Over Half a Century of Research on Blackberry Micropropagation: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy and Literature Handling
3. Results
3.1. Establishment
3.2. Multiplication
3.3. Rooting
3.4. Acclimatization
3.5. Control of Bacterial Contamination
3.6. Callus Induction
3.7. Somatic Embryogenesis and Synthetic Seeds Production
3.8. Medium and Long Term Germplasm Conservation
3.9. Bioreactors
3.10. Light Effect
3.11. Genetic Fidelity and Stability, Breeding
3.12. Effects of Substance with Biostimulant Action and Abiotic Stress
3.13. Bioactive Compounds
4. Toward an Operational Framework for Blackberry Micropropagation
- Establishment Phase
- Explant type: Preferably nodal segments or axillary buds.
- Medium: MS medium supplemented with BAP (0.5–2 mg L−1) and optionally low concentrations of IBA or GA3.
- Sterilization: Use of standard disinfection protocols; control of bacterial contamination with PPM™ or Vitrofural if necessary.
- 2
- Multiplication Phase
- Medium: MS (solid or semi-solid), often improved by alternative gelling agents such as wheat starch.
- PGRs: BAP (2–5 mg L−1) combined with IBA (0.1–0.5 mg L−1); GA3 may improve shoot elongation.
- Culture system: Semi-solid and temporary immersion systems (TIS) significantly enhance shoot proliferation.
- 3
- Rooting Phase
- Medium: half-strenght MS or one-third strenght MS medium with IBA (0.5–1.5 mg L−1); NAA can be considered in some genotypes.
- Root induction: Better rooting generally occurs ex vitro using auxin treatments.
- 4
- Acclimatization Phase
- Substrate: Peat-perlite (2:1) or sand-vermiculite (3:1) mixtures with controlled humidity.
- Gradual transition: Polyethylene covers or mist systems; beneficial microbial inoculants (e.g., Bacillus thuringiensis, AMF) and silicon supplementation can improve survival and vigor.
- 5
- Optional Advanced Steps
- Synthetic seed production: Use of encapsulated shoot tips or nodal segments in calcium alginate.
- Medium and long term germplasm conservation: Slow growth storage or encapsulation-dehydration of shoot apices for long-term conservation.
- Bioreactors: ElecTIS or other TIS devices for mass propagation with improved physiological outcomes.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bobrowski, V.L.; Mello-Farias, P.; Petters, J. Micropropagation of Blackberries (Rubus Sp.) cultivars. Curr. Agric. Sci. Technol. 1996, 2, 17–20. [Google Scholar]
- Reed, B.M.; Poothong, S.; Hall, H. Propagation of Blackberries and Related Rubus Species. In Blackberries and Their Hybrids; CABI: Wallingford, UK, 2017; pp. 101–112. ISBN 978-1-78064-668-8. [Google Scholar]
- Gomes, H.T.; Bartos, P.M.C.; Andrade, M.T.D.; Almeida, R.F.; Lacerda, L.F.D.; Scherwinski-Pereira, J.E. In Vitro Conservation of Blackberry Genotypes under Minimal Growth Conditions and Subsequent Large-Scale Micropropagation. Pesqui. Agropecuária Bras. 2017, 52, 1286–1290. [Google Scholar] [CrossRef]
- Dönmez, B.A.; Polat, Ş.; Hamakhan, A.; Kafkas, E. Methods of Blackberry Propagation In Vitro Condition. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2024; Volume 85. [Google Scholar] [CrossRef]
- Vujović, T.; Ružić, Đ.; Cerović, R.; Leposavić, A.; Karaklajić-Stajić, Ž.; Mitrović, O.; Žurawicz, E. An Assessment of the Genetic Integrity of Micropropagated Raspberry and Blackberry Plants. Sci. Hortic. 2017, 225, 454–461. [Google Scholar] [CrossRef]
- Rani, V.; Raina, S.N. Genetic Fidelity of Organized Meristem-Derived Micropropagated Plants: A Critical Reappraisal. Vitr. Cell. Dev. Biol.-Plant 2000, 36, 319–330. [Google Scholar] [CrossRef]
- Debnath, S.C.; Vyas, P.; Goyali, J.C.; Igamberdiev, A.U. Morphological and Molecular Analyses in Micropropagated Berry Plants Acclimatized under Ex Vitro Condition. Can. J. Plant Sci. 2012, 92, 1065–1073. [Google Scholar] [CrossRef]
- Kefayeti, S.; Kafkas, E.; Ercisli, S. Micropropagation of ‘Chester Thornless’ Blackberry Cultivar Using Axillary Bud Explants. Not. Bot. Horti Agrobot. 2019, 47, 162–168. [Google Scholar] [CrossRef]
