Non-Linear Models for Assessing Soil Moisture Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Design
2.2. Study Area
2.3. Dataset
2.3.1. Data Acquisition
2.3.2. Data Preprocessing
2.4. Research Methods
2.4.1. Correlation Analysis
2.4.2. K-Means Clustering
2.4.3. MLP
2.4.4. ARIMA
2.5. Evaluation Metrics
3. Results
3.1. Data Processing
3.2. Analysis of Factors Influencing SM
3.3. SM Estimation Based on MLP Model and K-MLP Model
3.4. SM Forecasting Using TSA
3.5. Comparison of SM Forecasting Models
4. Discussion
5. Conclusions
- (1)
- SM distribution: deeper soil layers have higher mean SM values and less variability compared to shallower layers. Seasonal rainfall patterns lead to two peaks in SM at the 5 cm and 20 cm depths, typically around May and July.
- (2)
- Correlation with predictors: SM exhibits positive correlations with air temperature, relative humidity, evaporation, surface temperature, and ST and a negative correlation with air pressure. The strongest correlation between SM and predictors occurs at 20 cm depth, while the weakest is at 5 cm.
- (3)
- The K-MLP model outperformed the MLP model, achieving a maximum R² of 0.728. The ARIMA model achieved high accuracy with R² values exceeding 0.96, particularly at 20 cm.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Ta | Air temperature |
GEP | Gene expression programming |
GMDH | Group method of data handling |
GRNN | Generalized regression neural network |
K-MLP | Integration of K-means clustering and multilayer perception model |
MAE | Mean absolute error |
ML | Machine learning |
MLP | Multilayer perception |
NLR | Nonlinear regression |
PCA | Principal component analysis |
R2 | Coefficient of determination |
RBNN | Radial basis functions neural network |
RMSE | Root mean square error |
RRMSE | Relative root mean square error |
Sd | Standard deviation |
SM | Soil moisture |
SMR | Stepwise multiple regression |
SSE | Sum of squares of errors |
ST | Soil temperature |
SVM | Support vector machine |
TSA | Time-series analysis |
References
- Zhu, L.; Liu, Y.; Jiao, F. Time series analysis of spatial variability of soil moisture in Loess Hilly Region. Procedia Earth Planet. Sci. 2012, 5, 346–353. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, L.; Han, Y.; Ji, J.; Shi, Q.; Yao, R.; Luo, Y.; Liu, T. Hydrology–Soil–Vegetation Element Interactions in the Largest Single-Port Artesian Irrigation Area of Asia. Land 2024, 13, 2099. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Filipović, N.; Brdar, S.; Mimić, G.; Marko, O.; Crnojević, V. Regional soil moisture prediction system based on Long Short-Term Memory network. Biosyst. Eng. 2022, 213, 30–38. [Google Scholar] [CrossRef]
- Massari, C.; Camici, S.; Ciabatta, L.; Brocca, L. Exploiting satellite-based surface soil moisture for flood forecasting in the Mediterranean area: State update versus rainfall correction. Remote Sens. 2018, 10, 292. [Google Scholar] [CrossRef]
- Niu, L.; Wang, Z.; Zhu, G.; Yu, K.; Li, G.; Long, H. Stable soil moisture improves the water use efficiency of maize by alleviating short-term soil water stress. Front. Plant Sci. 2022, 13, 833041. [Google Scholar] [CrossRef]
- Dubois, A.; Teytaud, F.; Verel, S. Short term soil moisture forecasts for potato crop farming: A machine learning approach. Comput. Electron. Agr. 2021, 180, 105902. [Google Scholar] [CrossRef]
- Liu, H.; Wan, X.; Cui, J.; Cai, T.; Yang, Y. Moisture and temperature prediction in tillage layer based on deep reinforcement learning. J. South China Agric. Univ. 2023, 44, 84–92. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, C.; Shi, H. Temporal and Spatial Variation Characteristics of Soil Moisture in North China in Recent 50 Years and Its Future Prediction. Nat. Sci. 2021, 9, 954. [Google Scholar] [CrossRef]
- Taheri, M.; Anboohi, M.S.; Nasseri, M.; Bigdeli, M.; Mohammadian, A. Quantifying a Reliable Framework to Estimate Hydro-Climatic Conditions via a Three-Way Interaction between Land Surface Temperature, Evapotranspiration, Soil Moisture. Atmosphere 2022, 13, 1916. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Fatichi, S.; Jenerette, G.D.; Espeleta, J.F.; Troch, P.A.; Huxman, T. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Ahmed, S.; Chakrabortty, R.K.; Essam, D.L.; Ding, W. Poly-linear regression with augmented long short term memory neural network: Predicting time series data. Inf. Sci. 2022, 606, 573–600. [Google Scholar] [CrossRef]
