Genome-Wide Identification and Pollen-Specific Promoter Analysis of the DIR Gene Family in Rosa chinensis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Identification and Chromosomal Localization of DIR Genes in R. chinensis
2.3. Phylogenetic Tree Construction and Collinearity Analysis of RcDIRs
2.4. Analysis of Gene Structure, Conserved Domains, Protein Structure, and Promoter Cis-Acting Elements of RcDIRs
2.5. Promoter Cloning and Expression Vector Construction
2.6. Agrobacterium-Mediated Stable Genetic Transformation in A. thaliana
2.7. GUS Staining of the Transgenic A. thaliana
2.8. Pollen Viability Staining (I-KI Method)
2.9. DAPI Staining
3. Results
3.1. Identification and Physicochemical Property Analysis of the RcDIR Gene Family
3.2. Chromosomal Distribution and Gene Cluster Formation of RcDIRs
3.3. Phylogenetic Clustering, Structural Prediction, and Collinearity Analysis of the RcDIR Family
3.4. Conservation of Domains and Gene Structure Analysis of RcDIRs
3.5. Classification and Distribution of Cis-Acting Elements in the Promoters of RcDIRs
3.6. Identification of Three Pollen-Specific Elements in the Promoters of the DIR Gene Family in R. chinensis
3.7. Specific Expression of proRcDIR12::GUS in Pollen of Transgenic A. thaliana
3.8. Specific Expression of proRcDIR12::GUS in Mature Trinucleate Pollen
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hibrand, S.L.; Ruttink, T.; Hamama, L.; Kirov, I.; Lakhwani, D.; Zhou, N.N.; Bourke, P.M.; Daccord, N.; Leus, L.; Schulz, D.; et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 2018, 4, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, T.; Liu, Y.; Wu, S.; Sun, H.; Wu, J.; Li, Y.; Zheng, Y.; Ren, H.; Yang, Y.; et al. Haplotype-resolved genome assembly and resequencing provide insights into the origin and breeding of modern rose. Nat. Plants 2024, 10, 1659–1671. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Ma, L. Comprehensive insight into tapetum-mediated pollen development in Arabidopsis thaliana. Cells 2023, 12, 247. [Google Scholar] [CrossRef]
- Kilic, T. Identifying successful combinations by fertility index in old garden roses and hybrid tea roses crosses. PeerJ 2023, 11, e15526. [Google Scholar] [CrossRef]
- NaRa, J.; Ki Young, P. Rose pollen management methods to improve productivity. Agronomy 2022, 12, 1285. [Google Scholar] [CrossRef]
- Haberle, V.; Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 2018, 19, 621–637. [Google Scholar] [CrossRef]
- Chen, L.; Miao, Y.; Wang, C.; Su, P.; Li, T.; Wang, R.; Hao, X.; Yang, G.; He, G.; Gao, C. Characterization of a novel pollen-specific promoter from wheat (Triticum aestivum L.). Plant Mol. Biol. Rep. 2012, 30, 1426–1432. [Google Scholar] [CrossRef]
- Yan, S.; Wang, Z.; Liu, Y.; Li, W.; Wu, F.; Lin, X.; Meng, Z. Functional architecture of two exclusively late stage pollen-specific promoters in rice (Oryza sativa L.). Plant Mol. Biol. 2015, 88, 415–428. [Google Scholar] [CrossRef]
- Davin, L.B.; Wang, H.B.; Crowell, A.L.; Bedgar, D.L.; Martin, D.M.; Sarkanen, S.; Lewis, N.G. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 1997, 275, 362–366. [Google Scholar] [CrossRef]
- Halls, S.C.; Lewis, N.G. Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein. Biochemistry 2002, 41, 9455–9461. [Google Scholar] [CrossRef]