- Hunková, J.; Gajdošová, A.; Szabóová, M. Effect of Mesos Components (MgSO4, CaCl2, KH2PO4) on In Vitro Shoot Growth of Blackberry, Blueberry, and Saskatoon. Plants 2020, 9, 935. [Google Scholar] [CrossRef] [PubMed]
- Kulus, D.; Tymoszuk, A. Advancements in In Vitro Technology: A Comprehensive Exploration of Micropropagated Plants. Horticulturae 2024, 10, 88. [Google Scholar] [CrossRef]
- Clapa, D.; Hârța, M.; Szabo, K.; Teleky, B.-E.; Pamfil, D. The Use of Wheat Starch as Gelling Agent for In Vitro Proliferation of Blackberry (Rubus Fruticosus L.) Cultivars and the Evaluation of Genetic Fidelity after Repeated Subcultures. Horticulturae 2023, 9, 902. [Google Scholar] [CrossRef]
- Broome, O.; Zimmerman, R. In Vitro Propagation of Blackberry. HortScience 1978, 13, 151–153. [Google Scholar] [CrossRef]
- Harper, P. Tissue culture propagation of blackberry and tayberry. Hortic. Res. 1978, 18, 141–143. [Google Scholar]
- Gupta, S.; Mahalaxmi, V. In Vitro High Frequency Direct Plant Regeneration from Whole Leaves of Blackberry. Sci. Hortic. 2009, 120, 22–26. [Google Scholar] [CrossRef]
- Ricci, A.; Iocoli, L.; D’Aloiso, D.; Mezzetti, B.; Savini, G.; Sabbadini, S. Assessment of Different Factors to Induce the Adventitious Regeneration in Two Blackberry Cultivars Starting from Leaf and Petiole Explants. Acta Hortic. 2024, 1388, 79–84. [Google Scholar] [CrossRef]
- Sabooni, N.; Gharaghani, A.; Jowkar, A.; Eshghi, S. Successful Polyploidy Induction and Detection in Blackberry Species by Using an In Vitro Protocol. Sci. Hortic. 2022, 295, 110850. [Google Scholar] [CrossRef]
- Pelizza, T.; Silveira, F.; Ribeiro, R.; Machado, B.; Rufatto, L.; Kretzschmar, A. In Vitro Establishment of Blackberry (Rubus Sp.) Cultivar “Xavante”. Ciência Rural 2016, 46, 1542–1545. [Google Scholar] [CrossRef]
- Gonzalez, M.V.; Lopez, M.; Valdes, A.E.; Ordas, R.J. Micropropagation of Three Berry Fruit Species Using Nodal Segments from Field-Grown Plants. Ann. Appl. Biol. 2000, 137, 73–78. [Google Scholar] [CrossRef]
- Schuchovski, C.S.; Biasi, L.A. Development of an Efficient Protocol for ‘Brazos’ Blackberry In Vitro Multiplication. Acta Hortic. 2018, 1224, 157–164. [Google Scholar] [CrossRef]
- Hunková, J.; Libiaková, G.; Gajdošová, A. Shoot Proliferation Ability of Selected Cultivars of Rubus Spp. as Influenced by Genotype and Cytokinin Concentration. J. Cent. Eur. Agric. 2016, 17, 379–390. [Google Scholar] [CrossRef]
- Borsai, O.; Hârța, M.; Szabo, K.; Kelemen, C.-D.; Andrecan, F.A.; Codrea, M.-M.; Clapa, D. Evaluation of Genetic Fidelity of In Vitro-Propagated Blackberry Plants Using RAPD and SRAP Molecular Markers. Hortic. Sci. 2020, 47, 21–27. [Google Scholar] [CrossRef]
- Munoz-Concha, D.; Quintero, J.; Ercişli, S. Media and Hormones Influence in Micropropagation Success of Blackberry Cv. “Chester”. Res. J. Biotechnol. 2021, 16, 5. [Google Scholar]
- Lapiz-Culqui, Y.; Meléndez Mori, J.; Alvarado, J.; Cortez, D.; Huaman Huaman, E.; Zarantes, V.; Oliva, M. Study of the Physicochemical Characteristics, Antimicrobial Activity, and In Vitro Multiplication of Wild Blackberry Species from the Peruvian Highlands. Sci. Rep. 2024, 14, 3863. [Google Scholar] [CrossRef] [PubMed]
- Isac, V.; Plopa, C.; Nicola, C. Propagation Of New Blackberry Cultivars For Producing Certified Propagation Material. Fruit Grow. Res. 2014, 30, 66–71. [Google Scholar]
- Ružić, D.; Lazić, T. Micropropagation as Means of Rapid Multiplication of Newly Developed Blackberry and Black Currant Cultivars. Agric. Conspec. Sci. 2006, 71, 149–153. [Google Scholar]
- Vujović, T.; Ruzic, D.; Cerović, R.; Surlan-Momirovic, G. Adventitious Regeneration in Blackberry (Rubus fruticosus L.) and Assessment of Genetic Stability in Regenerants. Plant Growth Regul. 2010, 61, 265–275. [Google Scholar] [CrossRef]
- Mitrović, O.; Vujović, T.; Popović, B.; Leposavić, A.; Karaklajić-Stajić, Ž.; Korićanac, A.; Miletić, N. Does the Propagation Technique Affect Phytochemical Composition of Raspberry and Blackberry Fruits? Zemdirb.-Agric. 2023, 109, 255–262. [Google Scholar] [CrossRef]