- Araújo, A. Polynomial regression with reduced over-fitting—The PALS technique. Measurement 2018, 124, 515–521. [Google Scholar] [CrossRef]
- Huang, X.; Shi, Z.; Zhu, H.; Zhang, H.; Ai, L.; Yin, W. Soil moisture dynamics within soil profiles and associated environmental controls. Catena 2016, 136, 189–196. [Google Scholar] [CrossRef]
- Baatz, R.; Hendricks Franssen, H.-J.; Han, X.; Hoar, T.; Bogena, H.R.; Vereecken, H.J.H.; Sciences, E.S. Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction. Hydrol. Earth Syst. Sci. 2017, 21, 2509–2530. [Google Scholar] [CrossRef]
- Then, Y.L.; You, K.Y.; Dimon, M.N.; Lee, C.Y.J.M. A modified microstrip ring resonator sensor with lumped element modeling for soil moisture and dielectric predictions measurement. Measurement 2016, 94, 119–125. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Wu, Y.; Wang, W. Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN). Sci. Total Environ. 2023, 876, 162558. [Google Scholar] [CrossRef]
- Deng, L.; Wu, Y.; Hu, X.; Liang, L.; Ding, Y.; Li, G.; Zhao, G.; Li, P.; Xie, Y. Rethinking the performance comparison between SNNS and ANNS. Neural Netw. 2020, 121, 294–307. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Chang, J. Research on soil moisture content combination prediction model based on ARIMA and BP neural networks. Adv. Control Appl. 2024, 6, e139. [Google Scholar] [CrossRef]
- Bayir, R.; Albayrak, A. The Determination of the Developments of Beehives via Artificial Neural Networks. Teh Vjesn 2018, 25, 553–557. [Google Scholar] [CrossRef]
- Ramseyer, C.A.; Mote, T.L. Atmospheric controls on Puerto Rico precipitation using artificial neural networks. Clim Dynam 2016, 47, 2515–2526. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Shangguan, W.; Li, L.; Dai, Y. A novel local-global dependency deep learning model for soil mapping. Geoderma 2023, 438, 116649. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Liu, Y.; Mu, C. Hyperspectral remote sensing images deep feature extraction based on mixed feature and convolutional neural networks. Remote Sens. 2021, 13, 2599. [Google Scholar] [CrossRef]
- Li, T.-B.; Su, Y.-T.; Song, D.; Li, W.-H.; Wei, Z.-Q.; Liu, A.-A. Multi-Scale Spatial-Temporal Transformer for Meteorological Variable Forecasting. IEEE Trans. Circuits Syst. Video Technol. 2024, 35, 2474–2486. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Root-zone soil moisture estimation using data-driven methods. Water Resour. Res. 2014, 50, 2946–2962. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Jeong, S.; Hong, M. Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes. Environ. Earth Sci. 2017, 76, 1–17. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.G.; Fatichi, S.; Burlando, P. An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions. Water Resour. Res. 2015, 51, 7501–7523. [Google Scholar] [CrossRef]
- Menberu, M.W.; Haghighi, A.T.; Ronkanen, A.; Marttila, H.; Kløve, B. Effects of drainage and subsequent restoration on peatland hydrological processes at catchment scale. Water Resour. Res. 2018, 54, 4479–4497. [Google Scholar] [CrossRef]
- Ponkina, E.; Illiger, P.; Krotova, O.; Bondarovich, A. Do ARMA models provide better gap filling in time series of soil temperature and soil moisture? The case of arable land in the Kulunda Steppe, Russia. Land 2021, 10, 579. [Google Scholar] [CrossRef]
- Wang, G.; Zhuang, L.; Mo, L.; Yi, X.; Wu, P.; Wu, X. BAG: A linear-nonlinear hybrid time series prediction model for soil moisture. Agriculture 2023, 13, 379. [Google Scholar] [CrossRef]
- Wang, G.; Su, H.; Mo, L.; Yi, X.; Wu, P. Forecasting of soil respiration time series via clustered ARIMA. Comput. Electron. Agr. 2024, 225, 109315. [Google Scholar] [CrossRef]
- Yao, S.X.; Zhao, C.C. Application of time series analysis in soil moisture of fixed dune on Korqin sandy land, northern China. Glob. NEST J. 2020, 22, 471–476. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, G.; Chen, D.; Chen, T. Application and evaluation of an improved LSTM model in the soil moisture prediction of southeast chinese tobacco-producing areas. J. Indian Soc. Remote Sens. 2022, 51, 1843–1853. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.; Zhang, X.; Drury, C.; Reynolds, W.; Hoogenboom, G. Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China. Agric. Water Manag. 2013, 123, 32–44. [Google Scholar] [CrossRef]
- ChinaFLUX. Meteorological Data from Changbai Mountain Station Spanning the Period 2003–2010. Available online: https://www.nesdc.org.cn/sdo/detail?id=5ff3c0c2042ebb1f26aff7e0 (accessed on 27 April 2025).
