Non-Linear Models for Assessing Soil Moisture Estimation
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Design
2.2. Study Area
2.3. Dataset
2.3.1. Data Acquisition
2.3.2. Data Preprocessing
2.4. Research Methods
2.4.1. Correlation Analysis
2.4.2. K-Means Clustering
2.4.3. MLP
2.4.4. ARIMA
2.5. Evaluation Metrics
3. Results
3.1. Data Processing
3.2. Analysis of Factors Influencing SM
3.3. SM Estimation Based on MLP Model and K-MLP Model
3.4. SM Forecasting Using TSA
3.5. Comparison of SM Forecasting Models
4. Discussion
5. Conclusions
- (1)
- SM distribution: deeper soil layers have higher mean SM values and less variability compared to shallower layers. Seasonal rainfall patterns lead to two peaks in SM at the 5 cm and 20 cm depths, typically around May and July.
- (2)
- Correlation with predictors: SM exhibits positive correlations with air temperature, relative humidity, evaporation, surface temperature, and ST and a negative correlation with air pressure. The strongest correlation between SM and predictors occurs at 20 cm depth, while the weakest is at 5 cm.
- (3)
- The K-MLP model outperformed the MLP model, achieving a maximum R² of 0.728. The ARIMA model achieved high accuracy with R² values exceeding 0.96, particularly at 20 cm.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Ta | Air temperature |
GEP | Gene expression programming |
GMDH | Group method of data handling |
GRNN | Generalized regression neural network |
K-MLP | Integration of K-means clustering and multilayer perception model |
MAE | Mean absolute error |
ML | Machine learning |
MLP | Multilayer perception |
NLR | Nonlinear regression |
PCA | Principal component analysis |
R2 | Coefficient of determination |
RBNN | Radial basis functions neural network |
RMSE | Root mean square error |
RRMSE | Relative root mean square error |
Sd | Standard deviation |
SM | Soil moisture |
SMR | Stepwise multiple regression |
SSE | Sum of squares of errors |
ST | Soil temperature |
SVM | Support vector machine |
TSA | Time-series analysis |
References
- Zhu, L.; Liu, Y.; Jiao, F. Time series analysis of spatial variability of soil moisture in Loess Hilly Region. Procedia Earth Planet. Sci. 2012, 5, 346–353. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, L.; Han, Y.; Ji, J.; Shi, Q.; Yao, R.; Luo, Y.; Liu, T. Hydrology–Soil–Vegetation Element Interactions in the Largest Single-Port Artesian Irrigation Area of Asia. Land 2024, 13, 2099. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Filipović, N.; Brdar, S.; Mimić, G.; Marko, O.; Crnojević, V. Regional soil moisture prediction system based on Long Short-Term Memory network. Biosyst. Eng. 2022, 213, 30–38. [Google Scholar] [CrossRef]
- Massari, C.; Camici, S.; Ciabatta, L.; Brocca, L. Exploiting satellite-based surface soil moisture for flood forecasting in the Mediterranean area: State update versus rainfall correction. Remote Sens. 2018, 10, 292. [Google Scholar] [CrossRef]
- Niu, L.; Wang, Z.; Zhu, G.; Yu, K.; Li, G.; Long, H. Stable soil moisture improves the water use efficiency of maize by alleviating short-term soil water stress. Front. Plant Sci. 2022, 13, 833041. [Google Scholar] [CrossRef]
- Dubois, A.; Teytaud, F.; Verel, S. Short term soil moisture forecasts for potato crop farming: A machine learning approach. Comput. Electron. Agr. 2021, 180, 105902. [Google Scholar] [CrossRef]
- Liu, H.; Wan, X.; Cui, J.; Cai, T.; Yang, Y. Moisture and temperature prediction in tillage layer based on deep reinforcement learning. J. South China Agric. Univ. 2023, 44, 84–92. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, C.; Shi, H. Temporal and Spatial Variation Characteristics of Soil Moisture in North China in Recent 50 Years and Its Future Prediction. Nat. Sci. 2021, 9, 954. [Google Scholar] [CrossRef]
- Taheri, M.; Anboohi, M.S.; Nasseri, M.; Bigdeli, M.; Mohammadian, A. Quantifying a Reliable Framework to Estimate Hydro-Climatic Conditions via a Three-Way Interaction between Land Surface Temperature, Evapotranspiration, Soil Moisture. Atmosphere 2022, 13, 1916. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Fatichi, S.; Jenerette, G.D.; Espeleta, J.F.; Troch, P.A.; Huxman, T. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Ahmed, S.; Chakrabortty, R.K.; Essam, D.L.; Ding, W. Poly-linear regression with augmented long short term memory neural network: Predicting time series data. Inf. Sci. 2022, 606, 573–600. [Google Scholar] [CrossRef]
