc | 177.33 bcdef | 54.08 hi | 5.02 def | 9.71 cde |
P5 | 16.80 gh | 30.42 defgh | 1.55 bcdef | 1.62 bc | 156.00 def | 55.18 hi | 5.33 bcdef | 9.62 cdef |
P6 | 29.49 bc | 46.68 ab | 1.87 abcd | 2.33 a | 193.67 bcd | 63.31 bcd | 4.98 ef | 8.30 defghi |
P7 | 21.74 defg | 36.59 bcde | 1.78 abcd | 1.82 abc | 144.00 efg | 59.54 defg | 4.99 ef | 7.97 efghi |
P8 | 24.29 bcde | 43.89 abc | 1.59 bcdef | 2.18 ab | 149.33 defg | 55.70 ghi | 4.97 ef | 6.87 hi |
P9 | 21.24 defg | 35.36 cdef | 1.59 bcdef | 1.85 abc | 134.00 fg | 60.04 cdef | 5.23 cdef | 7.23 ghi |
P10 | 23.81 cdef | 41.60 bc | 2.34 a | 2.36 a | 211.00 ab | 57.21 fgh | 5.67 bc | 9.10 cdefg |
P11 | 23.82 cdef | 43.74 abc | 1.70 bcde | 2.27 a | 141.00 efg | 54.46 hi | 5.20 cdef | 6.20 i |
P12 | 18.88 efgh | 35.55 cdef | 2.07 ab | 1.90 abc | 161.00 cdef | 53.03 i | 5.37 bcde | 8.56 cdefgh |
P13 | 20.75 defg | 33.01 cdefg | 1.01 fgh | 1.60 bc | 156.67 def | 62.78 bcd | 4.85 ef | 9.77 bcde |
P14 | 20.78 defg | 33.73 cdefg | 1.13 efgh | 1.83 abc | 165.00 cdef | 61.48 bcde | 5.40 bcde | 9.24 cdefg |
P15 | 25.58 bcd | 41.01 bcd | 1.74 bcd | 2.13 ab | 151.33 def | 62.59 bcd | 5.12 cdef | 7.28 ghi |
P16 | 12.75 h | 21.92 h | 0.96 gh | 1.38 c | 105.00 g | 58.02 efgh | 6.32 a | 7.62 fghi |
P17 | 15.24 gh | 24.43 gh | 0.69 h | 1.42 c | 104.67 g | 62.34 bcd | 5.83 b | 7.35 ghi |
P18 | 30.42 b | 46.72 ab | 1.89 abc | 2.31 a | 238.67 a | 65.08 b | 4.93 ef | 10.45 bc |
P19 | 37.97 a | 52.24 a | 1.29 defg | 2.17 ab | 167.00 bcdef | 72.75 a | 4.14 g | 7.78 efghi |
P20 | 15.24 gh | 25.23 fgh | 1.15 efgh | 1.30 c | 152.33 def | 60.37 cdef | 5.20 cdef | 11.66 ab |
CV (%) | 29.01 | 25.38 | 31.84 | 23.22 | 23.40 | 8.27 | 9.56 | 21.26 |
Genetic diversity index (H’) | 1.78 | 1.83 | 1.87 | 1.67 | 1.72 | 1.69 | 1.69 | 1.80 |
NO. | Interveinal Chlorosis | Girdling | Compactness of Internode | Leaf Shape | Blade Flatness | Leaf Color | Petiole Shape | Petiole Color | General Impression |
---|---|---|---|---|---|---|---|---|---|
P1 | 2 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 1 |
P2 | 2 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 1 |
P3 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 |
P4 | 1 | 2 | 2 | 1 | 3 | 3 | 1 | 1 | 1 |
P5 | 2 | 2 | 3 | 1 | 3 | 2 | 1 | 1 | 1 |
P6 | 1 | 3 | 2 | 2 | 2 | 3 | 2 | 2 | 2 |
P7 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 2 |
P8 | 1 | 1 | 2 | 1 | 3 | 3 | 1 | 2 | 2 |
P9 | 2 | 1 | 2 | 1 | 3 | 2 | 1 | 2 | 1 |
P10 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 1 | 1 |
P11 | 2 | 2 | 1 | 2 | 3 | 2 | 2 | 1 | 2 |
P12 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 1 |
P13 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 |
P14 | 1 | 1 | 1 | 3 | 3 | 2 | 1 | 1 | 2 |
P15 | 2 | 1 | 1 | 3 | 3 | 2 | 1 | 1 | 1 |
P16 | 1 | 2 | 1 | 1 | 3 | 3 | 1 | 2 | 1 |
P17 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 1 | 1 |
P18 | 2 | 3 | 1 | 3 | 3 | 1 | 2 | 1 | 2 |
P19 | 1 | 3 | 1 | 2 | 2 | 2 | 2 | 1 | 3 |
