Complete Chloroplast Genome of Two Papilionanthe (Aeridinae, Epidendroideae, Orchidaceae) Species: Comparative Analysis and Phylogenetic Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials, Chloroplast Genome Sequencing, Assembly, and Annotation
2.2. Sequence Analysis and Statistics
2.3. Structure Variations and Highly Variable Regions
2.4. Positive Selection Analysis
2.5. Phylogenetic Analysis
3. Results
3.1. General Features of Two Chloroplast Genomes
3.2. Repeat Analysis
3.3. Codon Usage Analysis
3.4. Positive Selection Analysis
3.5. Comparative Genome Analysis
3.6. Structure Variations and Highly Variable Regions
3.7. Phylogenetic Analysis
- (I.)
- The Holcoglossum clade comprises 16 Holcoglossum species, a sister to Vanda–Neofinetia clade, with strong supports (UFBoot: 100), containing three distinct subclades, as well as the uncertain species of H. himalaica (Deb, Sengupta & Malick) Aver. The Holcoglossum clade seemed to be related to the Vanda–Neofinetia clade.
- (II.)
- The Vanda–Neofinetia clade is composed of two monophyletic subclades with a strong support (UFBoot: 100), including Vanda subclade (11 species) and Neofinetia subclade (3 species). In Vanda subclade, V. ampullacea (Roxb.) L.M.Gardiner. appears to be a sister to the other 10 species, including the uncertain species of V. flabellata (Rolfe ex Downie) Christenson. And here, V. flabellata seems to be close to V. coelestis (Rchb. f.) Motes.
- (III.)
- The Luisia–Papilionanthe–Paraphalaenopsis clade contains four individuals of three Papilionanthe species, six Luisia species, and three Paraphalaenopsis species with a strong support (UFBoot: 100). Analytical results show that Papilionanthe species grouped into a well-supported clade (UFBoot: 100), being close to Luisia while distant from Paraphalaenopsis.
- (IV.)
- The Aerides–Renanthera clade is composed of six Aerides species and four Renanthera Lour. species with a strong support (UFBoot: 100). It is a sister to the other three clades above, namely, Holcoglossum clade, Vanda–Neofinetia clade, and Luisia–Papilionanthe–Paraphalaenopsis clade.
4. Discussion
4.1. Comparative Chloroplast Genome Between Papilionanthe biswasiana and P. teres
4.2. Comparative Analysis of Chloroplast Genome Between Papilionanthe and Other Eight Species from the Related Genera
4.3. The Intergeneric Relationship of Papilionanthe
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GC | Guanine–cytosine |
bp | Base pairs |
CDS | Coding sequences |
cp | Chloroplast |
dN | Non synonymous |
dS | Synonymous |
IRa | Inverted repeat A |
IRb | Inverted repeat B |
LSC | Large single copy |
ML | Maximum likelihood |
NCBI | National Center for Biotechnology Information |
Pi | Nucleotide diversity |
rRNA | Ribosomal RNA |
RSCU | Relative synonymous codon usage |
SSC | Small single copy region |
SSRs | Simple sequence repeats |
tRNA | Transfer RNA |
IGS | Intergenic spacer |
mRNA | Messenger RNA |
References
- Pridgeon, A.M.; Cribb, P.J.; Chase, M.W.; Rasmussen, F.N. Genera Orchidacearum Volume 6: Epidendroideae (Part Three); Oxford University Press: Oxford, UK, 2014; pp. 218–220. [Google Scholar]
- Chen, X.Q.; Wood, J.J. Papilionanthe Schltr. In Flora of China: Orchidaceae; Science Press: Beijing, China, 2009; Volume 25, pp. 477–478. [Google Scholar]