- Araújo, A. Polynomial regression with reduced over-fitting—The PALS technique. Measurement 2018, 124, 515–521. [Google Scholar] [CrossRef]
- Huang, X.; Shi, Z.; Zhu, H.; Zhang, H.; Ai, L.; Yin, W. Soil moisture dynamics within soil profiles and associated environmental controls. Catena 2016, 136, 189–196. [Google Scholar] [CrossRef]
- Baatz, R.; Hendricks Franssen, H.-J.; Han, X.; Hoar, T.; Bogena, H.R.; Vereecken, H.J.H.; Sciences, E.S. Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction. Hydrol. Earth Syst. Sci. 2017, 21, 2509–2530. [Google Scholar] [CrossRef]
- Then, Y.L.; You, K.Y.; Dimon, M.N.; Lee, C.Y.J.M. A modified microstrip ring resonator sensor with lumped element modeling for soil moisture and dielectric predictions measurement. Measurement 2016, 94, 119–125. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Wu, Y.; Wang, W. Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN). Sci. Total Environ. 2023, 876, 162558. [Google Scholar] [CrossRef]
- Deng, L.; Wu, Y.; Hu, X.; Liang, L.; Ding, Y.; Li, G.; Zhao, G.; Li, P.; Xie, Y. Rethinking the performance comparison between SNNS and ANNS. Neural Netw. 2020, 121, 294–307. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Chang, J. Research on soil moisture content combination prediction model based on ARIMA and BP neural networks. Adv. Control Appl. 2024, 6, e139. [Google Scholar] [CrossRef]
- Bayir, R.; Albayrak, A. The Determination of the Developments of Beehives via Artificial Neural Networks. Teh Vjesn 2018, 25, 553–557. [Google Scholar] [CrossRef]
- Ramseyer, C.A.; Mote, T.L. Atmospheric controls on Puerto Rico precipitation using artificial neural networks. Clim Dynam 2016, 47, 2515–2526. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Shangguan, W.; Li, L.; Dai, Y. A novel local-global dependency deep learning model for soil mapping. Geoderma 2023, 438, 116649. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Liu, Y.; Mu, C. Hyperspectral remote sensing images deep feature extraction based on mixed feature and convolutional neural networks. Remote Sens. 2021, 13, 2599. [Google Scholar] [CrossRef]
- Li, T.-B.; Su, Y.-T.; Song, D.; Li, W.-H.; Wei, Z.-Q.; Liu, A.-A. Multi-Scale Spatial-Temporal Transformer for Meteorological Variable Forecasting. IEEE Trans. Circuits Syst. Video Technol. 2024, 35, 2474–2486. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Root-zone soil moisture estimation using data-driven methods. Water Resour. Res. 2014, 50, 2946–2962. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Jeong, S.; Hong, M. Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes. Environ. Earth Sci. 2017, 76, 1–17. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.G.; Fatichi, S.; Burlando, P. An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions. Water Resour. Res. 2015, 51, 7501–7523. [Google Scholar] [CrossRef]
- Menberu, M.W.; Haghighi, A.T.; Ronkanen, A.; Marttila, H.; Kløve, B. Effects of drainage and subsequent restoration on peatland hydrological processes at catchment scale. Water Resour. Res. 2018, 54, 4479–4497. [Google Scholar] [CrossRef]
- Ponkina, E.; Illiger, P.; Krotova, O.; Bondarovich, A. Do ARMA models provide better gap filling in time series of soil temperature and soil moisture? The case of arable land in the Kulunda Steppe, Russia. Land 2021, 10, 579. [Google Scholar] [CrossRef]
- Wang, G.; Zhuang, L.; Mo, L.; Yi, X.; Wu, P.; Wu, X. BAG: A linear-nonlinear hybrid time series prediction model for soil moisture. Agriculture 2023, 13, 379. [Google Scholar] [CrossRef]
- Wang, G.; Su, H.; Mo, L.; Yi, X.; Wu, P. Forecasting of soil respiration time series via clustered ARIMA. Comput. Electron. Agr. 2024, 225, 109315. [Google Scholar] [CrossRef]
- Yao, S.X.; Zhao, C.C. Application of time series analysis in soil moisture of fixed dune on Korqin sandy land, northern China. Glob. NEST J. 2020, 22, 471–476. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, G.; Chen, D.; Chen, T. Application and evaluation of an improved LSTM model in the soil moisture prediction of southeast chinese tobacco-producing areas. J. Indian Soc. Remote Sens. 2022, 51, 1843–1853. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.; Zhang, X.; Drury, C.; Reynolds, W.; Hoogenboom, G. Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China. Agric. Water Manag. 2013, 123, 32–44. [Google Scholar] [CrossRef]
- ChinaFLUX. Meteorological Data from Changbai Mountain Station Spanning the Period 2003–2010. Available online: https://www.nesdc.org.cn/sdo/detail?id=5ff3c0c2042ebb1f26aff7e0 (accessed on 27 April 2025).
