Moringa-Based Coating Preserves Organic Acids and Antioxidant Compounds of ‘Ester’ Granadilla Fruit Exocarps During Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Coating Preparation
2.3. Coating Application
2.4. The pH and Organic Acid Data Collection
2.5. The Analysis of Total Antioxidant Compound Data Collection
2.6. Data Analysis
3. Results
3.1. The Effect of Moringa, Xanthan, and Rosemary Coatings on the pH of Granadilla Exocarp
3.2. The Effect of Moringa, Xanthan, and Rosemary Coatings on the Citric Acid Concentration from Granadilla Exocarp
3.3. The Effect of Moringa, Xanthan, and Rosemary Coatings on the Malic Acid Concentration from Granadilla Exocarp
3.4. The Effect of Moringa, Xanthan, and Rosemary Coatings on the Tartaric Acid Concentration from Granadilla Exocarp
3.5. The Effect of Moringa, Xanthan, and Rosemary Coatings on the Antioxidant Compounds in Granadilla Fruit Exocarp
3.6. Correlations of Total Antioxidant Compounds and Organic Acidity
3.7. Regression Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marokhu, M.K.; Fatoki, O.O. Young customers’ intention to purchase organic food in South Africa: Extending the theory of planned behaviour. Food Res. 2024, 3, 351–364. [Google Scholar] [CrossRef]
- Viacava, G.E.; Ansorena, M.R.; Marcovich, N.E. Multilayered films for food packaging. In Nanostructured Materials for Food Packaging Applications; Elsevier: Amsterdam, The Netherlands, 2024; pp. 447–475. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kalompatsios, D.; Kotsou, K.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Optimization of Four Different Rosemary Extraction Techniques Using Plackett–Burman Design and Comparison of Their Antioxidant Compounds. Int. J. Mol. Sci. 2024, 25, 7708. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Ansah, P.; Alhassan, A.R.; Ayamgama, A.A.; Adzaworlu, E.G.; Afoakwah, N.A.; Mahunu, G.K.; Amagloh, F.K. Phytochemical analysis, enumeration, isolation, and antimicrobial activity of lemongrass and moringa leaves extracts. J. Agric. Food Res. 2023, 12, 100579. [Google Scholar] [CrossRef]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z.; Mbili, N.C. The solvent-dependent efficacy of Moringa leaf extract as an antifungal ingredient of organic coatings for citrus fruit. In Acta Horticulturae, Proceedings of the II International Symposium on Moringa 1306, Pretoria, South Africa, 10–13 November 2019; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2021; pp. 317–322. [Google Scholar] [CrossRef]
- Ngcobo, B.L.; Mbuyisa, S. November. Recent developments in environmentally friendly techniques for extracting bioactive compounds from moringa plant parts. In Acta Horticulturae, Proceedings of the III International Symposium on Moringa 1394, Aracaju, Brazil, 8–10 November 2023; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2023; pp. 93–98. [Google Scholar] [CrossRef]
- Chan-Matú, D.I.; Toledo-López, V.M.; Vargas, M.D.L.V.Y.; Rincon-Arriaga, S.; Rodríguez-Félix, A.; Madera-Santana, T.J. Preparation and characterization of chitosan-based bioactive films incorporating Moringa oleifera leaves extract. J. Food Meas. Charact. 2021, 15, 4813–4824. [Google Scholar] [CrossRef]
- Aghaei Dargiri, S.; Rastegar, S.; Mohammadi, M. Chitosan based coating enriched with Spirulina platensis and moringa leaf extracts preserved the postharvest quality of Mexican Lime (Citrus aurantifolia). J. Hortic. Postharvest Res. 2024, 8, 105–124. [Google Scholar] [CrossRef]