- Clapa, D.; Fira, A.; Catita, P.; Vescan, L. The Micropropagation of Some Thornless Blackberry Cultivars; Scientific Papers; Research Institute for Fruit Growing Pitesti: Mărăcineni, Romania, 2011; Volume XXVII, pp. 113–119. [Google Scholar]
- Rajabzadeh, Z.; Dehpour, A.A.; Soltani, S.; Bishekolahi, R.; Ghasemi, K. An Extensive Study on Silicon Role in Propagation of Thornless Blackberry (Rubus fruticosus, Merton Cultivar) During In Vitro and Adaptation Phases. Silicon 2023, 15, 2879–2888. [Google Scholar] [CrossRef]
- Huerta-Olalde, A.M.; Hernández-García, A.; López-Gómez, R.; Fernández-Pavía, S.P.; Zavala-Páramo, M.G.; Salgado-Garciglia, R. In Vitro Selection of Blackberry (Rubus fruticosus ‘Tupy’) Plants Resistant to Botrytis Cinerea Using Gamma Ray-Irradiated Shoot Tips. Plant Biotechnol. 2022, 39, 165–171. [Google Scholar] [CrossRef]
- Liudmyla, L.; Bulko, O.; Kuchuk, N. Adventitious Regeneration of Blackberry and Raspberry Shoots and the Assessment of the LED-Lighting Impact. Zemdirb.-Agric. 2022, 109, 49–54. [Google Scholar] [CrossRef]
- Karakoyun, M.; Arikan, Ş.; İpek, M. Determination of the Reactions of ‘Chester’ Blackberry Variety to Different CaCO3 Applications in In Vitro Conditions. Appl. Fruit Sci. 2024, 66, 2203–2209. [Google Scholar] [CrossRef]
- Sedlak, J.; Paprstein, F. Micropropagation of Blackberry Genotypes. Acta Hortic. 2016, 1133, 487–490. [Google Scholar] [CrossRef]
- Ahmed, M.E.A.E.; Abd Elaziem, T.M.A.E. In Vitro Regeneration and Improving Kaempferol Accumulation in Blackberry (Rubus fruticosus L.) Callus and Suspension Cultures. Egypt. J. Chem. 2022, 65, 369–383. [Google Scholar] [CrossRef]
- Pelto, M.; Clark, J. In Vitro Shoot Tip Culture of Rubus Part 2: Application. Small Fruits Rev. 2001, 1, 83–93. [Google Scholar] [CrossRef]
- Najaf-Abadi, A. Micropropagation of Thornless Trailing Blackberry (Rubus Sp.) by Axillary Bud Explants. Aust. J. Crop Sci. 2009, 3, 191–194. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lepse, L.; Laugale, V. Micropropagation, Rooting and Acclimatization of Blackberry “Agavam”. Acta Hortic. 2009, 839, 43–49. [Google Scholar] [CrossRef]
- Fathy, H.; El-Leel, O.; Amin, M.; AbuEl-Leel, O. Micropropagation and biomass production of Rubus fruticosus L. (Blackberry) plant. Middle East J. Appl. Sci. 2020, 8, 1215. [Google Scholar]
- Linsmaier, E.M.; Skoog, F. Organic Growth Factor Requirements of Tobacco Tissue Cultures. Physiol. Plant. 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Murashige, T.; Tucker, D.P.H. Growth factor requirements of citrus tissue culture. Proc. First Int. Citrus Symp. 1969, 3, 1155–1161. [Google Scholar]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb. Proc. Int. Plant Propagators Soc. 1982, 30, 421–427. [Google Scholar]
- Gamborg, O.L. Cells, Protoplasts and Plant Regeneration in Culture. In Manual of Industrial Microbiology and Biotechnology; Demain, A.L., Salomon, N.A., Eds.; American Society for Microbiology: Washington, DC, USA, 1986; pp. 263–273. [Google Scholar]
- Regni, L.; Micheli, M.; Facchin, S.L.; Del Pino, A.M.; Silvestri, C.; Proietti, P. The Influence of the Explant’s Type on the Performance of Synthetic Seeds of Blackberry (Rubus Spp.). Plants 2024, 13, 32. [Google Scholar] [CrossRef]
- Tashmatova, L.V.; Matsneva, O.V.; Khromova, T.M.; Shakhov, V.V. Optimization of Individual Elements of Clonal Micro-Propagation of Fruit and Berry Crops in the Production System of Healthy Planting Material. E3S Web Conf. 2021, 254, 04001. [Google Scholar] [CrossRef]
- Clapa, D.; Hârța, M.; Cordea, M. Propagation of Blackberry Cultivars in Three In Vitro Culture Systems and Evaluation of Genetic Uniformity. J. Cent. Eur. Agric. 2024, 25, 1076–1087. [Google Scholar] [CrossRef]
- Jadán, M.; Ruiz, J.; Soria, N.; Mihai, R. Synthetic Seeds Production and the Induction of Organogenesis in Blackberry (Rubus Glaucus Benth). Rom. Biotechnol. Lett. 2015, 20, 10134–10142. [Google Scholar]
- Ružić, D.J.; Vujović, T.; Cerović, R. In Vitro Propagation of Blackberry and Raspberry after Cold Storage of Encapsulated Shoot Tips. Acta Hortic. 2011, 908, 275–282. [Google Scholar] [CrossRef]
