Seven New Records of Curcuma L. (Zingiberaceae) for the Flora of Laos: Implications for Biodiversity Conservation and Sustainable Horticulture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Study Area
2.2. Procedures
3. Results
3.1. Taxonomic Treatments
3.1.1. Curcuma comosa Roxb. [26]
- Specimens from Laos examined: Lao PDR, Vientiane, P. Saensouk, S. Saensouk, T. Boonma, A. Sengthong, and K. Phengmala 2401 (FOF!); Lao PDR, Vientiane, P. Saensouk, S. Saensouk, T. Boonma, A. Sengthong, and K. Phengmala 2402 (VMSU!); Lao PDR, Bolikhamxai Province, Pakkading District, Phengmala KC017 (FOF!, VMSU!).
- Vernacular name in Laos: Wan Chak Mot Luk or Kajiaow Khao.
- Ecology: Deciduous forest.
- Phenology: Flowering in late March to June.
- Distribution: Native to Assam, Laos, Myanmar, and Thailand.
3.1.2. Curcuma phrayawan Boonma & Saensouk [30]
- Specimens from Laos examined: Lao PDR, Bolikhamxai Province, P. Saensouk, S. Saensouk, K. Chanthavongsa, A. Sengthong, K. Phengmala, and T. Boonma 2403 (FOF!, VMSU!).
- Vernacular name in Laos: Phaya Wan.
- Ecology: Deciduous to dry evergreen forest.
- Phenology: Flowering in rainy season between late June and September.
- Distribution: Native to Laos and Thailand.
- Utilization: The rhizome is used in traditional medicine, and whole plants are cultivated as auspicious ornamental plants, with the belief that they protect growers and their homes from misfortune.
3.1.3. Curcuma pedicellata (Chaveer. & Mokkamul) Škorničk. [28]
- Specimens from Laos examined: Lao PDR, Bolikhamxai Province, P. Saensouk, S. Saensouk, K. Chanthavongsa, A. Sengthong, K. Phengmala, and T. Boonma 2404 (FOF!, VMSU!).
- Vernacular name in Laos: Waan Dak Dae.
- Ecology: Deciduous forest.
- Phenology: Flowering between late March and April.
- Distribution: Native to Laos and Thailand.
- Utilization: The rhizome is used as a carminative.
3.1.4. Curcuma pierreana Gagnep. [31]
- Specimens from Laos examined: Lao PDR, Champasak Province, P. Saensouk, S. Saensouk, A. Sengthong, K. Phengmala, and T. Boonma 2405 (FOF!, VMSU!).
- Vernacular name in Laos: Kajiaow Dok Daeng.
- Ecology: Deciduous forest.
- Phenology: Flowering in rainy season between late June and September.
- Utilization: Young inflorescences are eaten fresh or blanched and dipped in chili paste.
3.1.5. Curcuma rangjued Saensouk & Boonma [32]
- Specimens from Laos examined: Lao PDR, Xaignabouli Province, P. Saensouk, S. Saensouk, A. Sengthong, K. Phengmala, and T. Boonma 2406 (FOF!, VMSU!). Lao PDR, Bolikhamxai Province, P. Saensouk, S. Saensouk, A. Sengthong, K. Phengmala, and T. Boonma 2409 (FOF!, VMSU!).
- Vernacular name in Laos: Wan-Jued.
- Ecology: Deciduous to dry evergreen forest.
- Phenology: Flowering in rainy season between late June and October.
- Distribution: Native to Laos and Thailand.
3.1.6. Curcuma sabhasrii Saensouk, Maknoi, Wongnak & Rakarcha [13]
- Specimens from Laos examined: Lao PDR, Xaignabouli Province, P. Saensouk, S. Saensouk, A. Sengthong, K. Phengmala, and T. Boonma 2407 (FOF!, VMSU!).
- Vernacular name in Laos: Kajiaow Tab Tim.
- Ecology: In deciduous forest and dry evergreen forest.
- Phenology: Flowering in May to September and fruiting in late June to October.
- Distribution: Native to Laos and Thailand.
- Utilization: Auspicious ornamental plants.
3.1.7. Curcuma wanenlueanga Saensouk, Thomudtha & Boonma [33]
- Specimens from Laos examined: Lao PDR, Xaignabouli Province, P. Saensouk, S. Saensouk, A. Sengthong, K. Phengmala, and T. Boonma 2408 (FOF!, VMSU!).
- Vernacular name in Laos: Wan En Lueang.
- Ecology: In mixed deciduous forest.
- Phenology: Flowering in July to October.
- Distribution: Native to Laos and Thailand.
- Utilization: Herbal medicine.
4. Discussion
4.1. Species Diversity and Ecological Adaptation
4.2. Horticultural and Medicinal Potential
4.3. Conservation Implications and Strategies for Curcuma Species in Laos
- (1)
- Sustainable Propagation and Nursery Development: Establishing nurseries using vegetative propagation or seed collection helps conserve genetic diversity and reduce reliance on wild populations. This controlled approach supports healthy plant growth and habitat protection [37].