- Kahya, N.; Kestir, S.M.; Öztürk, S.; Yolaç, A.; Torlak, E.; Kalaycıoğlu, Z.; Akın-Evingür, G.; Erim, F.B. Antioxidant and antimicrobial chitosan films enriched with aqueous sage and rosemary extracts as food coating materials: Characterization of the films and detection of rosmarinic acid release. Int. J. Biol. Macromol. 2022, 217, 470–480. [Google Scholar] [CrossRef]
- Mikus, M.; Galus, S. Extending the Shelf Life of Apples After Harvest Using Edible Coatings as Active Packaging—A Review. Appl. Sci. 2025, 15, 767. [Google Scholar] [CrossRef]
- Chettri, S.; Sharma, N.; Mohite, A.M. Edible coatings and films for shelf-life extension of fruit and vegetables. Biomater. Adv. 2023, 154, 213632. [Google Scholar] [CrossRef]
- Vallarino, J.G.; Trevor, H.Y.; Eugenia, M.; Jocelyn, K.R.; Alisdair, R.F.; Sonia, O. Postharvest changes in LIN5-down-regulated plants suggest a role for sugar deficiency in cuticle metabolism during ripening. Phytochemistry 2017, 142, 11–20. [Google Scholar] [CrossRef]
- Liu, Y.H.; Offler, C.E.; Ruan, Y.L. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Front. Plant Sci. 2013, 4, 282. [Google Scholar] [CrossRef]
- Keunen, E.L.; Peshev, D.; Vangronsveld, J.; Van Den Ende, W.I.; Cuypers, A.N. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell Environ. 2013, 36, 1242–1255. [Google Scholar] [CrossRef] [PubMed]
- Davik, J.; Koehler, G.; From, B.; Torp, T.; Rohloff, J.; Eidem, P.; Wilson, R.C.; Sønsteby, A.; Randall, S.K.; Alsheikh, M.D. alcohol dehydrogenase, and central metabolite levels are associated with cold tolerance in diploid strawberry (Fragaria spp.). Planta 2013, 237, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Korn, M.; Gärtner, T.; Erban, A.; Kopka, J.; Selbig, J.; Hincha, D.K. Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol. Plant 2010, 3, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhou, Y.; Zhang, Z.; Li, T.; Jiang, Y.; Gao, H.; Yun, Z. Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya. Postharvest Biol. Technol. 2020, 160, 111059. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Hertog, M.L.; Van de Poel, B.; Ampofo-Asiama, J.; Geeraerd, A.H.; Nicolai, B.M. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol. Technol. 2011, 62, 7–16. [Google Scholar] [CrossRef]
- Pedreschi, R.; Franck, C.; Lammertyn, J.; Erban, A.; Kopka, J.; Hertog, M.; Verlinden, B.; Nicolaï, B. Metabolic profiling of ‘Conference’ pears under low oxygen stress. Postharvest Biol. Technol. 2009, 51, 123–130. [Google Scholar] [CrossRef]
- Hatoum, D.; Annaratone, C.; Hertog, M.L.A.T.M.; Geeraerd, A.H.; Nicolai, B.M. Targeted metabolomics study of “Braeburn” apples during long-term storage. Postharvest Biol. Technol. 2014, 96, 33–41. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, A.; Liu, S.; Sheng, L.; Ma, Q.; Zhang, L.; Nishawy, E.M.E.; Zeng, Y.; Xu, J.; Ma, Z.; et al. Integration of Metabolomics and Subcellular Organelle Expression Microarray to Increase Understanding the Organic Acid Changes in Post-harvest Citrus Fruit. J. Integr. Plant Biol. 2013, 55, 1038–1053. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Ragazzo-Sánchez, J.A.; Barros-Castillo, J.C.; Solís-Pacheco, J.R.; Calderón-Santoyo, M. Characterization of sodium alginate coatings with Meyerozyma caribbica and impact on quality properties of avocado fruit. LWT 2021, 152, 112346. [Google Scholar] [CrossRef]
- Ncama, K.; Mditshwa, A.; Tesfay, S.Z.; Mbili, N.C.; Magwaza, L.S. Topical procedures adopted in testing and application of plant-based extracts as bio-fungicides in controlling postharvest decay of fresh produce. Crop Prot. 2019, 115, 142–151. [Google Scholar] [CrossRef]