- Dziedzic, E.; Jagła, J. Micropropagation of Rubus and Ribes Spp. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 11013, pp. 149–160. [Google Scholar] [CrossRef]
- Damiano, C.; Padró, M.D.A.; Frattarelli, A. Recent Advances in Cryopreservation of Small Fruit Germplasm. Adv. Hortic. Sci. 2007, 21, 225–227. [Google Scholar]
- Hunková, J.; Libiaková, G.; Fejér, J.; Vujović, T.; Gajdošová, A. Testing of Different Iron Sources and Concentrations on Shoot Multiplication of Blackberry (Rubus fruticosus L.). Genetika 2018, 50, 351–356. [Google Scholar] [CrossRef]
- Pérez-Martínez, B.A.; Castañeda-Garzón, S.L. In Vitro Propagation of Rubus Macrocarpus Benth. and Rubus Bogotensis Kunth, as an Ex Situ Conservation Strategy. Acta Agron. 2016, 66, 102–108. [Google Scholar] [CrossRef]
- Amanda, I.; Biasi, L.A. Meio de cultura dupla-fase e reguladores vegetais na micropropagação de amoreira-preta. Comun. Sci. 2022, 13, e3613. [Google Scholar] [CrossRef]
- Van der Salm, T.P.M.; Van der Toorn, C.J.G.; Hänisch ten Cate, C.H.; Dubois, L.A.M.; De Vries, D.P.; Dons, H.J.M. Importance of the Iron Chelate Formula for Micropropagation of Rosa Hybrida L. ‘Moneyway’. Plant Cell Tissue Organ Cult. 1994, 37, 73–77. [Google Scholar] [CrossRef]
- Raeva-Bogoslovskaya, E.N.; Molkanova, O.I.; Krakhmaleva, I.L.; Soboleva, E.V. Biotechnology Methods to Produce Planting Material of the Genus Rubus L. IOP Conf. Ser. Earth Environ. Sci. 2021, 941, 012027. [Google Scholar] [CrossRef]
- Driver, J.A.; Kuniyuki, A.H. In Vitro Propagation of Paradox Walnut Rootstock. HortScience 1984, 19, 507–509. [Google Scholar] [CrossRef]
- Sabooni, N.; Shekafandeh, A.; Gharaghani, A.; Teixeira da Silva, J. Tissue Culture of Rubus Sp. by Different Methods and Assessment of Genetic Fidelity of Regenerated Plants Using RAPD. Agric. Conspec. Sci. 2022, 87, 223–230. [Google Scholar]
- Elazab, D.; Capuana, M.; Ozudogru, E.A.; Anichini, M.; Lambardi, M. Use of Liquid Culture with the Electis Bioreactor for Faster Recovery of Blackberry (Rubus fruticosus L.) Shoots from Conservation at 4 °C. Horticulturae 2023, 9, 680. [Google Scholar] [CrossRef]
- Titenkov, A.V.; Lushpin, M.N.; Lushpina, T.N.; Kotsareva, N.V.; Kryukov, A.N. Adaptation of Microclones of Blackberries to In Vivo Conditions. IOP Conf. Ser. Earth Environ. Sci. 2021, 845, 012022. [Google Scholar] [CrossRef]
- Krzepiłko, A.; Prażak, R.; Matyszczuk, K. Influence of Zinc Oxide Nanoparticles in In Vitro Culture and Bacteria Bacillus Thuringiensis in Ex Vitro Conditions on the Growth and Development of Blackberry (Rubus fruticosus L.). Appl. Sci. 2024, 14, 3743. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Al-Ali, A.M.; Rihan, H.Z.; Alshahrani, T.; Alwahibi, M.S.; Almutairi, K.F.; Naidoo, Y.; Fuller, M.P. Effects of Artificial Light Spectra and Sucrose on the Leaf Pigments, Growth, and Rooting of Blackberry (Rubus fruticosus) Microshoots. Agronomy 2023, 13, 89. [Google Scholar] [CrossRef]
- Orlikowska, T.; Zawadzka, M.; Zenkteler, E.; Sobiczewski, P. Influence of the Biocides PPMTM and Vitrofural on Bacteria Isolated from Contaminated Plant Tissue Cultures and on Plant Microshoots Grown on Various Media. J. Hortic. Sci. Biotechnol. 2012, 87, 223–230. [Google Scholar] [CrossRef]
- Kolarević, T.; Milinčić, D.D.; Vujović, T.; Gašić, U.M.; Prokić, L.; Kostić, A.Ž.; Cerović, R.; Stanojevic, S.P.; Tešić, Ž.L.; Pešić, M.B. Phenolic Compounds and Antioxidant Properties of Field-Grown and In Vitro Leaves, and Calluses in Blackberry and Blueberry. Horticulturae 2021, 7, 420. [Google Scholar] [CrossRef]
- Sabooni, N.; Shekafandeh, A. Somatic Embryogenesis and Plant Regeneration of Blackberry Using the Thin Cell Layer Technique. Plant Cell Tissue Organ Cult. 2017, 130, 313–321. [Google Scholar] [CrossRef]
- Cantoni, L.; Berardi, G.; Rosati, P. Organogenesis and Somatic Embryogenesis from Immature Embryos of Blackberry. Acta Hortic. 1993, 352, 37–42. [Google Scholar] [CrossRef]
- Fiola, J.A.; Swartz, H. Somatic Embryogenesis, Organogenesis and Proliferation In Vitro from Rubus Embryos. Acta Hortic. 1986, 183, 91–98. [Google Scholar] [CrossRef]
