Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Measurement of Vegetative Growth Dynamics
2.4. Assessment of Cucumber Fruit Phenotypes
2.5. Determination of Cucumber Fruit Nutritional Quality
2.6. FOC Inoculation and Plant Response Assessment
3. Results
3.1. Cucumber Scions Grafted onto Figleaf Gourd Rootstocks Exhibit Comparable Vegetative Growth Rates to Those on White-Seeded Pumpkin Strains
3.2. Figleaf Gourd Rootstocks Produce Cucumber Fruits with Morphological Traits Comparable to Those from White-Seeded Pumpkin Rootstocks
3.3. Figleaf Gourd Rootstocks Confer Comparable or Superior Nutritional Quality to Cucumber Fruits Relative to White-Seeded Pumpkin Rootstocks
3.4. Figleaf Gourd Demonstrates Superior Resistance to Fusarium Wilt Compared to White-Seeded Pumpkin and Cucumber
3.5. Cucumber Scions Grafted onto Figleaf Gourd Rootstocks Exhibit Higher Antioxidant Enzyme Activity and Lower Cellular Damage Under Fusarium Wilt Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Borauh, P.; Gogoi, S. Importance of rootstocks in cucurbitaceous vegetables: A review. Pharma Innov. 2023, 12, 1709–1714. [Google Scholar]
- Awazade, A.S.; Verma, D. Advancing Vegetable Grafting: A comprehensive review of techniques, challenges, and the future of automated solutions. J. Sci. Res. Rep. 2024, 30, 517–530. [Google Scholar] [CrossRef]
- Lee, J.-M.; Kubota, C.; Tsao, S.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Guan, W.; Haseman, D.; Nowaskie, D. Rootstock evaluation for grafted cucumbers grown in high tunnels: Yield and plant growth. HortScience 2020, 55, 914–919. [Google Scholar] [CrossRef]
- Huang, Y.; Kong, Q.; Chen, F.; Bie, Z. The history, current status and future prospects of vegetable grafting in China. In Proceedings of the ISHS Acta Horticulturae 1086: I International Symposium on Vegetable Grafting, Wuhan, China, 17–21 March 2014; pp. 31–39. [Google Scholar]
- Karaağaç, O.; Balkaya, A. Interspecific hybridization and hybrid seed yield of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) lines for rootstock breeding. Sci. Hortic. 2013, 149, 9–12. [Google Scholar] [CrossRef]
- Rakha, M. Interspecific hybridization between Cucurbita maxima Duch. and Cucurbita moschata Duch. for high efficient development of Cucurbit rootstocks. J. Plant Prod. 2017, 8, 777–781. [Google Scholar] [CrossRef]
- Wu, Q.; Xiao, C.; Huang, Q.; Liu, L.; Xiao, R.; Kong, X.; Han, X. Effects of different pumpkin stock grafting on growth, yield and wax powder of cucumber. Guangdong Agric. Sci. 2019, 46, 32–37. [Google Scholar]
- Qin, Y.; Dong, X.; Dong, H.; Wang, X.; Ye, T.; Wang, Q.; Duan, J.; Yu, M.; Zhang, T.; Du, N. γ-Aminobutyric acid contributes to a novel long-distance signaling in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings. Plant Physiol. Biochem. 2024, 216, 109168. [Google Scholar] [CrossRef]
