UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Instruments and Reagents
2.3. Crude Extraction
2.4. Total Polyphenol Content Assay
2.5. Total Flavonoid Content Assay
2.6. Phytochemical Detection by Ultra-Performance Liquid Chromatography (UPLC), Quadrupole Time-of-Flight Mass Spectrometry (QTOF-MS), and Electrospray Ionization (ESI) (UPLC-QTOF-ESI-MS/MS)
2.7. Quantification of Flavonoid Glycosides by HPLC
2.8. Calibration Curves
2.9. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenol and Total Flavonoid (TPC and TFC) Content
3.2. UPLC-QTOF-ESI-MS/MS Profiling
3.3. HPLC Quantitative Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Nien, C.; Chen, L.; Huang, K.; Chang, W.; Huang, H. Effects of Sapindus mukorossi seed oil on skin wound healing: In vivo and in vitro testing. Int. J. Mol. Sci. 2019, 20, 2579. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Dobhal, P.; Ashfaqullah, S.; Chauhan, H.K.; Tamta, S. Review of the botany, traditional uses, pharmacology, threats and conservation of Zanthoxylum armatum (Rutaceae). S. Afr. J. Bot. 2022, 150, 920–927. [Google Scholar] [CrossRef]
- Vlčko, T.; Rathod, N.B.; Kulawik, P.; Ozogul, Y.; Ozogul, F. The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. Adv. Food Nutr. Res. 2022, 99, 275–339. [Google Scholar]
- Xu, Y.; Gao, Y.; Chen, Z.; Liu, J.; Wang, X.; Jia, L. Metabolomics analysis of the soapberry (Sapindus mukorossi Gaertn.) pericarp during fruit development and ripening based on UHPLC-HRMS. Sci. Rep. 2021, 11, 11657. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, A.; Song, L.; He, C.; He, H. Evaluation of Sapindus mukorossi Gaertn flower water extract on in vitro anti-acne activity. Curr. Issues Mol. Biol. 2025, 47, 316. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, D. Pharmacological effects of Sapindus mukorossi. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 273–280. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on saponins: Food functionality and applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef]
- Zhou, M.; Fan, J.; Gao, Y.; Zheng, C.; Xu, Y.; Jia, L.; An, X.; Chen, Z. Identification and analysis of UGT genes associated with triterpenoid saponin in soapberry (Sapindus mukorossi Gaertn.). BMC Plant Biol. 2024, 24, 588. [Google Scholar] [CrossRef]
- Meshram, P.D.; Shingade, S.; Madankar, C.S. Comparative study of saponin for surfactant properties and potential application in personal care products. Mater. Today Proc. 2021, 45, 5010–5013. [Google Scholar] [CrossRef]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res. Int. 2022, 2022, 83. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, S.; Chen, Z.; Zhao, G.; Liu, J.; Wang, L.; Wang, X.; Jia, L.; Zhang, D. Contents of the total saponins and total flavonoids in different organs of Sapindus mukorossi. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2021, 45, 83. [Google Scholar]
- Sochacki, M.; Vogt, O. Triterpenoid saponins from washnut (Sapindus mukorossi Gaertn.)—A source of natural surfactants and other active components. Plants 2022, 11, 2355. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.M.A.; Da Silva, K.P.A.; De Oliveira, L.P.M.; Costa, E.V.; Koolen, H.H.; Pinheiro, M.L.B.; De Souza, A.Q.L.; De Souza, A.D.L. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz 2020, 115, e200207. [Google Scholar] [CrossRef] [PubMed]