- Ahmad, N.; Shahid, A.; Javed, S.B.; Khan, M.I.; Anis, M. Micropropagation of Vitex Spp. through In Vitro Manipulation: Current Status and Future Prospectives. J. Appl. Res. Med. Aromat. Plants 2015, 2, 114–123. [Google Scholar] [CrossRef]
- Rai, M.K.; Asthana, P.; Singh, S.K.; Jaiswal, V.S.; Jaiswal, U. The Encapsulation Technology in Fruit Plants—A Review. Biotechnol. Adv. 2009, 27, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Rihan, H.Z.; Kareem, F.; El-Mahrouk, M.E.; Fuller, M.P. Artificial Seeds (Principle, Aspects and Applications). Agronomy 2017, 7, 71. [Google Scholar] [CrossRef]
- Regni, L.; Micheli, M.; Pino, A.M.D.; Facchin, S.L.; Rabica, E.; Camilloni, L.; Cesarini, A.; Proietti, P. Blackberry Synthetic Seeds Storage: Effects of Temperature, Time, and Sowing Substrate. Plant Cell Tissue Organ Cult. 2024, 158, 17. [Google Scholar] [CrossRef]
- Coman, M.; Isac, V.; Mladin, P.; Popescu, A. In Vitro Storage of Berry Genotypes. Acta Hortic. 2004, 649, 111–114. [Google Scholar] [CrossRef]
- Ayub, R.; Neves, J.; Zanlorensi, L.; Silva, D.; Carvalho, T.; Grimaldi, F. Sucrose Concentration and Volume of Liquid Medium on the In Vitro Growth and Development of Blackberry Cv. Tupy in Temporary Immersion Systems. Ciência E Agrotecnologia 2019, 43, e007219. [Google Scholar] [CrossRef]
- Clapa, D.; Borsai, O.; Monica, H.; Sisea, R.; Pamfil, D. Molecular Analysis of Genetic Stability of Micropropagated Blackberry and Blueberry Plants Using Rapd and Srap Markers. Fruit Grow. Res. 2019, 35, 79–85. [Google Scholar] [CrossRef]
- Regni, L.; Del Buono, D.; Micheli, M.; Facchin, S.L.; Tolisano, C.; Proietti, P. Effects of Biogenic ZnO Nanoparticles on Growth, Physiological, Biochemical Traits and Antioxidants on Olive Tree In Vitro. Horticulturae 2022, 8, 161. [Google Scholar] [CrossRef]
- Regni, L.; Del Buono, D.; Micheli, M.; Facchin, S.L.; Cesarini, A.; Priolo, D.; Proietti, P. Biogenic Zinc Oxide Nanoparticles Improve In Vitro Growth of Blueberries. Horticulturae 2024, 10, 1234. [Google Scholar] [CrossRef]
- Mihaljević, I.; Vuletić, M.V.; Tomaš, V.; Zdunić, Z.; Vuković, D.; Dugalić, K. Assessment of Photosynthetic Capacity of Two Blackberry Cultivars Subjected to Salt Stress by the JIP Fluorescence Test. J. Berry Res. 2024, 14, 1–13. [Google Scholar] [CrossRef]
- Aly, A.A.; El-Desouky, W.; El-Leel, O.F.A. Micropropagation, Phytochemical Content and Antioxidant Activity of Gamma-Irradiated Blackberry (Rubus fruticosus L.) Plantlets. Vitr. Cell. Dev. Biol.-Plant 2022, 58, 457–469. [Google Scholar] [CrossRef]
Basal Media | Cultivar | Explant Type | PGRs (mg L−1 or Other UoM Where Specified) | Success of Establishing a Sterile Culture | References |
---|---|---|---|---|---|
MS | ‘Black Satin’ ‘Loch Ness’ | Single-node explant | 2 BAP, 0.2 IBA | Not available (N/A) | [9] |
Modified MS | ‘Loch Ness’ ‘Chester Thornless’ | Axillary and terminal bud | 0.5 BAP | N/A | [21] |
MS (M1) ½ MS with 8 mL Fe EDTA (M2) MS with ¼ of nitrates, 2x strength Fe salts (M3) MS with 2x strength Fe ions (M4) | ‘Agavam’ (A) ‘Thornfree’ (T) ‘Darrow’ (D) | Meristem tip | (a) 1 BAP (M1) (b) 1 BAP, 0.3 IAA (M1) (c) 0.2 BAP, 0.2 IBA (M2) (d) 2 BAP, 0.05 IBA, 0.1 GA3 (M3) (e) 1 IBA (M3) (f) 1 BAP, 0.3 IAA, 0.2 GA3 (M4) | 100% D (c,d) | [38] |
MS WPM B5 | N/A | Nodal explant | N/A | 91.67% MS 91.67% WPM 33.33% B5 | [39] |
MS | ‘Chester’ | Dormant bud and cane Shoot | N/A | N/A | [22] |
WPM | ‘Chester Thornless’ | Nodal segment | 2 BAP | N/A | [8] |
MS | N/A | Shoot | 2 BAP | N/A | [36] |
MS | ‘Black Satin’ | Nodal segment | 6 BAP, 0.2 IBA | Almost 100% | [20] |
MS | N/A | Segment with an axillary bud | N/A | N/A | [23] |
MS | ‘Čačanska bestrna’ ‘Chester Thornless’ ‘Driscoll’s Victoria’ ‘Loch Ness’ ‘Polar’ ‘Karaka Black’ | Axillary and apical bud | 0.5 BAP | N/A | [11] |
MS | ‘Brazos’ | Nodal segment | 5 μM BAP | N/A | [19] |
MS with LS vitamins | ‘Darrow’ ‘DAR 24’ ‘DAR 8’ | Axillary bud | 0.3 BAP, 0.1 GA3, 0.001 NAA | 63.77% | [24] |
MS | ‘Čačanska bestrna’ | Bud | 2 BAP, 0.5 IBA, 0.1 GA3 | 57.2% | [25] |