- Xiao, H.; Deng, W.; Ahmad, B.; Guo, C.; Shi, S.; He, S.; Yang, Z. Cucurbita ficifolia rootstock enhances resistance to low-temperature stress in cucumber. Horticulturae 2025, 11, 242. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, A.; Song, T.; Jin, Y.; Xu, X.; Gao, Y.; Ye, X.; Qi, H. Transcriptome analysis reveals the effects of grafting on sugar and α-linolenic acid metabolisms in fruits of cucumber with two different rootstocks. Plant Physiol. Biochem. 2018, 130, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Feng, G.-L.; Li, Z.-H.; Liu, S.-X.; Zhao, S.; Li, Y.; Wei, M. Effects of environmental conditions on absorption and distribution of silicon and formation of bloom on fruit surface of cucumber. J. Appl. Ecol. 2020, 31, 501–507. [Google Scholar]
- Hao, Y.; Luo, H.; Wang, Z.; Lu, C.; Ye, X.; Wang, H.; Miao, L. Research progress on the mechanisms of fruit glossiness in cucumber. Gene 2024, 927, 148626. [Google Scholar] [CrossRef] [PubMed]
- Dhatt, A.S.; Sharma, M.; Kaur, B. Advances in improvement of pumpkin and squashes. In Accelerated Plant Breeding, Volume 2: Vegetable Crops; Springer: Berlin/Heidelberg, Germany, 2020; pp. 301–335. [Google Scholar]
- Zijlstra, S.; Groot, S.; Jansen, J. Genotypic variation of rootstocks for growth and production in cucumber; possibilities for improving the root system by plant breeding. Sci. Hortic. 1994, 56, 185–196. [Google Scholar] [CrossRef]
- Kviklys, D.; Liaudanskas, M.; Janulis, V.; Viškelis, P.; Rubinskienė, M.; Lanauskas, J.; Uselis, N. Rootstock genotype determines phenol content in apple fruits. Plant Soil Environ. 2014, 60, 234–240. [Google Scholar] [CrossRef]
- He, S.; Li, G.; Zhang, J.; Ding, Y.; Wu, H.; Xie, J.; Wu, H.; Yang, Z. The effect of environmental factors on the genetic differentiation of Cucurbita ficifolia populations based on whole-genome resequencing. BMC Plant Biol. 2023, 23, 647. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Zhao, S.; Li, Z.; Shen, Q.; Wang, H.; Zhou, X.; Wei, M. Effects of silicon nutrition and rootstocks on silicon uptake and distribution and expression of silicon transporter genes in grafted cucumbers. Acta Hortic. Sin. 2018, 45, 1115. [Google Scholar]
- Hayashi, T.; Suzuki, T.; Oosawa, K. Correlation between occurrence of bloom on cucumber fruit and air temperature in a plastic film greenhouse. Acta Hortic. 2002, 588, 29–33. [Google Scholar] [CrossRef]