P20 | 2 | 2 | 1 | 2 | 3 | 3 | 1 | 1 | 1 |
No. | Soluble Protein (mg·g−1) | Vitamin C (μg·g−1) | Amino Acid (mg·g−1) | Cellulose (mg·g−1) | Soluble Sugar (mg·g−1) | Acid Content (mg·g−1) | Sugar–Acid Ratio |
P1 | 16.94 cde | 143.94 a | 2.52 a | 8.44 kl | 7.49 fg | 2.28 gh | 3.30 d |
P2 | 19.24 b | 88.81 fg | 2.42 a | 9.32 ghi | 10.83 b | 2.81 d | 3.85 c |
P3 | 17.65 cd | 90.57 f | 1.71 de | 7.87 l | 7.15 gh | 2.62 e | 2.73 ef |
P4 | 15.57 ef | 67.99 ij | 1.53 fg | 8.80 ijk | 7.45 g | 2.26 h | 3.30 d |
P5 | 13.51 ghi | 56.44 j | 1.59 efg | 10.85 d | 11.29 a | 2.48 f | 4.55 a |
P6 | 14.05 gh | 83.61 g | 1.63 ef | 10.68 de | 6.13 ij | 2.16 h | 2.83 ef |
P7 | 22.39 a | 96.94 e | 1.47 gh | 6.64 m | 8.41 e | 2.44 f | 3.45 d |
P8 | 12.07 ij | 100.91 de | 1.16 jkl | 10.17 ef | 5.78 j | 3.17 b | 1.82 h |
P9 | 10.60 k | 74.03 h | 1.03 l | 10.21 ef | 5.28 k | 2.16 h | 2.44 g |
P10 | 16.34 de | 84.42 g | 1.38 hi | 8.63 jk | 10.24 c | 2.39 fg | 4.28 b |
P11 | 14.87 fg | 106.20 cd | 1.20 jk | 12.48 bc | 7.82 f | 2.73 de | 2.87 e |
P12 | 15.68 ef | 68.52 hi | 1.05 l | 12.28 c | 6.83 h | 2.86 cd | 2.39 g |
P13 | 19.09 b | 109.43 c | 1.88 c | 8.52 jk | 10.90 b | 2.62 e | 4.17 b |
P14 | 18.30 bc | 142.54 a | 1.53 fg | 9.52 gh | 10.22 c | 3.73 a | 2.74 ef |
P15 | 14.15 gh | 91.03 f | 1.15 jkl | 9.10 hij | 7.23 g | 2.97 c | 2.44 g |
P16 | 13.27 hi | 130.51 b | 1.49 gh | 12.90 b | 7.31 g | 2.74 de | 2.67 f |
P17 | 13.04 hij | 130.86 b | 2.25 b | 9.88 fg | 7.49 fg | 2.19 h | 3.43 d |
P18 | 12.15 ij | 101.45 de | 1.11 kl | 13.53 a | 5.87 j | 2.16 h | 2.72 ef |
P19 | 11.76 jk | 109.30 c | 1.28 ij | 7.88 l | 9.82 d | 2.16 h | 4.54 a |
P20 | 12.76 hij | 110.91 c | 1.79 cd | 8.21 kl | 6.43 i | 2.73 de | 2.36 g |
CV (%) | 20.15 | 24.34 | 27.94 | 18.84 | 23.27 | 15.66 | 24.80 |
Genetic diversity index(H’) | 1.86 | 1.81 | 1.84 | 2.01 | 1.73 | 1.79 | 1.83 |
No. | P (mg·kg−1) | K (mg·kg−1) | Ca (mg·kg−1) | Mg (mg·kg−1) | Na (mg·kg−1) | ||
P1 | 6.39 g | 58.40 j | 31.68 c | 5.58 c | 7.41 g | ||
P2 | 6.79 ef | 62.20 h | 30.99 d | 5.52 c | 6.36 j | ||
P3 | 8.18 b | 71.52 c | 28.46 f | 5.21 e | 6.59 ij | ||
P4 | 7.37 d | 75.07 b | 24.22 k | 4.48 ij | 6.80 hi | ||
P5 | 6.68 f | 69.07 de | 23.92 k | 4.51 i | 7.46 fg | ||
P6 | 6.33 g | 77.15 a | 21.12 l | 3.75 m | 6.54 ij | ||
P7 | 6.17 h | 71.47 c | 23.89 k | 4.14 k | 7.71 ef | ||
P8 | 7.56 c | 70.09 d | 28.73 f | 4.92 g | 8.63 ab | ||
P9 | 5.79 i | 73.99 b | 20.60 m | 3.99 l | 7.93 de | ||
P10 | 6.90 e | 63.44 fgh | 23.82 k | 4.42 j | 8.02 d | ||
P11 | 6.30 h | 64.00 f | 27.46 fg | 4.87 g | 8.68 a | ||
P12 | 6.80 ef | 63.56 fg | 25.84 j | 4.93 g | 8.39 bc | ||
P13 | 7.63 c | 72.63 c | 26.48 i | 5.11 f | 6.59 ij | ||
P14 | 7.24 d | 63.75 fg | 35.25 b | 6.46 b | 5.00 l | ||
P15 | 6.42 g | 68.07 e | 26.83 hi | 4.87 g | 4.56 m | ||
P16 | 7.61 c | 60.04 i | 25.77 j | 5.23 e | 7.44 fg | ||
P17 | 8.40 a | 57.77 j | 36.71 a | 6.76 a | 8.17 cd | ||
P18 | 7.53 c | 68.84 de | 29.71 e | 5.34 d | 7.02 h | ||