- (2)
- Agroforestry Systems: Integrating Curcuma into agroforestry systems mimicking natural ecosystems can restore and protect habitats, promote biodiversity, and support resilient farming practices. These systems benefit both agriculture and wildlife by fostering diverse ecological communities [19,38,39,40].
- (3)
- (4)
- Education and Community Engagement: Training programs and outreach initiatives can equip farmers with knowledge of sustainable cultivation and conservation techniques. When communities recognize the long-term value of conservation, they become more invested in protecting both the species and their habitats [45,46,47,48,49].
- (5)
4.4. Cultivation Tips for Curcuma Species
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plant of the World Online, Facilitated by the Royal Botanic Gardens, Kew. Available online: www.plantsoftheworldonline.org/ (accessed on 14 February 2025).
- Boonma, T.; Saensouk, S.; Saensouk, P. Diversity and traditional utilization of the Zingiberaceae plants in Nakhon Nayok Province, Central Thailand. Diversity 2023, 15, 904. [Google Scholar] [CrossRef]
- Chen, T.V.; Truong, M.N.; Quynh, T.T.T.; Nhi, N.T.T.; Linh, N.H.K. GC-MS analysis and cytotoxic activity of the n-hexane fraction from Curcuma sahuynhensis Škorničk. & N.S.Lý leaves collected in Vietnam. Plant Sci. Today 2024, 11, 308–315. [Google Scholar] [CrossRef]
- Chen, T.V.; Tu, V.L.; Nghia, N.T.; Truong, M.N.; Quynh, T.T.T.; Tham, V.M.; Hien, N.T.T. Volatile components of ethyl acetate extracts from the leaves and rhizomes of Curcuma sahuynhensis and their cytotoxic activity: In vitro and in silico studies. Egypt. J. Chem. 2024, 67, 253–267. [Google Scholar] [CrossRef]
- Phengmala, K.; Saensouk, S.; Saensouk, P.; Souladeth, P. Ethnobotany of Hmong ethnic groups in Bolikhamxay province, central Laos PDR. Not. Bot. Horti. Agrobo. 2023, 51, 13284. [Google Scholar] [CrossRef]
- Phengmala, K.; Saensouk, S.; Saensouk, P.; Souladeth, P. Ethnobotanical study of medicinal plants used by Lao ethnic group in Central Laos. Not. Bot. Horti. Agrobo. 2024, 52, 13633. [Google Scholar] [CrossRef]
- Boonma, T.; Saensouk, S.; Saensouk, P. Biogeography, conservation status, and traditional uses of Zingiberaceae in Saraburi Province, Thailand, with Kaempferia chaveerachiae sp. nov. Horticulturae 2024, 10, 934. [Google Scholar] [CrossRef]
- Saensouk, P.; Saensouk, S.; Maknoi, C.; Boonma, T. Curcuma borealis sp. nov. and C. retrocalcaria sp. nov. (Zingiberaceae): Two novel taxa from Northern Thailand. Horticulturae 2024, 10, 787. [Google Scholar] [CrossRef]
- Saensouk, P.; Boonma, T.; Saensouk, S. Curcuma pulcherrima (Zingiberaceae), a new rare species of Curcuma subgen. Ecomata from eastern Thailand. Biodiversitas 2022, 23, 6635–6644. [Google Scholar] [CrossRef]
- Saensouk, P.; Boonma, T.; Saensouk, S. Curcuma nakhonphanomensis (Zingiberaceae), a new species from lower Mekong River basin, northeastern Thailand. Biodiversitas 2022, 23, 6040–6048. [Google Scholar] [CrossRef]
- Saensouk, S.; Boonma, T.; Saensouk, P. Curcuma achrae (Zingiberaceae), a new species from Central Thailand. Rheedea 2022, 32, 30–45. [Google Scholar]
- Saensouk, P.; Boonma, T.; Rakarcha, S.; Maknoi, C.; Wongnak, M.; Saensouk, S. Two new species of Curcuma subgenus Ecomata (Zingiberaceae: Zingibereae), from Central and Southwestern Thailand. Biodiversitas 2022, 23, 4578–4588. [Google Scholar] [CrossRef]
- Rakarcha, S.; Saensouk, S.; Maknoi, C.; Wongnak, M.; Thammarong, W.; Saensouk, P. Curcuma lampangensis and C. sabhasrii, two new species of the family Zingiberaceae from Northern Thailand. Biodiversitas 2022, 23, 4448–4459. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Le, T.A.; Hoang, Q.H.; Le, Q.T.; Nguyen, E. Two new taxa of Curcuma subgen. Ecomata (Zingiberaceae: Zingibereae), from coastal Central Vietnam. Biodiversitas 2022, 23, 2512–2519. [Google Scholar] [CrossRef]
- Saensouk, P.; Boonma, T.; Maknoi, C.; Saensouk, S. Curcuma ubonensis (Zingiberaceae), a new species of Curcuma subgen. Hitcheniopsis from Eastern Thailand. Not. Bot. Horti. Agrobo. 2023, 51, 13374. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, N.A.; Averyanov, L.; Nguyen, D.D.; Le, C.T. Curcuma tuanii (Zingiberaceae) a new species of subgenus Ecomata from Vietnam based on morphological and molecular evidence. Acta Bot. Bras. 2023, 37, e20230028. [Google Scholar] [CrossRef]