- Matrose, N.A.; Obikeze, K.; Belay, Z.A.; Caleb, O.J. Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review. Food Biosci. 2021, 41, 100840. [Google Scholar] [CrossRef]
- Chen, D.; Chen, T.; Chen, Y.; Zhang, Z.; Li, B.; Tian, S. Bio-source substances against postharvest diseases of fruits: Mechanisms, applications and perspectives. Postharvest Biol. Technol. 2023, 198, 112240. [Google Scholar] [CrossRef]
- Sharma, C.; Pathak, P.; Yadav, S.P.; Gautam, S. Potential of emerging “all-natural” edible coatings to prevent post-harvest losses of vegetables and fruits for sustainable agriculture. Prog. Org. Coat. 2024, 193, 108537. [Google Scholar] [CrossRef]
- Nandy, S.; Fortunato, E.; Martins, R. Green economy and waste management: An inevitable plan for materials science. Prog. Nat. Sci. Mater. Int. 2022, 32, 1–9. [Google Scholar] [CrossRef]
- Ncama, K.; Sithole, N.J. The effect of nitrogen fertilizer and water supply levels on the growth, antioxidant compounds, and organic acids of baby lettuce. Agronomy 2022, 12, 614. [Google Scholar] [CrossRef]
- Aliyu, A.B.; Ibrahim, M.A.; Musa, A.M.; Musa, A.O.; Kiplimo, J.J.; Oyewale, A.O. Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (Araceae). Acta Pol. Pharm. 2013, 70, 115–121. [Google Scholar]
- Silva, F.C.; Fagundes, M.C.P.; Rufini, J.C.M.; da Silva Lima, N.L.; Alves, G.S.; Souza, W.G. Sustainable innovations in postharvest conservation of passion fruit. Contrib. Las Cienc. Soc. 2024, 17, e7357. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.; Hou, Y.; Pan, Y.; Shi, L.; Li, X. Effects of harvest maturity stage on postharvest quality of winter jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit during cold storage. Sci. Hortic. 2021, 277, 109778. [Google Scholar] [CrossRef]
- Li, X.; Pei, Z.; Meng, L.; Jiang, Y.; Liu, H.; Pan, Y. Investigation on epidermal structure and water migration of postharvest passion fruit during storage. J. Food Sci. 2023, 88, 4046–4058. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Tan, Y.; Pan, Y. Revealing the crucial role of cuticular wax components in postharvest water loss in passion fruit (Passiflora edulis Sims.). Postharvest Biol. Technol. 2024, 213, 112974. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.S. Advances in lipid extraction methods—A review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef] [PubMed]
- Ncama, K.; Aremu, O.A.; Sithole, N.J. Plant Adaptation to environmental stress: Drought, chilling, heat, and salinity. In Environment and Climate-Smart Food Production; Springer: Berlin/Heidelberg, Germany, 2022; pp. 151–179. [Google Scholar] [CrossRef]
- Alhaj Alali, F.; Askari Sarcheshmeh, M.A.; Bababalar, M. Evaluating the effects of citric acid application on reducing decay, maintaining edibility and shelf life of peach fruits in cold storage. Int. J. Hortic. Sci. Technol. 2023, 10, 149–160. [Google Scholar] [CrossRef]
- Mesejo, C.; Martínez-Fuentes, A.; Reig, C.; El-Otmani, M.; Agustí, M. Examining the impact of dry climates temperature on citrus fruit internal ripening. Sci. Hortic. 2024, 337, 113501. [Google Scholar] [CrossRef]
- Balık, S.; Kaya, T.; Aslantaş, R. Fruit Quality Parameters, Sugars, Vitamin C, Antioxidant Activity, Organic Acids, and Phenolic Compounds for a New Endemic Apple Variety, “Long Apple”. Horticulturae 2023, 9, 1171. [Google Scholar] [CrossRef]