- GB/T 33705-2017; Soil Moisture Observation—Frequency Domain Reflectometry Method. China Standards Press: Beijing, China, 2017.
- Sun, H.; Cui, Y. Evaluating downscaling factors of microwave satellite soil moisture based on machine learning method. Remote Sens. 2021, 13, 133. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, X.; Wang, L.J.I.S. A Pearson’s correlation coefficient based decision tree and its parallel implementation. Inf. Sci. 2018, 435, 40–58. [Google Scholar] [CrossRef]
- Li, C.F.; Shi, X.B.; Zhou, Z.Y.; Li, J.B.; Geng, J.H.; Chen, B. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophys. J. Int. 2010, 182, 1229–1247. [Google Scholar] [CrossRef]
- Li, Z.; Vanderborght, J.; Smits, K.M. The effect of the top soil layer on moisture and evaporation dynamics. Vadose Zone J. 2020, 19, e20049. [Google Scholar] [CrossRef]
- Fan, K.K.; Zhang, Q.; Singh, V.P.; Sun, P.; Song, C.Q.; Zhu, X.D.; Yu, H.Q.; Shen, Z.X. Spatiotemporal impact of soil moisture on air temperature across the Tibet Plateau. Sci. Total Environ. 2019, 649, 1338–1348. [Google Scholar] [CrossRef]
- Bressane, A.; Garcia, A.J.D.; de Castro, M.V.; Xerfan, S.D.; Ruas, G.; Negri, R.G. Fuzzy Machine Learning Applications in Environmental Engineering: Does the Ability to Deal with Uncertainty Really Matter? Sustainability 2024, 16, 4525. [Google Scholar] [CrossRef]
- Lu, T.; Zheng, C.; Zhou, B.; Wu, J.; Wang, X.K.; Zhao, Y.; Liu, X.H.; Yuan, W.Q. Response of Liquid Water and Vapor Flow to Rainfall Events in Sandy Soil of Arid and Semi-Arid Regions. Agronomy 2023, 13, 2424. [Google Scholar] [CrossRef]
- Na, L.; Na, R.S.; Bao, Y.B.; Zhang, J.Q. Time-Lagged Correlation between Soil Moisture and Intra-Annual Dynamics of Vegetation on the Mongolian Plateau. Remote Sens. 2021, 13, 1527. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 2022, 409, 115651. [Google Scholar] [CrossRef]
- Wang, Y.; Zha, Y. Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis. Agric. Water Manag. 2024, 305, 109120. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Qi, Y.; Jiang, Y.; Boyer, E.W.; Mello, C.R.; Guo, L. Incorporating Catchment Attributes Grouping into Model Parameter Regionalization to Enhance Root Zone Soil Moisture Estimation. Water Resour. Manag. 2025, 1–18. [Google Scholar] [CrossRef]
- Gao, L.; Shao, M. Temporal stability of soil water storage in diverse soil layers. Catena 2012, 95, 24–32. [Google Scholar] [CrossRef]
- Biswas, A. Season- and depth-dependent time stability for characterising representative monitoring locations of soil water storage in a hummocky landscape. Catena 2014, 116, 38–50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, S.; Wu, H.; Dong, H.; Kong, D.; Li, H.; Zhang, D.S.; Chen, H. Non-Linear Models for Assessing Soil Moisture Estimation. Horticulturae 2025, 11, 492. https://doi.org/10.3390/horticulturae11050492
Li R, Wang S, Wu H, Dong H, Kong D, Li H, Zhang DS, Chen H. Non-Linear Models for Assessing Soil Moisture Estimation. Horticulturae. 2025; 11(5):492. https://doi.org/10.3390/horticulturae11050492
Chicago/Turabian StyleLi, Rui, Susu Wang, Han Wu, Hao Dong, Dezhi Kong, Hanxue Li, Dorothy S. Zhang, and Haitao Chen. 2025. "Non-Linear Models for Assessing Soil Moisture Estimation" Horticulturae 11, no. 5: 492. https://doi.org/10.3390/horticulturae11050492
APA StyleLi, R., Wang, S., Wu, H., Dong, H., Kong, D., Li, H., Zhang, D. S., & Chen, H. (2025). Non-Linear Models for Assessing Soil Moisture Estimation. Horticulturae, 11(5), 492. https://doi.org/10.3390/horticulturae11050492