- Boonma, T. Curcuma suraponii sp. nov. (Zingiberaceae), a new species of Curcuma subgen. Curcuma from Thailand. Biodiversitas 2023, 24, 4885–4895. [Google Scholar] [CrossRef]
- Saensouk, P.; Saensouk, S.; Boonma, T.; Ragsasilp, A.; Maknoi, C.; Techa, C.; Srisuk, P.; Souladeth, P. Curcuma sumonii sp. nov., and C. wanchaii sp. nov. (Zingiberaceae), two new taxa of Curcuma subgen. Curcuma from Thailand. Sci. Rep. 2024, 14, 27541. [Google Scholar] [CrossRef]
- Saensouk, P.; Saensouk, S.; Maknoi, C.; Setyawan, A.D.; Boonma, T. A horticultural Gem Unveiled: Curcuma peninsularis sp. nov. (Zingiberaceae), a new species from Peninsular Thailand, previously misidentified as Curcuma aurantiaca Zijp. Horticulturae 2024, 10, 950. [Google Scholar] [CrossRef]
- Saensouk, P.; Saensouk, S.; Maknoi, C.; Nguyen, D.D.; Boonma, T. Curcuma roseobracteata sp. nov. (Zingiberaceae), a new species from Thailand and distribution notes on the recently described Curcuma suraponii Boonma. Biodiversitas 2024, 25, 3368–3375. [Google Scholar] [CrossRef]
- Boonma, T.; Saensouk, S.; Saensouk, P. Kaempferia sipraiana (Zingiberaceae), a new species from Thailand and a new record of Kaempferia pseudoparviflora for Myanmar. Biodiversitas 2022, 23, 2203–2211. [Google Scholar] [CrossRef]
- Leong-Škorničková, J.; Newman, M. Gingers of Cambodia, Laos and Vietnam; Singapore Botanic Gardens, National Parks Board: Singapore, 2015; Volume 26. [Google Scholar]
- Binh, N.Q.; Tuan, H.A.; Dat, N.V.; Thanh, T.T.V.; Hanh, N.P.; Cuong, N.M.; Thanh, N.T. A new record species for Flora of Vietnam—Curcuma singularis Gagnep. (Zingiberaceae). VNU J. Sci. Nat. Sci. Technol. 2017, 33, 25–29. [Google Scholar]
- Leong-Škorničková, J.; Šída, O.; Bouamanivong, S.; Souvannakhoummane, K.; Phathavong, K. Three new ginger species (Zingiberaceae) from Laos. Blumea 2014, 59, 106–112. [Google Scholar] [CrossRef]
- Turland, N.J.; Wiersema, J.H.; Barrie, F.R.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Kusber, W.-H.; Li, D.-Z.; Marhold, K.; et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017; Regnum Vegetabile 159; Koeltz Botanical Books: Glashütten, Germany, 2018. [Google Scholar]
- Roxburgh, W. Descriptions of Several of the Monandrous Plants of India. Asiat. Res. 1810, 11, 318–362. [Google Scholar]
- Leong-Škorničková, J.; Šída, O.; Marhold, K. Back to types! Towards stability of names in Indian Curcuma L. (Zingiberaceae). Taxon 2010, 59, 269–282. [Google Scholar] [CrossRef]
- Leong-Škorničková, J.; Šída, O.; Záveská, E.; Marhold, K. History of infrageneric classification, typification of supraspecific names and outstanding transfers in Curcuma (Zingiberaceae). Taxon 2015, 64, 362–373. [Google Scholar] [CrossRef]
- Chaveerach, A.; Mokkamul, P.; Sudmoon, R.; Tanee, T.; Garcia, V.F. A new species of Stahlianthus (Zingiberaceae) from Northeastern Thailand. Taiwania 2007, 52, 315–319. [Google Scholar]
- Saensouk, S.; Boonma, T.; Saensouk, P. Six new species and a new record of Curcuma L. (Zingiberaceae) from Thailand. Biodiversitas 2021, 22, 1658–1685. [Google Scholar] [CrossRef]
- Gagnepain, F. Zingibéracées, Marantacées et Musacées Nouvelles de L’Herbier du Muséum. Bull. Mus. Natl. Hist. Nat. 1907, 54, 403–405. [Google Scholar] [CrossRef]
- Saensouk, S.; Boonma, T.; Saensouk, P. A new species and a new record of Curcuma subgen. Curcuma (Zingiberaceae) from Northern Thailand. Biodiversitas 2021, 22, 3617–3626. [Google Scholar] [CrossRef]
- Saensouk, S.; Boonma, T.; Thomudtha, A.; Thomudtha, P.; Saensouk, P. Short Communication: Curcuma wanenlueanga (Zingiberaceae), a new species of subgenus Curcuma from Thailand. Biodiversitas 2021, 22, 2988–2994. [Google Scholar] [CrossRef]
- Hay, A. The genus Alocasia (Araceae-Colocasieae) in West Malesia and Sulawesi. Gard. Bull. Sing. 1998, 50, 221–334. [Google Scholar]
- Nguyen, T.N.H.; Cao, N.G.; Le, B.S.; Vu, T.T.; Le, A.T. Botanical characteristics and ITS sequence of Curcuma pierreana Gagnep.—Zingiberaceae. Res. J. Biotech. 2025, 20, 100–110. [Google Scholar] [CrossRef]
- IUCN. Guidelines for Using the IUCN Red List Categories and Criteria Version 16. 2024. Available online: https://nc.iucnredlist.org/redlist/content/attachment_files/RedListGuidelines.pdf (accessed on 28 February 2025).