- Li, M.; Su, J.; Yang, H.; Feng, L.; Wang, M.; Xu, G.; Shao, J.; Ma, C. Grape Tartaric Acid: Chemistry, Function, Metabolism, and Regulation. Horticulturae 2023, 9, 1173. [Google Scholar] [CrossRef]
- Muangthai, P.; Nookaew, P. Monitoring on some organic acids in fresh and processed rural plant leaves in Thailand. Asian J. Nat. Appl. Sci. 2015, 4, 82–89. [Google Scholar]
- Segwatibe, M.K.; Cosa, S.; Bassey, K. Antioxidant and antimicrobial evaluations of Moringa oleifera Lam leaves extract and isolated compounds. Molecules 2023, 28, 899. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef]
- Sharma, T.; Kumar, A.; Shah, S.S.; Bamezai, R.K. Analysis of interactions between streptomycin sulphate and aqueous food acids (L-ascorbic acid and citric acid): Physico-chemical and spectroscopic insights. J. Chem. Thermodyn. 2020, 151, 106207. [Google Scholar] [CrossRef]
- Dardenne, P.; Sinnaeve, G.; Baeten, V. Multivariate calibration and chemometrics for near infrared spectroscopy: Which method? J. Near Infrared Spectrosc. 2000, 8, 229–237. [Google Scholar]
- Zhang, X.; Yang, J. Advanced chemometrics toward robust spectral analysis for fruit quality evaluation. Trends Food Sci. Technol. 2024, 150, 104612. [Google Scholar] [CrossRef]
pH | Citric Acid | Malic Acid | Tartaric Acid | TAO | |
---|---|---|---|---|---|
pH | 1 | ||||
Citric acid | −0.108 | 1 | |||
Malic acid | 0.933 | 0.257 | 1 | ||
Tartaric acid | 0.902 | 0.331 | 0.997 | 1 | |
TAO | 0.555 | 0.767 | 0.817 | 0.859 | 1 |
Correlation to TAO (r) | Linear Regression Model (Raw Data) | Linear Regression Model (Moving Average Data) | Linear Regression Model (Exponential Smoothed Data) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acid | Line of Best Fit | p-Value | F-Value | F-Sign | RMSE | R2 | Line of Best Fit | p-Value | F-Value | F-Sign | RMSE | R2 | Line of Best Fit | p-Value | F-Value | F-Sign | RMSE | R2 | |
Citric | 0.77 | y = 71.71x + 43.48 | 0.02 | 0.33 | 0.57 | 0.05 | 0.16 | y = 1.17x − 0.03 | <0.01 | 1.04 | 0.33 | 0.004 | 0.29 | y = 1.09x − 0.10 | <0.01 | 0.98 | 0.34 | 0.002 | 0.27 |
Malic | 0.82 | y = 0.62x + 43.54 | 0.03 | 0.63 | 0.44 | 0.027 | 0.22 | y = 1.17x − 3.31 | <0.01 | 1.06 | 0.33 | 0.005 | 0.30 | y = 1.09x − 2.69 | 0.01 | 1.31 | 0.28 | 0.023 | 0.32 |
Tartaric | 0.86 | y = 0.53x + 43.88 | 0.03 | 0.64 | 0.44 | 0.026 | 0.22 | y = 1.17x − 4.58 | 0.01 | 1.04 | 0.33 | 0.003 | 029 | y = 1.09x − 3.14 | 0.01 | 1.32 | 0.27 | 0.024 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moseki, Y.C.; Sithole, N.J.; Mwelase, S.; Ngcobo, B.L.; Ncama, K. Moringa-Based Coating Preserves Organic Acids and Antioxidant Compounds of ‘Ester’ Granadilla Fruit Exocarps During Storage. Horticulturae 2025, 11, 363. https://doi.org/10.3390/horticulturae11040363
Moseki YC, Sithole NJ, Mwelase S, Ngcobo BL, Ncama K. Moringa-Based Coating Preserves Organic Acids and Antioxidant Compounds of ‘Ester’ Granadilla Fruit Exocarps During Storage. Horticulturae. 2025; 11(4):363. https://doi.org/10.3390/horticulturae11040363
Chicago/Turabian StyleMoseki, Yaone C., Nkanyiso J. Sithole, Sbulelo Mwelase, Bonga L. Ngcobo, and Khayelihle Ncama. 2025. "Moringa-Based Coating Preserves Organic Acids and Antioxidant Compounds of ‘Ester’ Granadilla Fruit Exocarps During Storage" Horticulturae 11, no. 4: 363. https://doi.org/10.3390/horticulturae11040363
APA StyleMoseki, Y. C., Sithole, N. J., Mwelase, S., Ngcobo, B. L., & Ncama, K. (2025). Moringa-Based Coating Preserves Organic Acids and Antioxidant Compounds of ‘Ester’ Granadilla Fruit Exocarps During Storage. Horticulturae, 11(4), 363. https://doi.org/10.3390/horticulturae11040363