½ MS (liquid) | ‘Navaho’ APF selections | Shoot tip | N/A | N/A | [35] |
MS | ‘Smoothstem’ | Nodal segment | 4 mM BAP, 0.25 mM IBA | N/A | [18] |
MS | ‘Čačanska bestrna’ | Bud | 2 BAP, 0.5 IBA, 0.1 GA3 | N/A | [26,27] |
MS ½ MS ¾ MS | ‘Xavante’ | Nodal segment | N/A | 0% ½ MS (whitout light) 66.7% MS (whitout light) 91.7% ¾ MS (whitout light) 37.5% ½ MS (with light) 33.3% ¾ MS (with light) 54.2% MS (with light) | [17] |
MS | ‘Loch Ness’ (LN) ‘Smoothstem’ (S) ‘Thornless evergreen’ (TE) | Axillary and apical bud | 0.7 BAP | 75% LN | [28] |
MS MT WPM | N/A | Shoot tip | N/A | 88.33% (MS) 95% (MT) 100% (WPM) | [34] |
MS | ‘Čačanska bestrna’ (CB) ‘No. 7’ | Shoot | 1.5 BAP | 100% CB 81.8% No. 7 | [33] |
MS | ‘Chester’ | Shoot tip | 0.5 GA3 | N/A | [32] |
½ MS | ‘Merton’ ‘Thornless’ | Single bud | N/A | N/A | [29] |
MS | ‘Tupy’ | Apical bud | 0.05 BAP | N/A | [30] |
Semi-saline MS | ‘Smoothstem’ ‘Triple Crown’ ‘Karaka Black’ | Apical and lateral stem bud Etiolated root bud | 0.5 BAP | N/A | [31] |
MS | N/A | Nodal segment | 2 BAP, 0.5 NAA | N/A | [16] |
MS | ‘Black Satin’ | Nodal segment | 1 BAP | N/A | [14] |
MS | ‘Loch Ness’ ‘Loch Tay’ | Nodal cutting | 0.5 BAP | N/A | [15] |
Basal Media | Cultivar | Explant Type | PGRs (mg L−1 or Other UoM Where Specified) | Multiplication Coefficient | Comments | References |
---|---|---|---|---|---|---|
MS | ‘Čačanska bestrna’ (CB) ‘No. 7’ | Shoot | 1, 2 or 4 BAP, or combination of 1 BAP, 0.1 IBA and 0.1 GA3 | 6.3 ± 0.5 CB (4 mg L−1 BAP) 4.2 ± 0.4 No. 7 (1 mg L−1 BAP, 0.1 mg L−1 IBA, 0.1 mg L−1 GA3) | N/A | [33] |
MS | ‘Black Satin’ | Shoot | (a) 0.5 BAP, 0.2 IBA (b) 1 BAP, 0.2 IBA (c) 1.5 BAP, 0.2 IBA (d) 2 BAP, 0.2 IBA | (a) 4.10 with (b) 5.29 with (c) 5.30 with (d) 5.86 with | N/A | [20] |
MS (0.5% agar) MS (5% wheat starch) | ‘Čačanska bestrna’ (CB) ‘Chester Thornless’ (CT) ‘Driscoll’s Victoria’ (DV) ‘Loch Ness’ (LN) ‘Polar’ (P) ‘Karaka Black’ (KB) | Shoot | 0.5 BAP | 33.92 ± 4.44 CB (agar) 32.42 ± 4.62 CT (agar) 32.08 ± 4.70 LN (agar) 21.42 ± 2.24 DV (agar) 24.25 ± 6.08 P (agar) 54.42 ± 4.18 KB (starch) 42.58 ± 4.92 CT (starch) 26.50 ± 3.71 P (starch) | The highest number of shoots/inoculum was obtained in wheat starch-gelled culture medium, with a maximum value of 54.42 ± 4.18 presented by ‘Karaka Black’. | [11] |
MS | ‘Navaho’ APF selections | Microshoot | 0.1 IBA 0.09 NAA | N/A | Incorporating IBA into a proliferation medium induced better microshoot proliferation than NAA. | [35] |
MS ½ MSB Anderson WPM | ‘Navaho’ APF selections | Microshoot | BAP, IBA, GA3 (1/2 MSB, Anderson, WPM) BAP, NAA, GA3 (MS) | N/A | The full-strength MS formulation was reported to be the best. | [35] |
MS | ‘Navaho’ APF selections | Shoot tip | (1) 0.1 GA3, 0.1 IBA (2) 1 BAP (3) 2 BAP (4) 4 BAP (5) 10 BAP (6) 1 BAP, 0.1 IBA, 0.1 GA3 (7) 2 BAP, 0.1 IBA, 0.1 GA3 (8) 4 BAP, 0.1 IBA, 0.1 GA3 (9) 10 BAP, 0.1 IBA, 0.1 GA3 | N/A | The best microshoot proliferation across genotypes was observed at 4.0 mg L−1 of BA without IBA and GA3. | [35] |
½ MS | ‘Thornfree’ ‘Chester’ | Shoot | 0.1 IBA, 0.4 BAP | N/A | The obtained shoots were used for encapsulation | [44] |
MS Ly de Fossard Gamborg | ‘Thornfree’ (T) ‘Agawam’ (A) ‘Black Satin’ (BS) ‘Eri’ (E) | Shoot | 1 BAP | 5.0 ± 0.4 (T) 4.8 ± 0.4 (A) 6.1 ± 0.5 (BS) 5.2 ± 0.4 (E) | The reported results refer to the Ly de Fossard substrate, which proved to be the best. | [45] |
MS solid semi-solid and liquid (TIS) | ‘Čačanska bestrna’ (CB) ‘Chester Thornless’ (CT) ‘Driscoll’s Victoria’ (DV) ‘Loch Ness’ (LN) ‘Polar’ (P) ‘Karaka Black’ (KB) | Shoot | 0.5 BAP | 42.27 ± 4.79 LN (solid MS) 19.53 ± 4.86 DV (solid MS) 21.13 ± 3.95 CT (solid MS) 52.93 ± 2.51 LN (semi-solid MS) 48.32 ± 2.49 KB (semi-solid MS) 47.22 ± 2.13 CB (semi-solid MS) 93.90 ± 4.01 KB (TIS) | The most suitable culture system was semi-solid medium. | [46] |
MS | N/A | Shoot | IAA (0.5, 0.75, 1) with BAP (2, 3) | N/A | The best results was obtained at a concentration of 2 mg L−1 BAP and 0.75 mg L−1 IAA | [47] |