- GB/T 33705-2017; Soil Moisture Observation—Frequency Domain Reflectometry Method. China Standards Press: Beijing, China, 2017.
- Sun, H.; Cui, Y. Evaluating downscaling factors of microwave satellite soil moisture based on machine learning method. Remote Sens. 2021, 13, 133. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, X.; Wang, L.J.I.S. A Pearson’s correlation coefficient based decision tree and its parallel implementation. Inf. Sci. 2018, 435, 40–58. [Google Scholar] [CrossRef]
- Li, C.F.; Shi, X.B.; Zhou, Z.Y.; Li, J.B.; Geng, J.H.; Chen, B. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophys. J. Int. 2010, 182, 1229–1247. [Google Scholar] [CrossRef]
- Li, Z.; Vanderborght, J.; Smits, K.M. The effect of the top soil layer on moisture and evaporation dynamics. Vadose Zone J. 2020, 19, e20049. [Google Scholar] [CrossRef]
- Fan, K.K.; Zhang, Q.; Singh, V.P.; Sun, P.; Song, C.Q.; Zhu, X.D.; Yu, H.Q.; Shen, Z.X. Spatiotemporal impact of soil moisture on air temperature across the Tibet Plateau. Sci. Total Environ. 2019, 649, 1338–1348. [Google Scholar] [CrossRef]
- Bressane, A.; Garcia, A.J.D.; de Castro, M.V.; Xerfan, S.D.; Ruas, G.; Negri, R.G. Fuzzy Machine Learning Applications in Environmental Engineering: Does the Ability to Deal with Uncertainty Really Matter? Sustainability 2024, 16, 4525. [Google Scholar] [CrossRef]
- Lu, T.; Zheng, C.; Zhou, B.; Wu, J.; Wang, X.K.; Zhao, Y.; Liu, X.H.; Yuan, W.Q. Response of Liquid Water and Vapor Flow to Rainfall Events in Sandy Soil of Arid and Semi-Arid Regions. Agronomy 2023, 13, 2424. [Google Scholar] [CrossRef]
- Na, L.; Na, R.S.; Bao, Y.B.; Zhang, J.Q. Time-Lagged Correlation between Soil Moisture and Intra-Annual Dynamics of Vegetation on the Mongolian Plateau. Remote Sens. 2021, 13, 1527. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 2022, 409, 115651. [Google Scholar] [CrossRef]
- Wang, Y.; Zha, Y. Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis. Agric. Water Manag. 2024, 305, 109120. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Qi, Y.; Jiang, Y.; Boyer, E.W.; Mello, C.R.; Guo, L. Incorporating Catchment Attributes Grouping into Model Parameter Regionalization to Enhance Root Zone Soil Moisture Estimation. Water Resour. Manag. 2025, 1–18. [Google Scholar] [CrossRef]
- Gao, L.; Shao, M. Temporal stability of soil water storage in diverse soil layers. Catena 2012, 95, 24–32. [Google Scholar] [CrossRef]
- Biswas, A. Season- and depth-dependent time stability for characterising representative monitoring locations of soil water storage in a hummocky landscape. Catena 2014, 116, 38–50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, S.; Wu, H.; Dong, H.; Kong, D.; Li, H.; Zhang, D.S.; Chen, H. Non-Linear Models for Assessing Soil Moisture Estimation. Horticulturae 2025, 11, 492. https://doi.org/10.3390/horticulturae11050492
Li R, Wang S, Wu H, Dong H, Kong D, Li H, Zhang DS, Chen H. Non-Linear Models for Assessing Soil Moisture Estimation. Horticulturae. 2025; 11(5):492. https://doi.org/10.3390/horticulturae11050492
Chicago/Turabian StyleLi, Rui, Susu Wang, Han Wu, Hao Dong, Dezhi Kong, Hanxue Li, Dorothy S. Zhang, and Haitao Chen. 2025. "Non-Linear Models for Assessing Soil Moisture Estimation" Horticulturae 11, no. 5: 492. https://doi.org/10.3390/horticulturae11050492
APA StyleLi, R., Wang, S., Wu, H., Dong, H., Kong, D., Li, H., Zhang, D. S., & Chen, H. (2025). Non-Linear Models for Assessing Soil Moisture Estimation. Horticulturae, 11(5), 492. https://doi.org/10.3390/horticulturae11050492