- Brijesh, H.; Ajjappala, B. Micropropagation strategies in medicinally important turmeric (Curcuma sp.): Current research and future challenges. J. Appl. Biol. Biotechnol. 2023, 11, 1–8. [Google Scholar] [CrossRef]
- Wang Mei Hua, M.; Warren-Thomas, E.; Wanger, T.C. Rubber Agroforestry: Feasibility at Scale; Mighty Earth: Washington, DC, USA, 2021; p. 130. [Google Scholar]
- Kumar, P.; Dagar, J.C.; Gupta, S.R.; Sileshi, G.W. Achieving Biodiversity Conservation, Livelihood Security and Sustainable Development Goals Through Agroforestry in Coastal and Island Regions of India and Southeast Asia. In Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa; Dagar, J.C., Gupta, S.R., Sileshi, G.W., Eds.; Sustainability Sciences in Asia and Africa; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Josephrajkumar, A.; Mani, M.; Anes, K.M.; Mohan, C. Ecological Engineering in Pest Management in Horticultural and Agricultural Crops. In Trends in Horticultural Entomology; Mani, M., Ed.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Soliman, Y.M.; Soliman, W.S.; Abbas, A.M. Alley Cropping and Organic Compost: An Efficient and Sustainable Agro-Ecological Strategy for Improving Turmeric (Curcuma longa L.) Growth and Attributes. Agriculture 2023, 13, 149. [Google Scholar] [CrossRef]
- Udhaya Nandhini, D.; Janaki, P.; Venkatesan, S.; Senthilraja, K.; Somasundaram, E.; Meena, S. Assessing changes in soil quality indicators, turmeric (Curcuma longa L.) yield, and monetary returns under different years of organic nutrient management. Org. Agr. 2023, 13, 443–460. [Google Scholar] [CrossRef]
- Singh, P.; Nayak, S.L.; Sharkar, R.; Sarkar, A.; Dutta, S.; Paul, D. Application of modern techniques in cultivation of medicinal plants: A review. Plant Arch. 2025, 25, 1947–1962. [Google Scholar] [CrossRef]
- Islam, K.K.; Hossain, M.B.; Mostakim, G.M.; Ashraf, S.M.K.; Ripta, S.K. Moving to conservation agriculture: (1) evidence of rhizome crops performance in existing agroforestry practices of Madhupur Garh, Bangladesh. J. Agrofor. Environ. 2023, 16, 147–153. [Google Scholar] [CrossRef]
- Ikendi, S. Ecological conservation, biodiversity, and agricultural education as integrated approaches for envisioning the future of sustainable agriculture in North America. Int. J. Sustain. Dev. World Ecol. 2022, 30, 152–163. [Google Scholar] [CrossRef]
- Kumar, M.; Kaushik, K.; Singh, S.; Kumar, S.; Rai, A.; Kumar, R.; Yadav, S.; Kumar, A. Sustainable horticulture practices: An environmental-friendly approach. Pharm. Innov. J. 2023, 12, 4777–4782. [Google Scholar]
- Srinivasu, P.; Parkavi, S.; Ragul, P.; Panotra, N.; Thrilekha, D.; Upadhyay, L.; Sai Meghana, B.; Sakhamo, K. A critical review on fostering community involvement in sustainable horticulture initiatives. J. Sci. Res. Rep. 2024, 30, 394–404. [Google Scholar] [CrossRef]
- Santos, M.; Moreira, H.; Cabral, J.A.; Gabriel, R.; Teixeira, A.; Bastos, R.; Aires, A. Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay. Int. J. Environ. Res. Public Health 2022, 19, 13715. [Google Scholar] [CrossRef] [PubMed]
- Kee, T.; Zhang, H. Digital Experiential Learning for Sustainable Horticulture and Landscape Management Education. Sustainability 2022, 14, 9116. [Google Scholar] [CrossRef]
- Moussy, C.; Burfield, I.J.; Stephenson, P.J.; Newton, A.F.E.; Butchart, S.H.M.; Sutherland, W.J.; Gregory, R.D.; McRae, L.; Bubb, P.; Roesler, I.; et al. A quantitative global review of species population monitoring. Conserv. Biol. 2022, 36, e13721. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, P.; Pons, V.; Letourneau, A.; Klesczewski, M.; Papuga, G.; Thompson, J.D. Combining population monitoring with habitat vulnerability to assess conservation status in populations of rare and endangered plants. J. Nat. Conserv. 2017, 37, 83–95. [Google Scholar] [CrossRef]