- Zhao, Z.; Guan, Y.; Qin, T.; Zheng, H.; Wang, H.; Xu, W.; Gu, W.; Yu, D.; Wei, J.; Hu, Y. A dirigent gene, ZmDIR11, positively regulates drought tolerance in maize. Agronomy 2025, 15, 604. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, N.; Dai, X.; Lin, J.; Ahmad, B.; Chen, Q.; Lei, Y.; Wen, Z. Ectopic and transient expression of VvDIR4 gene in Arabidopsis and grapes enhances resistance to anthracnose via affecting hormone signaling pathways and lignin production. BMC Genom. 2024, 25, 895. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Li, B.; Zhu, T.; Xue, B. Genome-wide identification and expression profiling analysis of DIR gene family in Setaria italica. Front. Plant Sci. 2023, 14, 1243806. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Xue, B.; He, Y.; Liao, S.; Li, X.; Li, X.; Liang, Y. Genome-wide identification and expression pattern analysis of dirigent members in the genus Oryza. Int. J. Mol. Sci. 2023, 24, 7189. [Google Scholar] [CrossRef]
- Panigua, C.; Bilkova, A.; Jackson, P.; Dabravolski, S.; Riber, W.; Didi, V.; Houser, J.; Gigli-Bisceglia, N.; Wimmerova, M.; Budínská, E.; et al. Dirigent proteins in plants: Modulating cell wall metabolism during abiotic and biotic stress exposure. J. Exp. Bot. 2017, 68, 3287–3301. [Google Scholar] [CrossRef]
- Yang, W.; Duan, H.; Yu, K.; Hou, S.; Kang, Y.; Wang, X.; Hao, J.; Liu, L.; Zhang, Y.; Luo, L.; et al. Integrative dissection of lignin composition in Tartary buckwheat seed hulls for enhanced dehulling efficiency. Adv. Sci. 2024, 11, e2400916. [Google Scholar] [CrossRef]
- Yuan, G.; Zou, T.; He, Z.; Xiao, Q.; Li, G.; Liu, S.; Xiong, P.; Chen, H.; Peng, K.; Zhang, X.; et al. SWOLLEN TAPETUM AND STERILITY 1 is required for tapetum degeneration and pollen wall formation in rice. Plant Physiol. 2022, 190, 352–370. [Google Scholar] [CrossRef]
- Khan, A.; Li, R.; Sun, J.; Ma, F.; Zhang, H.; Jin, J.; Ali, M.; Haq, S.; Wang, J.; Gong, Z.; et al. Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Sci. Rep. 2018, 8, 5500. [Google Scholar] [CrossRef]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; de Peer, Y.V.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef]
- Alvarez-Buylla, E.R.; Benítez, M.; Corvera-Poiré, A.; Chaos Cador, Á.; de Foltel, S.; Gamboa de Buen, A.; Garay-Arroyo, A.; García-Ponce, B.; Jaimes-Miranda, F.; Pérez-Ruiz, R.V.; et al. Flower development. Arab. Book 2010, 8, e127. [Google Scholar] [CrossRef]
- Ross, K.J.; Fransz, P.; Jones, G.H. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res. 1996, 4, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-W.; Moinuddin, S.G.A.; Atwell, K.M.; Costa, M.A.; Davin, L.B.; Lewis, N.G. Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. J. Biol. Chem. 2012, 287, 33957–33972. [Google Scholar] [CrossRef] [PubMed]
- Effenberger, I.; Zhang, B.; Li, L.; Wang, Q.; Liu, Y.; Klaiber, I.; Pfannstiel, J.; Wang, Q.; Schaller, A. Dirigent proteins from cotton (Gossypium sp.) for the atropselective synthesis of gossypol. Angew. Chem. Int. Ed. 2015, 54, 14660–14663. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fang, X.; Li, J.; Chen, Z.; Wu, W.; Guo, X.; Liu, N.; Huang, J.; Chen, F.; Wang, L.; et al. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds. Nat. Plants 2023, 9, 605–615. [Google Scholar] [CrossRef]