- Ya, J.D.; Wang, W.T.; Liu, Y.L.; Jiang, H.; Han, Z.D.; Zhang, T.; Huang, H.; Cai, J.; Li, D.Z. Five new and noteworthy species of Epidendroideae (Orchidaceae) from southwestern China based on morphological and phylogenetic evidence. PhytoKeys 2023, 235, 211–236. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Rahman, M.A. Wild epiphytic Bangladeshi orchids Cymbidium aloifolium (L.) Sw. and Papilionanthe teres (Roxb.) Lindl. Potentially modulates the immune functions in Swiss albino mice. J. Adv. Vet. Anim. Res. 2021, 8, 479–488. [Google Scholar] [CrossRef]
- Garay, L.A. On the systematics of the monopodial orchids II. In Botanical Museum Leaflets; Harvard University: Cambridge, MA, USA, 1974; pp. 369–376. [Google Scholar]
- Seidenfaden, G. Orchid Genera in Thailand XIV: Fifty–Nine Vandoid Genera; Council for Nordic Publications in Botany: Copenhagen, Denmark, 1988. [Google Scholar]
- Topik, H.; Yukawa, T.; Ito, M. Molecular phylogenetics of subtribe Aeridinae (Orchidaceae): Insights from plastid matK and nuclear ribosomal ITS sequences. J. Plant Res. 2005, 118, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.H.; Huang, J.X.; Zhang, G.Q.; Liu, Z.J.; Zhuang, X.Y. A molecular phylogeny of Aeridinae (Orchidaceae: Epidendroideae) inferred from multiple nuclear and chloroplast regions. Mol. Phylogenetics Evol. 2015, 85, 247–254. [Google Scholar] [CrossRef]
- Wang, X.T.; Liu, D.K.; Zhu, W.Y.; Zheng, S.Z.; Yu, X.Y.; Ai, Y.; Zhang, Q.H. The complete chloroplast genome of an ornamental orchid, Vanda coerulescens (Orchidaceae). Mitochondrial DNA Part B 2020, 10, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Tao, L.; Huang, J.; Duan, H.; Luo, Y.; Li, L. Complete chloroplast genome structural characterization of two Aerides (Orchidaceae) species with a focus on phylogenetic position of Aerides flabellata. BMC Genom. 2024, 25, 552. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Lei, W.S.; Shi, Y.K.; Liu, Y.Z.; Luo, Y.; Li, J.H.; Xiang, X.G. Plastome Evolution, Phylogenomics, and DNA Barcoding Investigation of Gastrochilus (Aeridinae, Orchidaceae), with a Focus on the Systematic Position of Haraella retrocalla. Int. J. Mol. Sci. 2024, 25, 8500. [Google Scholar] [CrossRef]
- Christenson, E.A. Taxonomy of the Aeridinae with an infrageneric classification of Vanda Jones ex R. Br. In Proceedings of the 14th World Orchid Conference; HMSO Publications: Edinburgh, UK, 1994; pp. 206–216. [Google Scholar]
- Liu, Z.J.; Chen, L.J.; Chen, S.C.; Cai, J.; Tsai, W.C.; Hsiao, Y.Y.; Rao, W.H. Paraholcoglossum and Tsiorchis, Two New Orchid Genera Established by Molecular and Morphological Analyses of the Holcoglossum Alliance. PLoS ONE 2011, 6, e24864. [Google Scholar] [CrossRef]
- Gardiner, L.M.; Kocyan, A.; Motes, M.; Roberts, D.L.; Emerson, B.C. Molecular phylogenetics of Vanda and related genera (Orchidaceae). Bot. J. Linn. Soc. 2013, 173, 549–572. [Google Scholar] [CrossRef]
- Lim, S.H.; Teng, P.P.; Lee, Y.H.; Goh, C.J. RAPD Analysis of Some Species in the Genus Vanda (Orchidaceae). Ann. Bot. 1999, 83, 193–196. [Google Scholar] [CrossRef]
- Christenson, E.A.; Saito, K.; Tanaka, R. The Taxonomy of Aerides and Related Genera. In Proceedings of the 12th World Orchid Conference; 12th World Orchid Conference Organizing Committee: Tokyo, Japan, 1987; pp. 35–40. [Google Scholar]
- Kocyan, A.; Vogel, E.F.; Conti, E.; Gravendeel, B. Molecular phylogeny of Aerides (Orchidaceae) based on one nuclear and two plastid markers: A step forward in understanding the evolution of the Aeridinae. Mol. Phylogenetics Evol. 2008, 48, 422–443. [Google Scholar] [CrossRef]