- Bubac, C.M.; Johnson, A.C.; Fox, J.A.; Cullingham, C.I. Conservation translocations and post-release monitoring: Identifying trends in failures, biases, and challenges from around the world. Biol. Conserv. 2019, 238, 108239. [Google Scholar] [CrossRef]
- Wrege, P.H.; Rowland, E.D.; Keen, S.; Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 2017, 8, 1292–1301. [Google Scholar] [CrossRef]
- Danovaro, R.; Fanelli, E.; Aguzzi, J.; Billett, D.; Carugati, L.; Corinaldesi, C.; Dell’Anno, A.; Gjerde, K.; Jamieson, A.J.; Kark, S.; et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 2020, 4, 181–192. [Google Scholar] [CrossRef]
- Leroy, G.; Carroll, E.L.; Bruford, M.W.; DeWoody, J.A.; Strand, A.; Waits, L.; Wang, J. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol. Appl. 2018, 11, 1066–1083. [Google Scholar] [CrossRef]
- Corlett, R.T. Safeguarding our future by protecting biodiversity. Plant Divers. 2020, 42, 221–228. [Google Scholar] [CrossRef]
- Borelli, T.; Hunter, D.; Powell, B.; Ulian, T.; Mattana, E.; Termote, C.; Pawera, L.; Beltrame, D.; Penafiel, D.; Tan, A.; et al. Born to Eat Wild: An Integrated Conservation Approach to Secure Wild Food Plants for Food Security and Nutrition. Plants 2020, 9, 1299. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M.; Williams, D.R.; Kimmel, K.; Polasky, S.; Packer, C. Future threats to biodiversity and pathways to their prevention. Nature 2017, 546, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Fromentin, J.-M.; Emery, M.R.; Donaldson, J.; Balachander, G.; Barron, E.S.; Chaudhary, R.P.; Danner, M.-C.; Gasalla, M.A.; Hallosserie, A.; Halmy, M.; et al. Status, challenges and pathways to the sustainable use of wild species. Global Environ. Change 2023, 81, 102692. [Google Scholar] [CrossRef]
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Hassan, F.; Zahoor, I.; Majeed, U.; Khanday, F.A. Biodiversity, Management and Sustainable Use of Medicinal and Aromatic Plant Resources. In Medicinal and Aromatic Plants; Aftab, T., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Sharangi, A.B.; Gowda, M.P.; Das, S. Responses of turmeric to light intensities and nutrients in a forest ecosystem: Retrospective insight. Trees For. People 2022, 7, 100208. [Google Scholar] [CrossRef]
- Harish, B.S.; Umesha, K.; Venugopalan, R.; Maruthi Prasad, B.N. Photo-selective nets influence physiology, growth, yield and quality of turmeric (Curcuma longa L.). Ind. Crops Prod. 2022, 186, 115202. [Google Scholar] [CrossRef]
- Vidanapathirana, N.P.; Subasinghe, S.; Sunil, K.; Ketipearachchi, K.G.; Siriwardana, A.J.M.C.M.; Bandusekara, B.S. Growth and yield performances of turmeric (Curcuma longa) grown in the dry zone of Sri Lanka as affected by planting space, growing media, and shade. J. Agro-Technol. Rural Sci. 2022, 1, 27–31. [Google Scholar] [CrossRef]
- Murwani, Z.A.; Artika, I.M.; Syaefudin; Nurcholis, W. Evaluation of growth, chlorophyll content, and photosynthesis rate of Curcuma xanthorrhiza with different shade levels. Curr. Appl. Sci. Technol. 2024, 24, e0256871. [Google Scholar] [CrossRef]
- Retana-Cordero, M.; Fisher, P.R.; Gómez, C. Modeling the Effect of Temperature on Ginger and Turmeric Rhizome Sprouting. Agronomy 2021, 11, 1931. [Google Scholar] [CrossRef]