- Corbin, C.; Drouet, S.; Markulin, L.; Auguin, D.; Lainé, É.; Davin, L.B.; Cort, J.R.; Lewis, N.G.; Hano, C. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: From gene identification and evolution to differential regulation. Plant Mol. Biol. 2018, 97, 73–101. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Weterings, K.; Schrauwen, J.; Wullems, G.; Twell, D. Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J. 1995, 8, 55–63. [Google Scholar] [CrossRef]
- Manimaran, P.; Reddy, M.R.; Rao, T.B.; Mangrauthia, S.K.; Sundararam, R.M.; Balachandran, S.M. Identification of cis-elements and evaluation of upstream regulatory region of a rice anther-specific gene, OSIPP3, conferring pollen-specific expression in Oryza sativa (L.) ssp. indica. Plant Reprod. 2015, 28, 133–142. [Google Scholar] [CrossRef]
- Twell, D.; Yamaguchi, J.; Wing, R.A.; Ushiba, J.; McCormick, S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 1991, 5, 496–507. [Google Scholar] [CrossRef]
- Caser, M.; Dente, F.; Ghione, G.; Mansuino, A.; Giovannini, A.; Scariot, V. Shortening of selection time of Rosa hybrida by in vitro culture of isolated embryos and immature seeds. Propag. Ornam. Plants. 2014, 14, 139–144. [Google Scholar]
- Nadeem, M.; Akond, M.; Riaz, A.; Qasim, M.; Younis, A.; Farooq, A. Pollen morphology and viability relates to seed production in hybrid roses. Plant Breed. Seed Sci. 2014, 68, 25–38. [Google Scholar] [CrossRef]
- Macovei, A.; Caser, M.; Donà, M.; Valassi, A.; Giovannini, A.; Carbonera, D.; Scariot, V.; Balestrazzi, A. Prolonged cold storage affects pollen viability and germination along with hydrogen peroxide and nitric oxide content in Rosa hybrida. Not. Bot. Hort. Agrobot. Cluj-Na 2016, 44, 6–10. [Google Scholar] [CrossRef]
- Tripathi, S.; Singh, S.; Roy, K.R. Pollen morphology of Bougainvillea (Nyctaginaceae): A popular ornamental plant of tropical and sub-tropical gardens of the world. Rev. Palaeobot. Palynol. 2017, 239, 31–46. [Google Scholar] [CrossRef]
- Honys, D.; Twell, D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003, 132, 640–652. [Google Scholar] [CrossRef]
- Gibalová, A.; Reňák, D.; Matczuk, K.; Dupláková, N.; Cháb, D.; Twell, D.; Honys, D. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol. Biol. 2009, 70, 581–601. [Google Scholar] [CrossRef]
- Vogler, F.; Schmalzl, C.; Englhart, M.; Bircheneder, M.; Sprunck, S. Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod. 2014, 27, 153–167. [Google Scholar] [CrossRef]
- Laurence, B.; Davin, M.; Jourden, A.; Patten, A. Dissection of lignin macromolecular configuration and assembly: Comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat. Prod. Rep. 2008, 25, 1015–1090. [Google Scholar]
- Shi, H.; Liu, Z.; Zhu, L.; Zhang, C.; Chen, Y.; Zhou, Y.; Li, F.; Li, X. Overexpression of cotton (Gossypium hirsutum) dirigent 1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim. Biophys. Sin. 2012, 44, 555–564. [Google Scholar] [CrossRef]
- Hosmani, P.S.; Kamiya, T.; Danku, J.; Salt, D.E. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc. Natl. Acad. Sci. USA 2013, 110, 14498–14503. [Google Scholar] [CrossRef]