- Li, B.; Zhao, L.; Liu, D.; Zhang, Y.; Wang, W.; Miao, Y.; Han, L. Bacillus subtilis promotes cucumber growth and quality under higher nutrient solution by altering the rhizospheric microbial community. Plants 2023, 12, 298. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Huang, H.; Wei, J.; Zeng, F.; Huang, Y.; Sun, Q.; Miao, W.; Tian, Y.; Li, Y. Mutation of CsARC6 affects fruit color and increases fruit nutrition in cucumber. Theor. Appl. Genet. 2023, 136, 111. [Google Scholar] [CrossRef] [PubMed]
- Hamedalla, A.M.; Ali, M.M.; Ali, W.M.; Ahmed, M.A.; Kaseb, M.O.; Kalaji, H.M.; Gajc-Wolska, J.; Yousef, A.F. Increasing the performance of cucumber (Cucumis sativus L.) seedlings by LED illumination. Sci. Rep. 2022, 12, 852. [Google Scholar] [CrossRef]
- Hughes, D.E. Titrimetric determination of ascorbic acid with 2,6-Dichlorophenol indophenol in commercial liquid diets. J. Pharm. Sci. 1983, 72, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xin, D.; Xi, L.; Gu, T.; Jia, Z.; Zhang, B.; Kou, L. Novel applications of exogenous melatonin on cold stress mitigation in postharvest cucumbers. J. Agric. Food Res. 2022, 10, 100459. [Google Scholar] [CrossRef]
- Keinath, A.P.; Wechter, W.P.; Rutter, W.B.; Agudelo, P.A. Cucurbit rootstocks resistant to Fusarium oxysporum f. sp. Niveum remain resistant when coinfected by Meloidogyne incognita in the Field. Plant Dis. 2019, 103, 1383–1390. [Google Scholar] [CrossRef]
- Toporek, S.M.; Keinath, A.P. Evaluating Cucurbit rootstocks to prevent disease caused by Pythium aphanidermatum and P. myriotylum on watermelon. Plant Dis. 2020, 104, 3019–3025. [Google Scholar] [CrossRef]
- Anwar, M.R.; Liu, D.L.; Macadam, I.; Kelly, G. Adapting agriculture to climate change: A review. Theor. Appl. Climatol. 2013, 113, 225–245. [Google Scholar] [CrossRef]
- Maxted, N.; Magos Brehm, J.; Abulaila, K.; Al-Zein, M.S.; Kehel, Z.; Yazbek, M. Review of crop wild relative conservation and use in west Asia and north Africa. Plants 2024, 13, 1343. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, J.; Huang, L.; Ding, X.; Shi, K.; Yu, J. Grafting of Cucumis sativus onto Cucurbita ficifolia leads to improved plant growth, increased light utilization and reduced accumulation of reactive oxygen species in chilled plants. J. Plant Res. 2009, 122, 529–540. [Google Scholar] [CrossRef]
- Huang, Y.; Bie, Z.; He, S.; Hua, B.; Zhen, A.; Liu, Z. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ. Exp. Bot. 2010, 69, 32–38. [Google Scholar] [CrossRef]
- Liu, Z.; Bie, Z.; Huang, Y.; Zhen, A.; Niu, M.; Lei, B. Rootstocks Improve cucumber photosynthesis through nitrogen metabolism regulation under salt stress. Acta Physiol. Plant. 2013, 35, 2259–2267. [Google Scholar] [CrossRef]
- Rodríguez-Molina, M.; Medina, I.; Torres-Vila, L.; Cuartero, J. Vascular Colonization patterns in susceptible and resistant tomato cultivars inoculated with Fusarium oxysporum f. sp. Lycopersici Races 0 and 1. Plant Pathol. 2003, 52, 199–203. [Google Scholar] [CrossRef]