- Wu, X.Y.; Li, T.Z.; Chen, G.Z.; Xu, Q.; Pan, Y.Y. The complete chloroplast genome of Dendrobium longicornu (Orchidaceae). Mitochondrial DNA Part B 2019, 4, 3776–3777. [Google Scholar] [CrossRef]
- Tao, L.; Duan, H.; Tao, K.; Luo, Y.; Li, Q.; Li, L. Complete chloroplast genome structural characterization of two Phalaenopsis (Orchidaceae) species and comparative analysis with their alliance. BMC Genom. 2023, 24, 359. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Tang, L.; Luo, Y.; Li, L. Complete chloroplast genome of eight Phaius (Orchidaceae) species from China: Comparative analysis and phylogenetic relationship. BMC Plant Biol. 2025, 25, 37. [Google Scholar] [CrossRef]
- Li, Z.H.; Ma, X.; Wang, D.Y.; Li, Y.X.; Wang, C.W.; Jin, X.H. Evolution of plastid genomes of Holcoglossum (Orchidaceae) with recent radiation. BMC Evol. Biol. 2019, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lu, Z.; Wang, J.; Zhang, H.; Jiang, M. Complete chloroplast genome of a traditional medicinal plant Luisia hancockii Rolfe 1896: Genomic features and phylogenetic relationship within subtribe Aeridinae (Orchidaceae). Mitochondrial DNA Part B 2023, 30, 1149–1153. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, C.Y.; Chen, J.L.; Liu, D.K.; Lan, S.; Liu, Z.J. Comparative Analysis of Luisia (Aeridinae, Orchidaceae) Plastomes Shed Light on Plastomes Evolution and Barcodes Investigation. Genes 2024, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Healey, A.; Furtado, A.; Cooper, T.; Henry, R. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 2014, 10, 21. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; DePamphilis, C.W.; Yi, T.S. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Shafer, H.L.; Leonard, O.R.; Kovach, M.J.; Schorr, M.; Morris, A.B. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: The tortoise and the hare IV. Am. J. Bot. 2014, 101, 1987–2004. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA–web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR–markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef]
- Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist–centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinformatic 2008, 9, 299–306. [Google Scholar] [CrossRef]
- Bylaiah, S.; Shedole, S.; Suresh, K.P.; Gowda, L.; Patil, S.S.; Indrabalan, U.B. Analysis of Codon Usage Bias in Cya, Lef, and Pag Genes Exists in px01 Plasmid of Bacillus anthracis. In ICT Analysis and Applications; Springer Nature: Singapore, 2022; pp. 1–9. [Google Scholar]
- Xiang, C.Y.; Gao, F.; Jakovlić, I.; Lei, H.P.; Hu, Y.; Zhang, H.; Zou, H.; Wang, G.; Zhang, D. Using PhyloSuite for molecular phylogeny and tree–based analyses. iMeta 2023, 2, e87. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Brudno, M.; Malde, S.; Poliakov, A.; Do, C.B.; Couronne, O.; Dubchak, I.; Batzoglou, S. Glocal alignment: Finding rearrangements during alignment. Bioinformatics 2003, 19, i54–i62. [Google Scholar] [CrossRef]