- Jiang, M.; Chu, Z. Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation. BMC Genom. 2018, 19, 407. [Google Scholar] [CrossRef]
- Qu, J.; Liu, L.; Guo, Z.; Li, X.; Pan, F.; Sun, D.; Yin, L. The ubiquitous position effect, synergistic effect of recent generated tandem duplicated genes in grapevine, and their co-response and overactivity to biotic stress. Fruit Res. 2023, 3, 16. [Google Scholar] [CrossRef]
- Ma, N.; Li, X.; Ci, D.; Zeng, H.; Zhang, C.; Xie, X.; Zhong, C.; Deng, X.W.; Li, D.; He, H. Chromatin topological domains associate with the rapid formation of tandem duplicates in plants. Nat. Commun. 2019, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Luo, W.; Du, C.; Lin, X.; Lin, G.; Chen, R.; He, H.; Wang, R.; Lu, L.; Xie, X. Functional and evolutionary comparative analysis of the DIR gene family in Nicotiana tabacum L. and Solanum tuberosum L. BMC Genom. 2024, 25, 671. [Google Scholar]
- Saddique, M.A.B.; Guan, G.; Hu, B.; Khan, M.; Amjad, M.D.; Abbas, S.; Hussain, Z.; Maqsood, M.F.K.; Luo, X.; Ren, M. Genome-wide computational analysis of the dirigent gene family in Solanum lycopersicum. Proteome Sci. 2024, 22, 10. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Sun, Z.; Zhang, Y.; Meng, C.; Chen, B.; Wang, G.; Ke, H.; Wu, J.; Yan, Y.; et al. Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes. BMC Plant Biol. 2021, 21, 89. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Su, Q.; Wu, Y.; Zhang, R.; Li, Y.; Ma, Y.; Ma, H.; Guo, X.; Zhu, L.; et al. High temperature induces male sterility via MYB66-MYB4-Casein kinase I signaling in cotton. Plant Physiol. 2022, 189, 2091–2109. [Google Scholar] [CrossRef]
- Xu, X.; Wang, B.; Feng, Y.; Xue, J.; Qian, X.; Liu, S.; Zhou, J.; Yu, Y.; Yang, N.; Xu, P.; et al. AUXIN RESPONSE FACTOR17 directly regulates MYB108 for anther dehiscence. Plant Physiol. 2019, 181, 645–655. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; He, S.; Gao, Y.; Wang, N.; Lu, R.; Li, X. A cotton (Gossypium hirsutum) WRKY transcription factor (GhWRKY22) participates in regulating anther/pollen development. Plant Physiol. Biochem. 2019, 141, 231–239. [Google Scholar] [CrossRef]
Gene Name | Gene ID | Number of Amino Acid | Molecular Weight (kDa) | Theoretical pI | Instability | Aliphatic Index | Grand Average of Hydropathicity | Subcellular Localization |
---|---|---|---|---|---|---|---|---|
RcDIR1 | RchiOBHmChr1g0319651 | 184 | 20.19 | 8.76 | 42.01 | 83.26 | 0.127 | extracellular |
RcDIR2 | RchiOBHmChr1g0319661 | 187 | 20.76 | 5.92 | 34.56 | 88.07 | 0.159 | extracellular |
RcDIR3 | RchiOBHmChr1g0365391 | 413 | 42.57 | 4.37 | 39.71 | 87.36 | −0.012 | vacuole |
RcDIR4 | RchiOBHmChr1g0365401 | 293 | 30.83 | 5.05 | 32.08 | 82.87 | 0.024 | chloroplast |
RcDIR5 | RchiOBHmChr2g0097361 | 189 | 20.37 | 9.52 | 20.92 | 94.92 | 0.072 | chloroplast |
RcDIR6 | RchiOBHmChr2g0125291 | 309 | 32.04 | 5.08 | 27.57 | 82.69 | −0.058 | chloroplast |
RcDIR7 | RchiOBHmChr2g0158831 | 177 | 19.25 | 9.33 | 39.47 | 95.31 | 0.119 | chloroplast |
RcDIR8 | RchiOBHmChr2g0158841 | 131 | 14.36 | 9.52 | 28.73 | 93.74 | 0.051 | chloroplast |
RcDIR9 | RchiOBHmChr2g0158861 | 205 | 22.21 | 8.85 | 30.27 | 94.63 | 0.307 | chloroplast |
RcDIR10 | RchiOBHmChr2g0158891 | 179 | 19.58 | 9.13 | 24.79 | 94.69 | 0.134 | chloroplast |