MS | ‘Čačanska bestrna’ | Encapsulated shoot | 1 BAP, 0.1 IBA, 0.1 GA3 | 2.56 | The multiplication index reported is the average of the nine subcultures. | [48] |
MS | ‘Black Satin’ (BS) ‘Loch Ness’ (LN) | Shoot | 1 BAP, 0.5 IBA, 0.1 GA3 | 2.78 2nd sub vs. 2.07 1st sub (LN) 4.49 2nd sub vs. 2.89 1st sub (BS) | N/A | [9] |
MS (50 g L−1 wheat starch) | ‘Loch Ness’ ‘Chester Thornless’ | Mini-shoot | 0.5 BAP | >40% | N/A | [21] |
MS | ‘Guarani’ (G) ‘Caingangue’ (C) ‘Ébano’ (E) ‘Xavante’ (X) | Nodal segment | 1 BAP | 17.1 (G) 14.0 (C) 17.3 (E) 10.2 (X) | N/A | [3] |
MS (M1) MS (2x strength, with ½ strength nitrates) (M2) | ‘Agavam’ | Shoot | 0.5 BAP, 0.25 IAA 1 BAP | 2.9 (M1) 3.1 (M2) | N/A | [38] |
MS (M1) MS (2x strength, with ½ strength nitrates) (M2) MS (with Fe EDTA) (M3) MS (½ strength with Fe EDTA) (M4) | ‘Agavam’ (A) ‘Thornfree’ (T) ‘Darrow’ (D) | Shoot | 0.5 BAP, 0.25 IAA (M1) 1 BAP (M2) 2 BAP, 1 IBA (M3a) 1 BAP, 0.05 IBA (M3b) 1.2 IBA (M4) | 1 A (M3a) 0.0 T, D (M3a) 2.7 A (M3b) 4 T (M3b) 2.5 D (M3b) 0.0 A,T, D (M4) 2 A, D (M1) 3.6 T (M1) 4 T (M2) | N/A | [38] |
MS | ‘Chester’ | Shoot | (a) 2 BAP (b) 2 BAP, 0.1 NAA (c) 2 BAP, 0.5 NAA (d) 0.7 BAP (e) 1.4 BAP | 5.2 (e) | The concentration of NAA seemed to had no effect on shoot multiplication rate. | [22] |
MS | N/A | Shoot | (a) 0.2 BAP (b) 0.4 BAP (c) 0.6 BAP (d) 0.2 BAP, 0.2 NAA (e) 0.4 BAP, 0.2 NAA (f) 0.6 BAP, 0.2 NAA | 1.5 2.3 2.2 1.1 1.4 1.2 | N/A | [39] |
WPM | ‘Chester Thornless’ | Shoot | Combination of BAP (1, 2, 3), NAA (0, 0.1, 0.2, 0.4) and IBA (0, 0.1, 0.2, 0.4). GA3 (0, 0.25, 0.50) IBA and NAA (0, 0.1, 0.2, 0.4) | 9.66 (2 mg L−1 BAP + 0.2 mg L−1 IBA) 3.33 (3 mg L−1 BAP + 0.1 and 0.4 mg L−1 IBA) 6.33 (2 L−1 BAP without NAA) 2.21 (1.5 mg L−1 BAP + 0.4 L−1 NAA) | N/A | [8] |
MS | N/A | Shoot | 0.8, 1 BAP | N/A | N/A | [49] |
MS | N/A | Shoot | BAP (2, 3), alone or in combination with GA3 (0.2, 0.5,1) | 3.33 (2 mg L−1 BA and 0.5 mg L−1 GA3) | N/A | [36] |
MS | N/A | Fragment with an axillary bud | 1, 1.5 and 2 BAP | More than 3 shoots per explant, except R. adenothallus | R. floribundus produced the highest number of shoots (7.2 ± 1.9) when grown under the influence of 1.5 mg L−1 BAP | [23] |
MS MS with mineral salts reduced ½ | ‘DAR 24’ ‘DAR 8’ ‘Darrow’ | Shoot | 0.5 BAP, 0.5 GA3 0.3 BAP, 0.1 GA3, 0.001 NAA | 11.17 ‘Darrow’ 18.0 ‘DAR 24’ 12.83 ‘DAR 8’ | MS with 0.3 BAP, 0.1 GA3, 0.001 NAA is better for all 3 cultivars | [24] |
MS | ‘Čačanska bestrna’ | Shoot | (a) 1 BAP, 0.1 IBA, 0.1 GA3 (b) 0.5 BAP, 0.1 IBA, 0.1 GA3 (c) 1 BAP, 0.1 NAA, 0.1 GA3 | 2 | The multiplication index is the average of the four subcultures. | [25] |
MS | ‘Smoothstem’ | Shoot bud | (a) 2 mM BAP, 2.5 mM IBA, 0.3 mM GA3 (b) 2 mM BAP, 0.3 GA3 (c) 4 mM BAP, 0.25 mM IBA | 2.3 ± 0.2 (a) 5.1 ± 0.6 (b) 6.3 ± 0.7 (c) | N/A | [18] |
MS | ‘Ébano’ (E) ‘Guarany’ (G) ‘Tupy’ (T) | Shoot | (a) 2 BAP (b) 2 BAP, 0.1 NAA, 0.5 GA3 (c) 1 BAP (d) 1 BAP, 0.1 NAA, 0.5 GA3 | 7.60 E (c) 7.02 T (c) 12.15 G (a) | N/A | [1] |
MS (solid) (S) MS (liquid) (L) MS (double-phase) (DP) | ‘Ébano’ (E) ‘Tupy’ (T) | N/A | 4 μM BAP (S,L, DP) 0.1, 2, 3, 4, and 5 μM BAP (DP) | 9.4 T (L) 11.0 E (L) | The in vitro multiplication of ‘Tupy’ and ‘Ébano’ blackberries is achievable in double-phase MS medium with 5 μM BAP. | [53] |
MS | ‘Kotata’ | Shoot | 0.4 BAP | 4.0 ± 0.5 | N/A | [50] |
MS MS VDS MS 2x FeNaEDTA MS VDS 2x FeEDDHA | ‘Black Satin’ (BS) ‘Loch Ness’ (LN) | Shoot | 1 BAP, 0.5 IBA, 0.1 GA3 | 6.50 ± 0.27 BS (MS) 6.59 ± 0.31 BS (MS VDS) 3.84 ± 0.24 BS (MS 2x FeNaEDTA) 2.74 ± 0.15 BS (MS VDS 2x FeEDDHA) 3.13 ± 0.18 LN (MS) 2.76 ± 0.16 LN (MS VDS) | For ‘Black Satin’ it was shown that double concentration of chelates FeNaEDTA and FeEDDHA in culture media negatively affected on shoot growth and multiplication. | [51] |
MS | ‘Loch Ness’ (LN) ‘Smoothstem’ (S) ‘Thornless evergreen’ (TE) | Shoot | 0.5 BAP | 21.69 (LN) 35.89 (S) 42.32 (TE) | N/A | [28] |
MS | N/A | Shoot | BAP (0.25, 0.50, 1, 1.50, 2) 2iP (0.25, 0.50, 1, 1.50, 2) TDZ (0.25, 0.50, 1, 1.50, 2) | 5 (0.25 mg L−1 BA; 1.0 mg L−1 TDZ) 7 (0.50 mg L−1 BA; 0.25 mg L−1 2iP) 11 (1.0 mg L−1 BA) 17 (1.50 mg L−1 BA) 12 (2 mg L−1 BA) 9 (0.50 mg L−1 2iP) 13 (1.0 mg L−1 2iP) 15 (1.50 mg L−1 2iP) 8 (2.0 mg L−1 2iP) 2 (0.25 mg L−1 TDZ) 3 (0.50 mg L−1 TDZ) 1 (1.50, 2.0 mg L−1 TDZ) | N/A | [34] |