- Okungbowa, F.; Shittu, H. Fusarium wilts: An overview. Environ. Res. J. 2012, 6, 83–102. [Google Scholar]
- Gordon, T.R. Fusarium Oxysporum and the Fusarium wilt syndrome. Annu. Rev. Phytopathol. 2017, 55, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wu, F. Dynamics of the diversity of fungal and fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol. Ecol. 2012, 80, 469–478. [Google Scholar] [CrossRef]
- Dong, J.; Xu, J.; Xu, X.; Xu, Q.; Chen, X. Inheritance and quantitative trait locus mapping of Fusarium wilt resistance in cucumber. Front. Plant Sci. 2019, 10, 1425. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Ding, Y.; Gao, T.; He, S.; Zhao, K.; Yang, X.; Zhang, J.; Yang, Z. Transcriptomic and proteomic analyses of Cucurbita ficifolia Bouché (Cucurbitaceae) response to Fusarium oxysporum f. sp. Cucumerium. BMC Genom. 2022, 23, 436. [Google Scholar] [CrossRef]
- Pavlou, G.; Vakalounakis, D.; Ligoxigakis, E. Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by Grafting onto Resistant Rootstocks. Plant Dis. 2002, 86, 379–382. [Google Scholar] [CrossRef]
- Ding, Y.; Hou, S.; Yao, C.; Yang, J.; Xie, J.; Zeng, Y.; Yang, Z. Cloning and VIGS functional confirming of NBS type disease-resistance gene from Cucurbita ficifolia. Acta Bot. Boreali-Occident. Sin. 2021, 41, 727–737. [Google Scholar]
- Reyad, N.; El-Sayed, S.F.; Azoz, S.N. Evaluation of grafting using cucurbit interspecific hybrids to control Fusarium Wilt in Cucumber. Plant Cell Biotechnol. Mol. Biol. 2021, 2021, 50–63. [Google Scholar] [CrossRef]
- Bie, Z.; Peng, Y.; Kaleem, M.M.; Wei, L.; Geng, S.; Wang, L. Grafting as a tool for improving growth and stress tolerance in vegetable crops. In Growth Regulation and Quality Improvement of Vegetable Crops; Ahammed, G.J., Zhou, J., Eds.; Springer: Singapore, 2025; pp. 587–619. [Google Scholar]
- Guan, C.; Xu, Y.; Yue, H.; Qiao, X.; Chen, G.; Yuan, M.; Wang, Y.; Sun, J. Difference in sucrose concentration between scion and rootstock influences the incompatibility of cucumber/pumpkin grafted plants. Hortic. Plant J. 2025, 11, 1166. [Google Scholar] [CrossRef]
- Roman-Ramos, R.; Almanza-Perez, J.; Fortis-Barrera, A.; Angeles-Mejia, S.; Banderas-Dorantes, T.; Zamilpa-Alvarez, A.; Diaz-Flores, M.; Jasso, I.; Blancas-Flores, G.; Gomez, J. Antioxidant and anti-inflammatory effects of a hypoglycemic fraction from Cucurbita ficifolia Bouché in streptozotocin-induced diabetes mice. Am. J. Chin. Med. 2012, 40, 97–110. [Google Scholar] [CrossRef]
