Genome-Wide Identification of HSP70 Gene Family and Their Roles in the Hybrid Tea Rose Heat Stress Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome-Wide Identification and Physicochemical Properties of RhHSP70 Genes
2.2. Phylogenetic Analysis and Chromosome Mapping of RhHSP70s
2.3. Gene Structure, Promoter Sequence, and Collinearity Analysis of RhHSP70s
2.4. Analysis of RhHSP70 Protein-Protein Interaction Networks
2.5. RNA-Seq Expression Analysis of RhHSP70s
2.6. Plant Material, Stress Treatments, and Tissue Collection
2.7. qRT-PCR Validation of RhHSP70s RNA-Seq Profiles Under Drought Stress
2.8. Subcellular Localization
2.9. Statistical Analysis
3. Results
3.1. Genome-Wide Identification and Chromosomal Localization of RhHSP70s in R. hybrida
3.2. Phylogenetic Analysis of RhHSP70 Gene Family
3.3. Motifs, Gene Structures, and Domains of RhHSP70s
3.4. Cis-Acting Elements Screening in the RhHSP70 Gene Promoters
3.5. Collinearity Analysis of RhHSP70 Genes
3.6. Collinearity Analysis of RhHSP70 Genes Between Plant Species
3.7. Analysis of RhHSP70 Protein-Protein Interaction Networks
3.8. Expression Profiling of RhHSP70s in Different Plant Tissues Under Drought Stress
3.9. Subcellular Localization of RhHSP70-69 and RhHSP70-88 in Hybrid Tea Rose
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, C.J.; Seo, Y.S. Heat shock proteins: A review of the molecular chaperones for plant immunity. Plant Pathol. J. 2015, 31, 323–333. [Google Scholar] [CrossRef]
- Haq, U.S.; Khan, A.; Ali, M. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. Int. J. Mol. Sci. 2019, 20, 5321. [Google Scholar] [CrossRef] [PubMed]
- Boston, R.S.; Viitanen, P.V.; Vierling, E. Molecular chaperones and protein folding in plants. Plant Mol. Biol. 1996, 32, 191–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Vinocur, B.; Shoseyov, O. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Kiang, J.G.; Tsokos, G.C. Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol. Ther. 1998, 80, 183–201. [Google Scholar] [CrossRef]
- Dragovic, Z.; Broadley, S.A.; Shomura, Y. Molecular chaperones of the HSP110 family act as nucleotide exchange factors of HSP70s. EMBO J. 2006, 25, 2519–2528. [Google Scholar] [CrossRef]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef]
- Lin, B.L.; Wang, J.S.; Liu, H.C. Genomic analysis of the HSP70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 2001, 6, 201–208. [Google Scholar] [CrossRef]
- Sarkar, N.K.; Sharma, P.; Grover, A. Functional analysis of HSP70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 2013, 18, 427–437. [Google Scholar] [CrossRef]
- Du, Q.L.; Jiang, J.M.; Chen, M.Q. Cloning, expression analysis and prokaryotic expression of heat shock protein HSP70 gene in rice. J. Plant Prot. 2021, 48, 620–629. [Google Scholar]
- Zhang, L.; Zhao, H.K.; Dong, Q.L. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). Front. Plant Sci. 2015, 6, 773. [Google Scholar] [CrossRef]
- Rehman, A.; Atif, R.M.; Qayyum. Genome-wide identification and characterization of HSP70 gene family in four species of cotton. Genomics 2020, 112, 4442–4453. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Ma, H.L.; Weng, Q.Y. Genome-wide identification and analysis of HSP70 gene family in maize. J. Nucl. Agric. Sci. 2017, 31, 1245–1254. [Google Scholar]
- Li, Y. Genome-wide identifcation and analysis of the WRKY gene family and cold stress response in Acer truncatum. Genes 2021, 12, 1867. [Google Scholar] [CrossRef]
- Li, M.Y.; Liu, J.X.; Hao, J.N. Genomic identification of HSP70 transcription factors and functional characterization of two cold resistance-related HSP70 genes in celery (Apium graveolens L.). Planta 2019, 250, 1265–1280. [Google Scholar] [CrossRef]
- Chen, S.B.; Tao, L.Z.; Zeng, L.R.; Vega-Sanchez, M.E.; Umemura, K.; Wang, G.L. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol. Plant Pathol. 2006, 7, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, Y.; Maruyama, K.; Qin, F. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA 2006, 103, 18822–18827. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, K.; Li, C.Y.; Xie, G.W.; Lu, M.T.; Qian, Y.; Shu, Y.P.; Shen, Q. Genome-wide comprehensive characterization and transcriptomic analysis of HSP70 gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens). Gene 2023, 889, 147808. [Google Scholar] [CrossRef]
- Hu, W.J. Genome-wide identifcation and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biol. 2021, 21, 427. [Google Scholar] [CrossRef]