- Chintakovid, N.; Tisarum, R.; Samphumphuang, T.; Sotesaritkul, T.; Cha-um, S. Evaluation of curcuminoids, physiological adaptation, and growth of Curcuma longa under water deficit and controlled temperature. Protoplasma 2022, 259, 301–315. [Google Scholar] [CrossRef]
- Dolase, P.; Chaudhari, V. Review on cultivation practices of Haridra (Curcuma longa Linn.). Int. J. Ayurveda Pharm. Res. 2024, 12, 56–61. [Google Scholar] [CrossRef]
- Bustami, K.; Saifrizal, M.; Maulana, M.; Chadafi, M.F.; Abdullah, A. Development of Curcuma caesia (Black Turmeric) cultivation as a leading local traditional medicine plant. J. Jurma: J. Program Mhs. Kreat. Univ. Ibn Khaldun Bogor 2022, 6, 442–450. [Google Scholar] [CrossRef]
- Shannon, D.A.; van Santen, E.; Zehtab Salmasi, S.; Murray, T.J.; Duong, L.T.; Greenfield, J.T.; Gonzales, T.; Foshee, W. Shade, establishment method, and varietal effects on rhizome yield and curcumin content in turmeric in Alabama. Agronomy 2019, 59, 2701–2710. [Google Scholar] [CrossRef]
- Boontiang, K.; Siritrakulsak, T.; Nontaswatsri, C. A strategic approach to achieve healthy plant growth and decontaminated rhizome of Curcuma alismatifolia Gagnep. cultivation in modified substrate on raised-bed planting. J. Applied Hort. 2024, 26, 202–205. [Google Scholar] [CrossRef]
- Ingudam, B.; Chongtham, S.K.; Basumatary, A.; Singh, A.H.; Das, A.; Choudhary, A.K.; Kamei, G.; Sinyorita, S.; Singh, L.K.; Devi, E.L.; et al. Changes in soil properties, productivity and profitability as influenced by the adoption of site-specific integrated crop management technology in turmeric (Curcuma longa L.) in Eastern Himalayan acidic Inceptisol. Ind. Crops Prod. 2022, 180, 114745. [Google Scholar] [CrossRef]
- Sontsa-Donhoung, A.M.; Hawaou, B.; Bahdjolbe, M.; Nekou, G.N.; Tadjouo, I.K.; Nwaga, D. Growing Curcuma longa for rhizome production on diverse arable soil types in Cameroon: Agronomic and microbial parameters. Agric. Sci. 2021, 12, 464–480. [Google Scholar] [CrossRef]
- Kumar, A. Diseases of Ginger and Turmeric. In Handbook of Spices in India: 75 Years of Research and Development; Ravindran, P.N., Sivaraman, K., Devasahayam, S., Babu, K.N., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Retana-Cordero, M.; Flores, S.J.; Fisher, P.R.; Freyre, R.; Gómez, C. Effect of Container Volume and Planting Density on Ginger and Turmeric Growth and Yield. HortTechnology 2022, 32, 425–434. [Google Scholar] [CrossRef]
- Divya, V.U.; Sindhu, P.V. Spacing and propagule size on yield and quality of Curcuma aromatica Salisb. J. Crop Weed 2023, 19, 266–270. [Google Scholar] [CrossRef]
- Kittur, B.H.; Sudhakara, K.; Mohan Kumar, B.; Kunhamu, T.K.; Sureshkumar, P. Bamboo-Based Agroforestry Systems in Kerala, India: Performance of Turmeric (Curcuma longa L.) in the Subcanopy of Differentially Spaced Seven-Year-Old Bamboo Stand. Agrofor. Syst. 2016, 90, 237–250. [Google Scholar] [CrossRef]
- Flores, S.; Retana-Cordero, M.; Fisher, P.R.; Freyre, R.; Gómez, C. Effect of Photoperiod, Propagative Material, and Production Period on Greenhouse-Grown Ginger and Turmeric Plants. HortScience 2021, 56, 1476–1485. [Google Scholar] [CrossRef]
- Anitha, M.; Hore, J.K. Production Technology of Some Major and Minor Spice Crops. In Indian Spices; Sharangi, A., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Nair, M.B.; Groot, M.J. Medicinal Plants for Home Herbal Gardens, Institutional Gardens, and Animal Health; Natural Livestock Farming India. 2021. Available online: https://edepot.wur.nl/561732 (accessed on 31 March 2025).