- Hernandez-Mixteco, M.; Bernal-Morales, B.; Valenzuela, O.L.; Rodríguez-Landa, J.F.; Cerna-Cortes, J.F.; García-Montalvo, E.A. Effect of Cucurbita ficifolia Bouché on glutathione level and glycosylated hemoglobin percentage in a mexican rural population with type 2 diabetes. J. Ethnopharmacol. 2024, 326, 117924. [Google Scholar] [CrossRef]
- Coutinho, T.E.; Martins-Gomes, C.; Machado-Carvalho, L.; Nunes, F.M.; Silva, A.M. Anti-inflammatory, anti-hyperglycemic, and anti-aging activities of aqueous and methanolic fractions obtained from Cucurbita ficifolia bouché fruit pulp and peel extracts. Molecules 2025, 30, 557. [Google Scholar] [CrossRef] [PubMed]
- Sakata, Y.; Ohara, T.; Sugiyama, M. The history of melon and cucumber grafting in Japan. Acta Hortic. 2008, 767, 217–228. [Google Scholar] [CrossRef]
- Ren, J.; Yang, L.; Cao, R.; Wang, Y.; Zhang, C.; Yu, X.; Meng, W.; Ye, X. Integrated metabolome and transcriptome analysis provides new insights into the glossy graft cucumber fruit (Cucumis sativus L.). Int. J. Mol. Sci. 2023, 24, 12147. [Google Scholar] [CrossRef]
- Ruiz, J.; Belakbir, A.; López-Cantarero, I.; Romero, L. Leaf-macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Sci. Hortic. 1997, 71, 227–234. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; Lopez-Galarza, S.; Maroto, J.V.; Lee, S.-G.; Huh, Y.-C.; Sun, Z.; Miguel, A.; King, S.R. Cucurbit grafting. Crit. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- Vougeleka, V.; Savvas, D.; Ntatsi, G.; Ellinas, G.; Zacharis, A.; Iannetta, P.P.; Mylona, P.; Saitanis, C.J. Impact of the rootstock genotype on the performance of grafted common bean (Phaseolus vulgaris L.) cultivars. Sci. Hortic. 2023, 311, 111821. [Google Scholar] [CrossRef]
Stock | 7 d | 14 d | 21 d | 28 d | 35 d | 42 d | 49 d | 56 d |
---|---|---|---|---|---|---|---|---|
Stem diameter (mm) | ||||||||
NH-G1 | 6.48 ± 0.19 abc | 7.50 ± 0.34 a | 8.11 ± 0.42 a | 8.56 ± 0.31 a | 9.34 ± 0.33 ab | 10.11 ± 0.36 a | 10.38 ± 0.28 ab | 10.48 ± 0.25 bc |
LQ-H2 | 6.95 ± 0.25 a | 7.30 ± 0.25 ab | 7.65 ± 0.30 abcd | 8.26 ± 0.36 ab | 8.53 ± 0.36 bcde | 9.26 ± 0.34 bc | 9.81 ± 0.27 bcd | 9.86 ± 0.16 cd |
SP-G5 | 5.85 ± 0.19 cd | 6.35 ± 0.22 def | 6.64 ± 0.22 ef | 6.96 ± 0.25 d | 7.23 ± 0.23 f | 8.68 ± 0.36 c | 9.26 ± 0.28 cde | 9.67 ± 0.20 cd |
HZ-H3 | 6.76 ± 0.18 ab | 7.08 ± 0.17 abcd | 7.32 ± 0.16 abcde | 7.47 ± 0.18 bcd | 8.10 ± 0.18 e | 8.59 ± 0.23 c | 9.38 ± 0.28 cde | 9.64 ± 0.21 d |
P3 | 5.36 ± 0.20 d | 5.76 ± 0.22 f | 6.32 ± 0.18 f | 6.62 ± 0.14 d | 7.78 ± 0.23 ef | 8.56 ± 0.25 c | 9.05 ± 0.21 de | 9.56 ± 0.16 d |
Diamond | 6.08 ± 0.12 bc | 6.43 ± 0.14 cdef | 6.82 ± 0.17 def | 7.11 ± 0.20 cd | 8.23 ± 0.14 de | 9.66 ± 0.17 ab | 10.94 ± 0.22 a | 11.85 ± 0.28 a |
GAR | 6.34 ± 0.23 abc | 6.62 ± 0.25 bcde | 6.93 ± 0.31 cdef | 7.22 ± 0.27 cd | 8.52 ± 0.29 bcde | 9.78 ± 0.20 ab | 10.38 ± 0.26 ab | 11.23 ± 0.28 ab |