- Rani, I.; Kalsi, A.; Kaur, G.; Sharma, P.; Gupta, S.; Gautam, R.K.; Chopra, H.; Bibi, S.; Ahmad, S.U.; Singh, I.; et al. Modern drug discovery applications for the identification of novel candidates for COVID-19 infections. Ann. Med. Surg. 2022, 80, 104294. [Google Scholar] [CrossRef]
- Chehlh, T.C.; Rincon-Cervera, M.A.; Gomez-Mercado, F.; Lopez-Ruiz, R.; Gallon-Bedoya, M.; Ezzaitouni, M.; Guil-Guerrero, J.L. Wild asparagus shoots constitute a healthy source of bioactive compounds. Molecules 2023, 28, 5786. [Google Scholar] [CrossRef]
- Lee, C.; Cho, H.; Shim, J.; Tran, G.H.; Lee, H.; Ahn, K.H.; Yoo, E.; Chung, M.J.; Lee, S. Characteristics of phenolic compounds in Peucedanum japonicum according to various stem and seed colors. Molecules 2023, 28, 6266. [Google Scholar] [CrossRef]
- Ma, C. Simultaneous quantification of eight compounds of Lonicera japonica by HPLC-DAD. Nat. Prod. Sci. 2024, 30, 52–58. [Google Scholar] [CrossRef]
- Singh, R.; Kumari, N. Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorossi Gaertn—A valuable medicinal tree. Ind. Crops Prod. 2015, 73, 1–8. [Google Scholar] [CrossRef]
- Shah, M.; Parveen, Z.; Khan, M.R. Evaluation of antioxidant, anti-inflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC Complement. Altern. Med. 2017, 17, 526. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of extraction conditions on the phenolic composition and antioxidant capacity of grape stem extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef]
- Silva, D.B.; Turatti, I.C.C.; Gouveia, D.R.; Ernst, M.; Teixeira, S.P.; Lopes, N.P. Mass spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species. Sci. Rep. 2014, 4, 4309. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Ishita, I.J.; Jung, H.A.; Choi, J.S. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem. Toxicol. 2014, 69, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Meng, C.; Zhang, Z.; Ma, H.; Lv, T.; Xie, S.; Liu, Y.; Wang, C. Comparative metabolism of schaftoside in healthy and calcium oxalate kidney stone rats by UHPLC-Q-TOF-MS/MS method. Anal. Biochem. 2020, 597, 113673. [Google Scholar] [CrossRef]
- Kim, Y.; Pyeon, J.; Lee, J.; Kim, E.; La, I.; Lee, O.; Kim, K.; Sung, J.; Kim, Y. Chemical fingerprint analysis of fermented Morinda citrifolia L. (noni) juice by UHPLC Q-TOF/MS combined with chemometric analysis. Appl. Biol. Chem. 2024, 67, 59. [Google Scholar] [CrossRef]
- Fan, S.; Ma, J.; Yuan, X.; Wang, X.; Wang, Y.; Zhang, Y. Determination of icariside, hyperoside and psoralen in food by liquid chromatography-tandem mass spectrometry. J. Future Foods 2023, 3, 263–272. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Yong, Y.S.; Razali, F.N.; Stephenie, S.; Shah, M.D.; Tan, J.K.; Gnanaraj, C.; Esa, N.M. LC-MS/MS and GC-MS analysis for the identification of bioactive metabolites responsible for the antioxidant and antibacterial activities of Lygodium microphyllum (Cav.) R. Br. Separations 2023, 10, 215. [Google Scholar] [CrossRef]
- Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, Q.; Zhong, W.; Chen, M.; Gong, H.; He, S.; Liang, R.; Lv, J.; Song, L. Rapid identification and analysis of the major chemical constituents from the fruits of Sapindus mukorossi by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Res. 2019, 34, 2144–2150. [Google Scholar] [CrossRef]
- Sun, C.; Wang, J.; Duan, J.; Zhao, G.; Weng, X.; Jia, L. Association of fruit and seed traits of Sapindus mukorossi germplasm with environmental factors in southern China. Forests 2017, 8, 491. [Google Scholar] [CrossRef]