- Li, H.; Guo, Q.; Xu, L.; Gao, H.; Liu, L.; Zhou, X. CPJSdraw: Analysis and visualization of junction sites of chloroplast genomes. PeerJ 2023, 11, e15326. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Chen, C.; Arab, D.A.; Du, Z.; He, Y.; Ho, S.Y.W. EasyCodeML: A visual tool for analysis of selection using CodeML. Mol. Biol. Evol. 2019, 9, 3891–3898. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Haeseler, A. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D.; Peng, D.H.; Lan, S.R.; Chen, J.; Fu, W.Q. The complete chloroplast genome sequence of Paphiopedilum purpuratum (Orchidaceae). Mitochondrial DNA Part B 2019, 4, 3910–3911. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, J.H. Molecular Phylogeny and Historical Biogeography of Goodyera R. Br. (Orchidaceae): A Case of the Vicariance Between East Asia and North America. Front. Plant Sci. 2022, 13, 850170. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, M.Y.; Wang, H.X.; Lan, S.; Liu, Z.J.; Zhang, S. The Complete Chloroplast Genomes of Bulbophyllum (Orchidaceae) Species: Insight into Genome Structure Divergence and Phylogenetic Analysis. Int. J. Mol. Sci. 2024, 25, 2665. [Google Scholar] [CrossRef]
- Feng, Y.L.; Wicke, S.; Li, J.W.; Han, Y.; Lin, C.S.; Li, D.Z. Lineage–specific reductions of plastid genomes in an orchid tribe with partially and fully mycoheterotrophic species. Genome Biol. Evol. 2016, 8, 2164–2175. [Google Scholar] [CrossRef]
- Kim, Y.K.; Jo, S.; Cheon, S.H.; Joo, M.J.; Hong, J.R.; Kwak, M. Plastome Evolution and Phylogeny of Orchidaceae, with 24 New Sequences. Front. Plant Sci. 2020, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.K.; Tu, X.D.; Zhao, Z.; Zeng, M.Y.; Zhang, S.; Ma, L. Plastid phylogenomic data yield new and robust insights into the phylogeny of Cleisostoma–Gastrochilus clades (Orchidaceae, Aeridinae). Mol. Phylogenetics Evol. 2020, 145, 106729. [Google Scholar] [CrossRef]
- Niu, Z.; Zhu, S.; Pan, J.; Li, L.; Sun, J.; Ding, X. Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots. Sci. Rep. 2017, 7, 2073. [Google Scholar]
- Zavala-Páez, M.; Vieira, L.D.N.; Baura, V.A.D.; Balsanelli, E.; Souza, E.M.D.; Cevallos, M.C.; Smidt, E.D.C. Comparative plastid genomics of neotropical Bulbophyllum (Orchidaceae; Epidendroideae). Front. Plant Sci. 2020, 11, 799. [Google Scholar] [CrossRef]
- Kim, Y.K.; Jo, S.; Cheon, S.H.; Kwak, M.; Kim, Y.D.; Kim, K.J. Plastome evolution and phylogeny of subtribe Aeridinae (Vandeae, Orchidaceae). Mol. Phylogenetics Evol. 2020, 144, 106721. [Google Scholar] [CrossRef] [PubMed]
- Tauta, D. Hypervariablity of simple sequences as a general source for polymorphic DNA marks. Nucleic Acids Res. 1989, 17, 6463–6471. [Google Scholar] [CrossRef]
- Cato, S.A.; Richardson, T.E. Inter- and intraspecific polymorphism at chloroplast SSR loci and the inheritance of plastids in Pinus radiata D. Don. Theor. Appl. Genet. 1996, 93, 587–592. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Zhao, Z.; Li, M.; Liu, Z.; Peng, D. Complete Chloroplast Genomes and Comparative Analyses of Three Paraphalaenopsis (Aeridinae, Orchidaceae) Species. Int. J. Mol. Sci. 2023, 24, 11167. [Google Scholar] [CrossRef]
- Dugas, D.V.; Hernandez, D.; Koenen, E.J.M.; Schwarz, E.; Straub, S.; Hughes, C.E. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions and accelerated rate of evolution in clpP. Sci. Rep. 2015, 5, 16958. [Google Scholar] [CrossRef]
- Menezes, A.P.A.; Resende-Moreira, L.C.; Buzatti, R.S.O.; Nazareno, A.G.; Carlsen, M.; Lobo, F.P. Chloroplast genomes of Byrsonima species (Malpighiaceae): Comparative analysis and screening of high divergence sequences. Sci. Rep. 2018, 8, 2210. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, R.; Tang, S.; Chen, Y.; Yan, Y.; Gao, X. Plastomes of Seven Coelogyne s.l. (Arethuseae, Orchidaceae) Species: Comparative Analysis and Phylogenetic Relationships. Horticulturae 2025, 11, 144. [Google Scholar] [CrossRef]