JC | 6.42 ± 0.23 abc | 7.04 ± 0.21 abcd | 7.75 ± 0.22 abc | 8.60 ± 0.28 a | 9.54 ± 0.23 a | 9.65 ± 0.18 ab | 9.85 ± 0.25 bcd | 10.13 ± 0.29 cd |
KGR | 6.65 ± 0.31 ab | 7.24 ± 0.32 abc | 7.83 ± 0.28 ab | 8.18 ± 0.29 ab | 9.13 ± 0.20 abc | 9.96 ± 0.24 ab | 10.40 ± 0.21 ab | 10.50 ± 0.21 bc |
RK99 | 6.24 ± 0.23 abc | 6.76 ± 0.21 abcde | 7.22 ± 0.22 bcde | 7.83 ± 0.22 abc | 8.38 ± 0.23 cde | 8.64 ± 0.18 c | 8.75 ± 0.19 e | 8.80 ± 0.23 e |
BD1 | 6.25 ± 0.22 abc | 6.94 ± 0.27 abcd | 7.53 ± 0.28 abcd | 8.61 ± 0.33 a | 8.99 ± 0.29 abcd | 9.74 ± 0.24 ab | 9.94 ± 0.31 bc | 10.14 ± 0.35 cd |
SR | 5.33 ± 0.28 d | 6.05 ± 0.27 ef | 6.54 ± 0.28 ef | 6.88 ± 0.28 d | 7.21 ± 0.29 f | 7.55 ± 0.24 d | 7.78 ± 0.31 f | 7.86 ± 0.35 f |
Leaf area (mm2) | ||||||||
NH-G1 | 349.67 ± 9.22 a | 410.40 ± 10.42 a | 482.46 ± 9.35 b | 606.64 ± 8.07 b | 656.92 ± 12.36 cd | 675.35 ± 12.32 c | 689.28 ± 15.23 e | 693.83 ± 14.16 d |
LQ-H2 | 339.14 ± 10.24 a | 440.52 ± 10.81 a | 592.42 ± 10.81 a | 689.53 ± 14.61 a | 759.12 ± 7.66 a | 789.93 ± 15.15 a | 815.12 ± 13.40 b | 827.08 ± 12.82 a |
SP-G5 | 238.86 ± 6.19 d | 279.15 ± 7.63 e | 341.71 ± 11.67 g | 462.30 ± 6.32 e | 500.58 ± 12.54 e | 518.31 ± 12.84 def | 530.18 ± 11.70 g | 537.91 ± 5.89 f |
HZ-H3 | 232.49 ± 8.79 d | 280.79 ± 9.65 e | 341.64 ± 8.21 g | 451.52 ± 8.49 e | 530.69 ± 7.06 e | 568.91 ± 10.23 d | 583.06 ± 9.65 f | 601.4 ± 10.80 e |
P3 | 286.14 ± 8.79 b | 321.99 ± 9.65 d | 364.82 ± 8.21 fg | 472.96 ± 8.49 e | 514.21 ± 6.76 e | 551.71 ± 10.23 de | 582.99 ± 8.79 f | 587.42 ± 10.23 e |
Diamond | 287.21 ± 9.36 b | 327.11 ± 10.80 cd | 396.65 ± 12.83 def | 461.40 ± 9.65 e | 526.48 ± 10.80 e | 566.02 ± 11.38 d | 573.24 ± 9.94 f | 575.34 ± 11.38 ef |
GAR | 261.24 ± 11.99 bcd | 343.35 ± 15.71 bcd | 457.43 ± 15.14 bc | 595.60 ± 10.80 bc | 701.25 ± 16.07 b | 816.00 ± 21.49 a | 856.25 ± 19.28 a | 865.42 ± 18.03 a |
JC | 253.85 ± 8.15 cd | 332.81 ± 8.15 cd | 431.19 ± 2.95 cd | 558.94 ± 5.27 d | 654.31 ± 11.73 cd | 702.65 ± 7.33 bc | 722.13 ± 4.40 cde | 747.22 ± 11.72 bc |
KGR | 336.42 ± 9.88 a | 376.90 ± 10.74 b | 451.88 ± 12.47 bc | 560.64 ± 14.50 d | 631.30 ± 11.05 d | 676.58 ± 11.33 c | 702.88 ± 9.88 de | 709.07 ± 18.25 cd |
RK99 | 271.75 ± 11.84 bc | 332.15 ± 14.46 cd | 421.48 ± 20.50 cde | 617.69 ± 12.13 b | 670.72 ± 19.65 bc | 696.97 ± 20.21 bc | 736.26 ± 12.71 cd | 754.38 ± 15.31 b |
BD1 | 284.35 ± 7.22 b | 351.95 ± 8.08 bcd | 451.43 ± 9.82 bc | 574.88 ± 7.52 cd | 699.87 ± 10.40 b | 731.55 ± 10.19 b | 744.63 ± 6.41 c | 744.06 ± 14.43 bc |
SR | 322.96 ± 8.96 a | 357.55 ± 8.72 bc | 393.48 ± 11.26 ef | 412.29 ± 8.67 f | 429.68 ± 9.82 f | 432.90 ± 10.11 e | 438.48 ± 9.84 h | 441.35 ± 12.44 g |
Plant height (cm) | ||||||||