RcDIR11 | RchiOBHmChr2g0158911 | 178 | 19.28 | 6.10 | 32.49 | 96.97 | 0.206 | extracellular |
RcDIR12 | RchiOBHmChr2g0159671 | 180 | 19.54 | 9.12 | 37.30 | 85.00 | 0.093 | chloroplast |
RcDIR13 | RchiOBHmChr3g0478991 | 194 | 21.01 | 9.75 | 25.25 | 97.01 | 0.134 | chloroplast |
RcDIR14 | RchiOBHmChr3g0479011 | 170 | 18.45 | 9.79 | 48.94 | 76.82 | −0.106 | nucleus |
RcDIR15 | RchiOBHmChr3g0479031 | 197 | 21.40 | 9.59 | 41.76 | 78.68 | 0.043 | cytoplasm |
RcDIR16 | RchiOBHmChr3g0480301 | 184 | 20.83 | 6.95 | 33.55 | 86.36 | 0.024 | chloroplast |
RcDIR17 | RchiOBHmChr4g0396611 | 250 | 25.81 | 5.81 | 41.60 | 100.24 | 0.274 | chloroplast |
RcDIR18 | RchiOBHmChr4g0396621 | 249 | 25.58 | 5.01 | 36.07 | 89.00 | 0.117 | extracellular |
RcDIR19 | RchiOBHmChr5g0080641 | 175 | 19.66 | 9.39 | 34.10 | 96.34 | −0.025 | chloroplast |
RcDIR20 | RchiOBHmChr5g0081441 | 196 | 21.70 | 7.96 | 36.46 | 93.01 | 0.048 | chloroplast |
RcDIR21 | RchiOBHmChr5g0081451 | 196 | 21.72 | 6.97 | 40.35 | 92.55 | 0.033 | vacuole |
RcDIR22 | RchiOBHmChr5g0081461 | 194 | 21.52 | 6.59 | 30.45 | 92.94 | 0.059 | vacuole |
RcDIR23 | RchiOBHmChr6g0244551 | 191 | 21.50 | 8.93 | 37.37 | 87.7 | 0.108 | extracellular |
RcDIR24 | RchiOBHmChr6g0244561 | 186 | 19.80 | 5.43 | 21.10 | 86.51 | 0.114 | extracellular |
RcDIR25 | RchiOBHmChr6g0244571 | 233 | 25.34 | 6.65 | 38.33 | 82.45 | −0.072 | chloroplast |
RcDIR26 | RchiOBHmChr6g0244581 | 187 | 19.99 | 5.55 | 24.13 | 85.61 | 0.082 | chloroplast |
RcDIR27 | RchiOBHmChr6g0244591 | 191 | 21.10 | 9.46 | 31.66 | 76.60 | −0.165 | chloroplast |
RcDIR28 | RchiOBHmChr6g0244601 | 192 | 21.29 | 9.78 | 29.25 | 81.30 | −0.140 | chloroplast |
RcDIR29 | RchiOBHmChr7g0195991 | 184 | 20.98 | 5.91 | 34.24 | 76.3 | −0.037 | extracellular |
RcDIR30 | RchiOBHmChr7g0196001 | 180 | 20.22 | 6.17 | 32.34 | 83.5 | 0.163 | chloroplast |
RcDIR31 | RchiOBHmChr7g0196011 | 185 | 20.64 | 8.49 | 22 | 89.14 | 0.105 | chloroplast |
RcDIR32 | RchiOBHmChr7g0196031 | 191 | 21.26 | 9.21 | 18.78 | 81.2 | 0.005 | chloroplast |
RcDIR33 | RchiOBHmChr7g0196041 | 167 | 18.67 | 8.56 | 33.72 | 81.26 | 0.043 | chloroplast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Yang, Q.; Wang, Z.; Zhao, Y.; Guo, S.; Peng, Y.; Li, Q.; Han, Y. Genome-Wide Identification and Pollen-Specific Promoter Analysis of the DIR Gene Family in Rosa chinensis. Horticulturae 2025, 11, 717. https://doi.org/10.3390/horticulturae11070717
Dong Q, Yang Q, Wang Z, Zhao Y, Guo S, Peng Y, Li Q, Han Y. Genome-Wide Identification and Pollen-Specific Promoter Analysis of the DIR Gene Family in Rosa chinensis. Horticulturae. 2025; 11(7):717. https://doi.org/10.3390/horticulturae11070717
Chicago/Turabian StyleDong, Qijing, Qian Yang, Zitong Wang, Yuan Zhao, Sixu Guo, Yifang Peng, Qi Li, and Yu Han. 2025. "Genome-Wide Identification and Pollen-Specific Promoter Analysis of the DIR Gene Family in Rosa chinensis" Horticulturae 11, no. 7: 717. https://doi.org/10.3390/horticulturae11070717
APA StyleDong, Q., Yang, Q., Wang, Z., Zhao, Y., Guo, S., Peng, Y., Li, Q., & Han, Y. (2025). Genome-Wide Identification and Pollen-Specific Promoter Analysis of the DIR Gene Family in Rosa chinensis. Horticulturae, 11(7), 717. https://doi.org/10.3390/horticulturae11070717