MS | ‘Čačanska bestrna’ | Regenerated shoot | 1 BAP, 0.1 IBA, 0.1 GA3 | 2.9 | N/A | [26] |
MS MS with mineral salts reduced ½ | N/A | Shoot | 1.5 BAP, 0.75 IAA | 5.0 R. macrocarpus (½ MS) 6.8 R. bogotensis (½ MS) | Only the best results obtained were reported | [52] |
Basal Media | Cultivar | Explant Type | PGRs (mg L−1 or Other UoM Where Specified) | Rooting % | Comments | References |
---|---|---|---|---|---|---|
½ MS | ‘Ébano’ | Nodal segment | NAA (0.55, 1.1), IBA (0.55, 1.1) | 0% (NAA) 100% (IBA) | N/A | [3] |
MS WPM DKW | ‘Chester’ | N/A | 0.5 GA3 | N/A | Rooting was observed on WPM medium, with more and longer roots than on MS or DKW medium | [22] |
MS ½ MS ¼ MS | N/A | Shootlet | 0.4 IBA | 33.3% (MS) 100% (½MS) 60% (¼ MS) | N/A | [39] |
WPM | ‘Chester Thornless’ | Shoot | NAA (0.1, 0.2, 0.4), IBA (0.1, 0.2, 0.4) | N/A | A concentration of 0.4 mg L−1 NAA gave the greatest number of roots and maximum root length. | [8] |
MS | N/A | Shoot | 1 IBA | N/A | N/A | [49] |
MS | N/A | Shoot | IBA (0.5, 1.0, 2.0) | N/A | 2.0 mg L−1 IBA has the highest root value | [36] |
MS | ‘Black Satin’ | Shoot | 1 IBA | 80–100% | N/A | [20] |
MS with mineral salts reduced ½ | ‘DAR 24’ ‘DAR 8’ ‘Darrow’ | Shoot | 0.1 IBA, 0.1 GA3 | 95% (DAR 8) 86% (DAR 24) 90% (Darrow) | N/A | [24] |
MS with mineral salts reduced ½ | ‘Čačanska bestrna’ | Shoot | 1 IBA, 0.1 GA3 | 100% | N/A | [25] |
MS with mineral salts reduced 1/3 | ‘Ébano’ ‘Guarani’ ‘Tupy’ | Shoot | IBA (0.3, 0.5, 0.8) | 100% | N/A | [1] |
Solid MS | ‘Ébano’ ‘Tupy’ | N/A | IBA (0.5, 1.0, 1.5, 2.0 μM L−1) | N/A | An average concentration of 1.1 μM L−1 IBA resulted in improved root length and maximum root volume | [53] |
½ MS | ‘Brzezina Polish’ selection | Microshoot | 0.5–1.5–2 µM IBA | 96% | The highest rhizogenesis efficiency occurred in ½ MS + 1.5 µM IBA medium. | [45] |
Macro 1/2 MS; microelements MS | ‘Kotata’ | Shoot | 1 IAA | 98 ± 0.5% | N/A | [50] |
½ MS | N/A | Axillary shoot | IBA or NAA (0, 5.37 or 10.74 µM) and BA (2.22 µM) | N/A | The roots and shoots became most abundant when using the medium supplemented with 9.84 µM IBA. | [57] |
½ MS | ‘Čačanska bestrna’ ‘Gazda’ | Shoot | 1 IBA, 1 IAA | 93% IBA and 100% IAA (Čačanska bestrna) 97% IBA and 73% IAA (Gazda) | N/A | [55] |
½ MS salts | N/A | Shoot | IBA (0, 0.10, 0.25, 0.5, 0.75, 1, 1.25, and 1.5) in combination with NAA (0 and 0.5). | 1.00 mg L−1 IBA plus 0.50 mg L−1 NAA, the highest rooting percentage of Rubus fruticosus (91%) | N/A | [34] |
½ MS salts | ‘Čačanska bestrna’ | Shoot | 1 IBA, 0.1 GA3 | 100% | N/A | [26] |
MS ½ MS | ‘Black Satin’ | Shoot | IBA (0.5, 1) | 100% (½ MS and 0.5 mg L−1 IBA) 87.5% (½ MS and 1.0 mg L−1 IBA) 75% (MS and 0.5 mg L−1 IBA) 83.3% (MS and 0.5 mg L−1 IBA) | N/A | [14] |
MS | ‘Loch Ness’ ‘Loch Tay’ | Shoot | 1 IBA | N/A | The obtained shoots were used for the regeneration phase | [15] |
MS ½ MS | N/A | Shoot or stem cutting | N/A. | 86.67% (½ MS R. macrocarpus) 100% (½ MS R. bogotensis) 46.67% (MS R. macrocarpus) 83% (MS R. macrocarpus) | N/A | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regni, L.; Cesarini, A. Over Half a Century of Research on Blackberry Micropropagation: A Comprehensive Review. Horticulturae 2025, 11, 556. https://doi.org/10.3390/horticulturae11050556
Regni L, Cesarini A. Over Half a Century of Research on Blackberry Micropropagation: A Comprehensive Review. Horticulturae. 2025; 11(5):556. https://doi.org/10.3390/horticulturae11050556
Chicago/Turabian StyleRegni, Luca, and Arianna Cesarini. 2025. "Over Half a Century of Research on Blackberry Micropropagation: A Comprehensive Review" Horticulturae 11, no. 5: 556. https://doi.org/10.3390/horticulturae11050556
APA StyleRegni, L., & Cesarini, A. (2025). Over Half a Century of Research on Blackberry Micropropagation: A Comprehensive Review. Horticulturae, 11(5), 556. https://doi.org/10.3390/horticulturae11050556