P19 | 6.93 e | 71.78 c | 27.18 gh | 4.64 h | 5.80 k | ||
P20 | 5.72 i | 62.57 gh | 25.84 j | 5.23 e | 4.18 n | ||
CV (%) | 10.56 | 8.42 | 15.04 | 14.61 | 18.46 | ||
Genetic diversity index(H’) | 1.84 | 1.77 | 1.95 | 1.82 | 1.80 |
Element | F1 | F2 |
---|---|---|
Plant height | 0.966 | 0 |
Crown diameter | 0.958 | −0.173 |
Maximum leaf length | 0.931 | 0.119 |
Maximum leaf width | 0.917 | −0.233 |
Product of length and width in maximum leaf | 0.892 | −0.164 |
Projected petiole area of maximum leaf | 0.836 | −0.221 |
Petiole weight | 0.825 | −0.164 |
Shoot fresh mass | 0.786 | −0.253 |
Root fresh mass | 0.692 | 0.282 |
Shoot dry mass | 0.634 | 0.501 |
Root dry mass | 0.649 | 0.682 |
Eigenvalue | 7.653 | 1.061 |
Variance (%) | 52.775% | 26.444% |
Cumulative variance (%) | 52.775% | 79.219% |
No. | F1 Score | F2 Score | Comprehensive Score | Rank |
---|---|---|---|---|
P1 | 3.21 | 0.21 | 2.84 | 2 |
P2 | −1.68 | −0.43 | −1.52 | 17 |
P3 | −1.12 | 1.20 | −0.84 | 13 |
P4 | 0.17 | 0.20 | 0.18 | 10 |
P5 | −1.45 | −0.16 | −1.29 | 16 |
P6 | 3.04 | 0.17 | 2.69 | 4 |
P7 | 0.93 | −0.65 | 0.74 | 8 |
P8 | 1.92 | −0.56 | 1.62 | 6 |
P9 | −1.25 | −0.25 | −1.13 | 15 |
P10 | 2.80 | 1.51 | 2.64 | 5 |
P11 | 1.83 | −0.40 | 1.56 | 7 |
P12 | −0.16 | 0.73 | −0.05 | 11 |
P13 | −0.55 | −0.50 | −0.54 | 12 |
P14 | −1.22 | −0.01 | −1.07 | 14 |
P15 | 0.62 | 0.18 | 0.56 | 9 |
P16 | −5.72 | −0.46 | −5.08 | 20 |
P17 | −3.81 | −1.10 | −3.48 | 18 |
P18 | 2.99 | 1.51 | 2.81 | 3 |
P19 | 4.15 | −1.42 | 3.48 | 1 |
P20 | −4.70 | 0.23 | −4.10 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Zhan, X.; Wang, Q.; Zhang, D.; Li, D.; Li, X.; Gao, L.; Zhu, H.; Chang, L.; Li, J.; et al. Principal Component Analysis and Cluster Analysis of Hydroponic Adaptation Potential in Different Pakchoi (Brassica campestris ssp. Chinensis) Parent Materials. Horticulturae 2025, 11, 822. https://doi.org/10.3390/horticulturae11070822
Cui J, Zhan X, Wang Q, Zhang D, Li D, Li X, Gao L, Zhu H, Chang L, Li J, et al. Principal Component Analysis and Cluster Analysis of Hydroponic Adaptation Potential in Different Pakchoi (Brassica campestris ssp. Chinensis) Parent Materials. Horticulturae. 2025; 11(7):822. https://doi.org/10.3390/horticulturae11070822
Chicago/Turabian StyleCui, Jiawei, Xiuping Zhan, Qixu Wang, Donghe Zhang, Dalu Li, Xiaofeng Li, Lu Gao, Hongfang Zhu, Liying Chang, Jianyong Li, and et al. 2025. "Principal Component Analysis and Cluster Analysis of Hydroponic Adaptation Potential in Different Pakchoi (Brassica campestris ssp. Chinensis) Parent Materials" Horticulturae 11, no. 7: 822. https://doi.org/10.3390/horticulturae11070822
APA StyleCui, J., Zhan, X., Wang, Q., Zhang, D., Li, D., Li, X., Gao, L., Zhu, H., Chang, L., Li, J., & Ding, X. (2025). Principal Component Analysis and Cluster Analysis of Hydroponic Adaptation Potential in Different Pakchoi (Brassica campestris ssp. Chinensis) Parent Materials. Horticulturae, 11(7), 822. https://doi.org/10.3390/horticulturae11070822