- Yuan, H.M. Genome-wide identifcation and expression analysis of the WRKY transcription factor family in fax (Linum usitatissimum L.). BMC Genom. 2021, 22, 375. [Google Scholar] [CrossRef]
- Horton, P. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Swarbreck, D. Te Arabidopsis Information Resource (TAIR): Gene structure and function annotation. Nucleic Acids Res. 2008, 36, D1009–D1014. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Gao, S.Q. Genome-wide identifcation of the histone acetyltransferase gene family in Triticum aestivum. BMC Genom. 2021, 22, 49. [Google Scholar] [CrossRef] [PubMed]
- Viana, V.E. When rice gets the chills: Comparative transcriptome profling at germination shows WRKY transcription factor responses. Plant Biol. 2021, 23, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Wang, Y.P. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Wang, Y.Y. Genome-wide ldentifcation and expression analysis of NF-YA gene family in gossypium arboreum. Mol. Plant Breed 2021, 19, 4564–4573. [Google Scholar]
- Szklarczyk, D. Te STRING database in 2021: CustomizaRhe protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Doncheva, N.T. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y. Tbtools—An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.L.; Fan, Z.Y.; Wang, S.F. Bioinformatics of tobacco (Nicotiana tabacum) HSP70 gene family and expression analysis of NtHSP70Chl in midrib. Chin. Tob. Sci. 2018, 39, 8–16. [Google Scholar]
- Liu, J.; Pang, X.; Cheng, Y. The HSP70 gene family in solanum tuberosum: Genome-wide identification, phylogeny, and expression patterns. Sci. Rep. 2018, 8, 16628. [Google Scholar]
- Song, G.; Fang, Z.G.; Wang, Y.L. Genome-wide identification and bioinformatics analysis of HSP70 family genes in switchgrass. Pratacultural Sci. 2022, 39, 2112–2126. [Google Scholar]
- Zhang, G.W.; Liu, L.L.; Wang, X.R. Genome-wide identification and bioinformatics analysis of HSP70 genes in foxtail millet. Acta Agric. Zhejiangensis 2015, 27, 1127–1133. [Google Scholar]
- ElBaidouri, M.; Murat, F.; Veyssiere, M. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). New Phytol. 2017, 213, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Altenhoff, A.M.; Studer, R.A.; Robinson-Rechavi, M.; Dessimoz, C. Resolving the ortholog conjecture: Orthologs tend to be weakly, but significantly, more similar in function than paralogs. PLoS Comput. Biol. 2012, 8, e1002514. [Google Scholar] [CrossRef]
- Liu, M.Y.; Ma, Z.T.; Sun, W.J.; Huang, L.; Wu, Q.; Tang, Z.Z.; Bu, T.L.; Li, C.L.; Chen, H. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum). BMC Genom. 2019, 20, 113. [Google Scholar] [CrossRef]
- Zhou, S.S.; Xing, Z.; Liu, H. In-depth transcriptome characterization uncovers distinct gene family expansions for Cupressus gigantea important to this long-lived species’ adaptability to environmental cues. BMC Genom. 2019, 20, 213. [Google Scholar] [CrossRef]
- Jiang, C.; Bi, Y.; Zhang, R.; Feng, S. Expression of RcHSP70, heat shock protein 70 gene from Chinese rose, enhances host resistance to abiotic stresses. Sci. Rep. 2020, 10, 2445. [Google Scholar] [CrossRef]
- Yu, C.; Rong, M.; Liu, Y.; Sun, P.; Xu, Y.; Wei, J. Genome-Wide Identification and Characterization of HSP70 Gene Family in Aquilaria sinensis (Lour.) Gilg. Genes 2022, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Chandrasekaran, U.; Liu, A. Genome-wide analysis of the Dof transcription factors in castor bean (Ricinus communis L.). Genes Genom. 2014, 36, 527–537. [Google Scholar] [CrossRef]
- Jeffares, D.C.; Penkett, C.J.; Bähler, J. Rapidly regulated genes are intron poor. Trends Genet. 2008, 24, 375–378. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Huang, Y.; Deng, M.; Wen, J. Genome-Wide Identification of HSP70 Gene Family and Their Roles in the Hybrid Tea Rose Heat Stress Response. Horticulturae 2025, 11, 643. https://doi.org/10.3390/horticulturae11060643
Yan X, Huang Y, Deng M, Wen J. Genome-Wide Identification of HSP70 Gene Family and Their Roles in the Hybrid Tea Rose Heat Stress Response. Horticulturae. 2025; 11(6):643. https://doi.org/10.3390/horticulturae11060643
Chicago/Turabian StyleYan, Xinyu, Yaoyao Huang, Minghua Deng, and Jinfen Wen. 2025. "Genome-Wide Identification of HSP70 Gene Family and Their Roles in the Hybrid Tea Rose Heat Stress Response" Horticulturae 11, no. 6: 643. https://doi.org/10.3390/horticulturae11060643
APA StyleYan, X., Huang, Y., Deng, M., & Wen, J. (2025). Genome-Wide Identification of HSP70 Gene Family and Their Roles in the Hybrid Tea Rose Heat Stress Response. Horticulturae, 11(6), 643. https://doi.org/10.3390/horticulturae11060643