- Jungklang, J.; Saengnil, K.; Uthaibutra, J. Effects of Water-Deficit Stress and Paclobutrazol on Growth, Relative Water Content, Electrolyte Leakage, Proline Content and Some Antioxidant Changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi J. Biol. Sci. 2017, 24, 1505–1512. [Google Scholar] [CrossRef]
- Chungloo, D.; Tisarum, R.; Pinruan, U.; Sotesaritkul, T.; Saimi, K.; Praseartkul, P.; Himanshu, S.K.; Datta, A.; Cha-Um, S. Alleviation of Water-Deficit Stress in Turmeric Plant (Curcuma longa L.) Using Phosphate Solubilizing Rhizo-Microbes Inoculation. 3 Biotech 2024, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, D. A Guide to Good Agricultural Practices for Commercial Production of Ginger Under Field Conditions in Jamaica; FAO: Kingston, UK, 2021. [Google Scholar] [CrossRef]
- Kadam, J.H.; Kamble, B.M. Effect of organic manures on growth, yield, and quality of turmeric (Curcuma longa L). J. Appl. Nat. Sci. 2020, 12, 91–97. [Google Scholar] [CrossRef]
- Ben, T.T.; Linh, L.N.T.; Giang, T.T.L.; Dao, V.Q.; Oanh, N.T.T.; Dang, L.V.; Thach, B.D. The effects of organic fertilizer and planting type on growth and yield of Curcuma aromatica. Indian J. Agric. Res. 2022, 56, 712–716. [Google Scholar] [CrossRef]
- Datta, S.; Jana, J.C.; Bhaisare, P.T.; Nimbalkar, K.H. Effect of organic source of nutrients and biofertilizers on growth, yield, and quality of turmeric (Curcuma longa L). J. Appl. Nat. Sci. 2017, 9, 1981–1986. [Google Scholar] [CrossRef]
- Jyotirmayee, B.; Tripathy, S.; Samal, H.B.; Mahalik, G. The impact of organic fertilizers on growth, yield, and rhizospheric bacterial diversity in black turmeric (Curcuma caesia). J. Angiotherapy 2024, 8, 1–12. [Google Scholar]
- Chandana, M.; Padma, M.; Prabhakar, B.N.; Joshi, V.; Mahender, B.; Gouthami, P.; Sathish, G. Studies on effect of organic manures and biofertilizers on growth, yield, and economics of turmeric (Curcuma longa L.) varieties. Pharma Innov. J. 2022, 11, 824–832. [Google Scholar]
- Bahar, F.A.; Lone, A.A.; Makhdoomi, M.I.; Dar, E.A.; Ahmad, M.; Akhone, M.M.; Hussain, N.; Mushtaq, T.; Bhat, F.N.; Aziz, M.A. Slow release nitrogen fertilizers—An ideal approach for reducing nitrogen losses and improving crop yields. Chem. Sci. Rev. Lett. 2019, 8, 159–172. [Google Scholar]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef]
- Prem, M.; Ranjan, P.; Seth, N.; Patle, G.T. Mulching techniques to conserve the soil water and advance the crop production—A review. Curr. World Environ. 2020, 15, 10–30. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Haida, Z.; Sinniah, U.R.; Nakasha, J.J.; Hakiman, M. Shoot Induction, Multiplication, Rooting and Acclimatization of Black Turmeric (Curcuma caesia Roxb.): An Important and Endangered Curcuma Species. Horticulturae 2022, 8, 740. [Google Scholar] [CrossRef]
- Bandara, M.M.N.T.; Dahanayake, N.; Subasinghe, S.; Perera, P.C.D. A review on in vitro propagation of turmeric (Curcuma longa L.). J. Univ. Ruhuna 2021, 9, 39–46. [Google Scholar] [CrossRef]
- Babu, K.N.; Divakaran, M.; Pillai, G.S.; Sumathi, V.; Praveen, K.; Raj, R.P.; Akshita, H.J.; Ravindran, P.N.; Peter, K.V. Protocols for In Vitro Propagation, Conservation, Synthetic Seed Production, Microrhizome Production, and Molecular Profiling in Turmeric (Curcuma longa L.). In Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, 2nd ed.; Jain, S., Ed.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1391, pp. 333–350. [Google Scholar] [CrossRef]
- Hailemichael, G.; Zakir, M. Pre- and post-harvest practices influencing yield and quality of turmeric (Curcuma longa L.) in Southwestern Ethiopia: A review. African J. Agric. Res. 2021, 17, 1096–1105. [Google Scholar] [CrossRef]
- Thakur, N.; Sharma, P.; Govender, P.P.; Shukla, S.K. Analysis and extraction of curcumin at mid and late phase harvested Curcuma longa samples collected from Western Himalayan regions. Chem. Afr. 2022, 5, 1733–1742. [Google Scholar] [CrossRef]
- Nair, K.P. Harvesting and Postharvest Management of Turmeric. In Turmeric (Curcuma longa L.) and Ginger (Zingiber officinale Rosc.)—World’s Invaluable Medicinal Spices; Springer: Cham, Switzerland, 2019; pp. 1–24. [Google Scholar] [CrossRef]
1a. Epigynous glands absent | 2 |
1b. Epigynous glands present | 9 |