NH-G1 | 72.00 ± 8.08 a | 100.00 ± 9.64 a | 138.00 ± 9.54 a | 183.67 ± 6.64 abc | 253.00 ± 13.58 ab | 297.00 ± 6.66 ab | 329.33 ± 9.82 ab | 347.00 ± 6.93 a |
LQ-H2 | 59.67 ± 4.63 ab | 89.33 ± 4.91 a | 113.00 ± 4.62 abc | 160.33 ± 4.91 cde | 195.67 ± 5.21 de | 244.00 ± 4.62 c | 316.00 ± 4.04 abc | 345.33 ± 4.33 ab |
SP-G5 | 76.00 ± 7.23 a | 95.67 ± 3.18 a | 122.67 ± 4.98 abc | 172.00 ± 9.54 bcd | 214.67 ± 8.09 cd | 238.67 ± 8.95 c | 260.67 ± 10.68 e | 280.00 ± 7.23 c |
HZ-H3 | 66.33 ± 5.21 ab | 83.67 ± 6.06 a | 106.33 ± 4.63 bc | 150.33 ± 5.78 de | 196.33 ± 6.94 de | 239.67 ± 7.80 c | 275.00 ± 6.35 de | 285.33 ± 6.94 c |
P3 | 63.33 ± 6.94 ab | 88.33 ± 7.22 a | 113.00 ± 8.39 abc | 173.00 ± 6.93 bcd | 230.00 ± 9.24 bc | 252.33 ± 8.09 c | 295.67 ± 7.22 cd | 315.00 ± 9.82 b |
Diamond | 78.33 ± 7.51 a | 102.33 ± 7.80 a | 131.00 ± 8.96 ab | 186.00 ± 7.51 ab | 231.00 ± 9.82 bc | 283.33 ± 8.67 b | 329.67 ± 7.80 ab | 355.00 ± 10.39 a |
GAR | 67.67 ± 4.33 ab | 90.33 ± 5.81 a | 115.00 ± 8.96 abc | 150.00 ± 7.51 de | 191.00 ± 9.82 de | 251.33 ± 8.67 c | 312.67 ± 7.80 bc | 342.00 ± 10.39 ab |
JC | 62.33 ± 4.91 ab | 86.00 ± 2.89 a | 109.00 ± 2.89 bc | 158.33 ± 6.06 cde | 215.00 ± 2.89 cd | 251.67 ± 8.09 c | 261.33 ± 7.54 e | 273.67 ± 7.80 c |
KGR | 75.67 ± 10.11 a | 87.33 ± 9.26 a | 118.67 ± 10.41 abc | 200.33 ± 8.37 a | 263.33 ± 10.68 a | 317.67 ± 10.14 a | 340.00 ± 8.66 a | 358.33 ± 11.26 a |
RK99 | 65.33 ± 8.95 ab | 85.00 ± 8.96 a | 111.33 ± 11.55 abc | 147.67 ± 9.82 de | 191.33 ± 11.84 de | 229.67 ± 11.84 c | 264.00 ± 10.69 e | 278.33 ± 12.72 c |
BD1 | 77.33 ± 6.94 a | 102.00 ± 7.51 a | 139.33 ± 10.14 a | 181.00 ± 9.29 abc | 253.00 ± 13.28 ab | 307.00 ± 11.55 ab | 340.67 ± 9.26 a | 364.00 ± 14.80 a |
SR | 48.33 ± 6.64 b | 80.33 ± 9.26 a | 101.00 ± 10.39 c | 136.00 ± 8.96 e | 173.33 ± 11.55 e | 189.33 ± 9.82 d | 203.67 ± 7.54 f | 219.33 ± 12.14 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zou, J.; Gong, T.; Li, X.; Meng, J.; Zhang, J.; Xu, B.; He, S. Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting. Horticulturae 2025, 11, 778. https://doi.org/10.3390/horticulturae11070778
Li G, Zou J, Gong T, Li X, Meng J, Zhang J, Xu B, He S. Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting. Horticulturae. 2025; 11(7):778. https://doi.org/10.3390/horticulturae11070778
Chicago/Turabian StyleLi, Gengyun, Jiamei Zou, Tianrui Gong, Xuejiao Li, Jing Meng, Jie Zhang, Bin Xu, and Shuilian He. 2025. "Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting" Horticulturae 11, no. 7: 778. https://doi.org/10.3390/horticulturae11070778
APA StyleLi, G., Zou, J., Gong, T., Li, X., Meng, J., Zhang, J., Xu, B., & He, S. (2025). Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting. Horticulturae, 11(7), 778. https://doi.org/10.3390/horticulturae11070778