- Aboud, N.M.A. Unlocking the genetic potential: Strategies for enhancing secondary metabolite biosynthesis in plants. J. Saudi Soc. Agric. Sci. 2024, 23, 542–554. [Google Scholar] [CrossRef]
- Deng, B.; Cao, Y.; Fang, S.; Shang, X.; Yang, W.; Qian, C. Variation and stability of growth and leaf flavonoid content in Cyclocarya paliurus across environments. Ind. Crops Prod. 2015, 76, 386–393. [Google Scholar] [CrossRef]
- Bai, Y.; Gu, Y.; Liu, S.; Jiang, L.; Han, M.; Geng, D. Flavonoids metabolism and physiological response to ultraviolet treatments in Tetrastigma hemsleyanum Diels et Gilg. Front. Plant Sci. 2022, 13, 926197. [Google Scholar] [CrossRef] [PubMed]
- Wisetkomolmat, J.; Suppakittpaisarn, P.; Sommano, S.R. Detergent plants of northern Thailand: Potential sources of natural saponins. Resources 2019, 8, 10. [Google Scholar] [CrossRef]
- Al-Rajhi, A.M.H.; Ghany, T.M.A. In vitro repress of breast cancer by bio-product of edible Pleurotus ostreatus loaded with chitosan nanoparticles. Appl. Biol. Chem. 2023, 66, 33. [Google Scholar] [CrossRef]
- Yu, S.; Guo, Q.; Jia, T.; Zhang, X.; Guo, D.; Jia, Y.; Li, J.; Sun, J. Mechanism of action of nicotiflorin from Tricyrtis maculata in the treatment of acute myocardial infarction: From network pharmacology to experimental pharmacology. Drug Des. Dev. Ther. 2021, 15, 2179–2191. [Google Scholar] [CrossRef]
- El-Alfy, M.S.; Mostafa, M.E.; Dawidar, A.M.; Abdel-Mogib, M. Phytochemical composition and green insecticides from Citrus aurantifolia fruit peels against whitefly, Bemisia tabaci. Appl. Biol. Chem. 2024, 67, 85. [Google Scholar] [CrossRef]
a tR | Molecular Formula | Molecular Weight | Tentative Identification |
---|---|---|---|
13.60 | C33H40O21 | 772.2 | Quercetin 3-rutinoside-7-glucoside |
15.71 | C27H30O15 | 594.2 | Vicenin-2 |
18.00 | C26H28O14 | 564.1 | Schaftoside |
19.67 | C27H30O16 | 610.2 | Rutin |
20.06 | C21H20O12 | 464.1 | Hyperoside |
21.04 | C27H30O15 | 594.2 | Nicotiflorin |
21.40 | C28H32O16 | 624.2 | Narcissin |
Compound | a tR | Regression Equation | b R2 |
---|---|---|---|
1 | 20.77 | y = 9846.2x + 95,280 | 0.9991 |
2 | 21.51 | y = 10,370x + 72,185 | 0.9997 |
3 | 21.63 | y = 16,616x +323,207 | 0.9983 |
Sample | Content (mg/g) | |||
---|---|---|---|---|
1 | 2 | 3 | Total | |
SLE | 54.37 ± 0.63 b | 14.25 ± 0.38 a | 5.19 ± 0.25 a | 78.31 |
SST | 11.59 ± 0.10 c | 0.92 ± 0.04 c | 2.78 ± 0.04 c | 15.29 |
SFR | 1 ND | ND | ND | ND |
SPF | 1.89 ± 0.07 f | tr | tr | 1.89 |
SSE | 2 tr | tr | tr | tr |
DLE | 70.21 ± 0.23 a | 11.21 ± 0.11 b | 4.02 ± 0.05 b | 85.44 |
DST | 5.89 ± 0.65 d | 0.41 ± 0.04 d | 0.76 ± 0.08 d | 7.06 |
DFR | 4.71 ± 0.20 e | 0.02 ± 0.12 d | 0.62 ± 0.17 d | 5.35 |
DPF | tr | tr | tr | tr |
DSE | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uy, N.P.; Lee, H.-D.; Ku, J.; Choi, K.; Lee, S. UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi. Horticulturae 2025, 11, 682. https://doi.org/10.3390/horticulturae11060682
Uy NP, Lee H-D, Ku J, Choi K, Lee S. UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi. Horticulturae. 2025; 11(6):682. https://doi.org/10.3390/horticulturae11060682
Chicago/Turabian StyleUy, Neil Patrick, Hak-Dong Lee, Jajung Ku, Kyung Choi, and Sanghyun Lee. 2025. "UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi" Horticulturae 11, no. 6: 682. https://doi.org/10.3390/horticulturae11060682
APA StyleUy, N. P., Lee, H.-D., Ku, J., Choi, K., & Lee, S. (2025). UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi. Horticulturae, 11(6), 682. https://doi.org/10.3390/horticulturae11060682