2a. Thyrse campanulate, with two or three fertile bracts | 3 |
2b. Thyrse cylindrical, with more than five fertile bracts | 5 |
3a. Labellum with red color; stigma glabrous | 3. Curcuma pedicellata |
3b. Labellum without red color; stigma ciliate | 4 |
4a. Petioles 5–12 cm long; leafy shoot with 2–3 leaves | Curcuma campanulata |
4b. Petioles 1–3 cm long; leafy shoot with 4–7 leaves | Curcuma clovisii |
5a. Fertile bracts with reddish stripes | Curcuma rhabdota |
5b. Fertile bracts without reddish stripes | 6 |
6a. Coma bracts pink | 7 |
6b. Coma bracts white or white with green | 8 |
7a. Staminodes present; lamina narrowly elliptic | Curcuma alismatifolia |
7b. Staminodes absent; lamina linear | Curcuma graminifolia |
8a. Staminodes without purple color | Curcuma larsenii |
8b. Staminodes with purple color | Curcuma thorelii |
9a. Flowers open form (staminodes free from dorsal corolla lobe) | 10 |
9b. Flowers closed form (staminodes covered by dorsal corolla lobe) | 16 |
10a. Anther spurs filamentous or less than 2 mm long | 11 |
10b. Anther spurs conical or cylindrical or longer than 2 mm long | 12 |
11a. Staminodes pure white | Curcuma cochinchinensis |
11b. Staminodes white with reddish-purple at the apex | 4. Curcuma pierreana |
12a. Inflorescence lateral | 13 |
12b. Inflorescence terminal | 14 |
13a. Staminodes yellow with purple at base | Curcuma corniculata |
13b. Staminodes white with pale yellow along longitudinal midlobe | Curcuma singularis |
14a. Anther yellow | Curcuma flammea |
14b. Anther white | 15 |
15a. Epigynous glands 1–2 mm long | Curcuma peramoena |
15b. Epigynous glands 4–5 mm long | 6. Curcuma sabhasrii |
16a. Rhizome not branched or with very short branches | 17 |
16b. Rhizome with well-developed branches | 18 |
17a. Leaves shorter (15–30 cm long), soft in texture; flowering in summer; tuberous roots borne at the end of long fibers | Curcuma angustifolia |
17b. Leaves longer (75–90 cm long), firm in texture; flowering in autumn; tuberous roots sessile to the primary rhizome | Curcuma attenuata |
18a. Inflorescence terminal | 19 |
18b. Inflorescence lateral | 22 |
19a. Peduncle red | 2. Curcuma phrayawan |
19b. Peduncle green | 20 |
20a. Leaves with reddish-purple midrib | 7. Curcuma wanenlueanga |
20b. Leaves with green midrib | 21 |
21a. Inflorescence with cylindrical thyrse 25–40 cm long | Curcuma petiolata |
21b. Inflorescence with conical thyrse 15–20 cm long | 5. Curcuma rangjued |
22a. Midrib of young leaves red, fading with maturity | 1. Curcuma comosa |
22b. Midrib of young leaves green, remaining green with maturity | 23 |
23a. Petioles sessile | Curcuma trichosantha |
23b. Petioles long | 24 |
24a. Abaxial surface of leaves pubescent | Curcuma aromatica |
24b. Abaxial surface of leaves glabrous | Curcuma neilgherrensis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saensouk, P.; Saensouk, S.; Chanthavongsa, K.; Sengthong, A.; Phengmala, K.; Maknoi, C.; Rakarcha, S.; Boonma, T. Seven New Records of Curcuma L. (Zingiberaceae) for the Flora of Laos: Implications for Biodiversity Conservation and Sustainable Horticulture. Horticulturae 2025, 11, 720. https://doi.org/10.3390/horticulturae11070720
Saensouk P, Saensouk S, Chanthavongsa K, Sengthong A, Phengmala K, Maknoi C, Rakarcha S, Boonma T. Seven New Records of Curcuma L. (Zingiberaceae) for the Flora of Laos: Implications for Biodiversity Conservation and Sustainable Horticulture. Horticulturae. 2025; 11(7):720. https://doi.org/10.3390/horticulturae11070720
Chicago/Turabian StyleSaensouk, Piyaporn, Surapon Saensouk, Khamfa Chanthavongsa, Anousone Sengthong, Kajonesuk Phengmala, Charun Maknoi, Sarayut Rakarcha, and Thawatphong Boonma. 2025. "Seven New Records of Curcuma L. (Zingiberaceae) for the Flora of Laos: Implications for Biodiversity Conservation and Sustainable Horticulture" Horticulturae 11, no. 7: 720. https://doi.org/10.3390/horticulturae11070720
APA StyleSaensouk, P., Saensouk, S., Chanthavongsa, K., Sengthong, A., Phengmala, K., Maknoi, C., Rakarcha, S., & Boonma, T. (2025). Seven New Records of Curcuma L. (Zingiberaceae) for the Flora of Laos: Implications for Biodiversity Conservation and Sustainable Horticulture. Horticulturae, 11(7), 720. https://doi.org/10.3390/horticulturae11070720