- Jiang, H.; Tian, J.; Yang, J.; Dong, X.; Zhong, Z.; Mwachala, G. Comparative and phylogenetic analyses of six Kenya Polystachya (Orchidaceae) species based on the complete chloroplast genome sequences. BMC Plant Biol. 2022, 22, 177. [Google Scholar] [CrossRef]
- Han, C.; Ding, R.; Zong, X.; Zhang, L.; Chen, X.; Bo, Q. Structural characterization of Platanthera ussuriensis chloroplast genome and comparative analyses with other species of Orchidaceae. BMC Genom. 2022, 23, 84. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Xu, C.; Li, C.; Sun, J.H.; Zuo, Y.J.; Shi, S. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 2015, 5, 8348. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.; Zhang, G.; Wu, K.L.; Fang, L.; Li, M.Z. Comparative analyses and phylogenetic relationships of thirteen Pholidota species (Orchidaceae) inferred from complete chloroplast genomes. BMC Plant Biol. 2023, 23, 269. [Google Scholar] [CrossRef]
- Kryazhimskiy, S.; Plotkin, J.B. The population genetics of dN/dS. PLoS Genet. 2008, 4, e1000304. [Google Scholar] [CrossRef]
- Zuo, L.H.; Shang, A.Q.; Zhang, S.; Yu, X.Y.; Ren, Y.C.; Yang, M.S. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis. PLoS ONE 2017, 12, e0171264. [Google Scholar] [CrossRef]
- Williams, M.J.; Zapata, L.; Werner, B.; Barnes, C.P.; Sottoriva, A.; Graham, T.A. Measuring the distribution of fitness effects in somatic evolution by combining clonal dynamics with dN/dS ratios. eLife 2020, 9, e48714. [Google Scholar] [CrossRef]
- Garay, L.A. On the systematics of the monopodial orchids I. In Botanical Museum Leaflets; Harvard University: Cambridge, MA, USA, 1972; Volume 23, pp. 149–212. [Google Scholar]
- Gardiner, L.M. New combinations in the genus Vanda (Orchidaceae). Phytotaxa 2012, 61, 47–54. [Google Scholar] [CrossRef]
- Jiang, H. A new variety of Ascocentrum from Yunnan, China. Acta Bot. Yunnanica 2006, 28, 259–260. [Google Scholar]
- Zhang, G.Q.; Liu, K.W.; Chen, L.J.; Xiao, X.J.; Zhai, J.W.; Li, L.Q. A New Molecular Phylogeny and a New Genus, Pendulorchis, of the Aerides–Vanda Alliance (Orchidaceae: Epidendroideae). PLoS ONE 2013, 8, e60097. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Tao, K.; Ma, D.; Wang, Y.; Xiao, J.; Luo, Y.; Li, L. Complete Chloroplast Genome of Two Papilionanthe (Aeridinae, Epidendroideae, Orchidaceae) Species: Comparative Analysis and Phylogenetic Insights. Horticulturae 2025, 11, 641. https://doi.org/10.3390/horticulturae11060641
Xia Y, Tao K, Ma D, Wang Y, Xiao J, Luo Y, Li L. Complete Chloroplast Genome of Two Papilionanthe (Aeridinae, Epidendroideae, Orchidaceae) Species: Comparative Analysis and Phylogenetic Insights. Horticulturae. 2025; 11(6):641. https://doi.org/10.3390/horticulturae11060641
Chicago/Turabian StyleXia, Yanqiong, Kaifeng Tao, Dong Ma, Yizhi Wang, Jianru Xiao, Yan Luo, and Lu Li. 2025. "Complete Chloroplast Genome of Two Papilionanthe (Aeridinae, Epidendroideae, Orchidaceae) Species: Comparative Analysis and Phylogenetic Insights" Horticulturae 11, no. 6: 641. https://doi.org/10.3390/horticulturae11060641
APA StyleXia, Y., Tao, K., Ma, D., Wang, Y., Xiao, J., Luo, Y., & Li, L. (2025). Complete Chloroplast Genome of Two Papilionanthe (Aeridinae, Epidendroideae, Orchidaceae) Species: Comparative Analysis and Phylogenetic Insights. Horticulturae, 11(6), 641. https://doi.org/10.3390/horticulturae11060641