Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.; Crawford, G.W.; Chen, X. Archaeological Evidence for Peach (Prunus persica) Cultivation and Domestication in China. PLoS ONE 2014, 9, e106595. [Google Scholar] [CrossRef] [PubMed]
- Özçağıran, R.; Ünal, A.; Özeker, E.; İsfendiyaroğlu, M. Ilıman İklim Meyve Türleri: Sert Çekirdekli Meyveler Cilt-I; Ege Üniversitesi Ziraat Fakültesi Yayınları: İzmir, Türkiye, 2011; pp. 1–500. [Google Scholar]
- Byrne, D.H.; Raseira, M.B.; Bassi, D.; Piagnani, M.C.; Gasic, K.; Reighard, G.L.; Monero, M.A.; Pérez, S. Peach. In Fruit Breeding, 2nd ed.; Badenes, M.L., Byrne, D.H., Eds.; Springer: New York, NY, USA, 2012; pp. 505–569. [Google Scholar]
- Bassi, D.; Monet, R. Botany and Taxonomy. In The Peach Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CAB International: London, UK, 2008; pp. 1–36. [Google Scholar]
- Yılmaz, N.; Gür, E.; Polatöz, S.; Gündoğdu, M.A.; Şeker, M. The Peach: Brief Description and Growing. In Recent Headways in Pomology; Pakyürek, M., Ed.; Iksad Publishing House: Ankara, Türkiye, 2021; pp. 151–172. [Google Scholar]
- Liu, W.; Zhang, Y.; Ma, R.; Yu, M. Comparison of aroma trait of the white-fleshed peach ‘Hu Jing Mi Lu’ and the yellow-fleshed peach ‘Jin Yuan’ based on odor activity value and odor characteristics. Horticulturae 2022, 8, 245. [Google Scholar] [CrossRef]
- FAOSTAT Production Statistics. Available online: http://www.fao.org/faostat/en/#data/QC/ (accessed on 5 January 2025).
- TUIK Crop Production Statistics. Available online: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (accessed on 5 January 2025).
- Gür, E. Comparison of AFLP Polymorphism and Aromatic Compounds of White Nectarine Types with Important Prunus Species and Varieties, Creation of Hybrid Populations. Ph.D. Thesis, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye, 2012. [Google Scholar]
- Yıldız, N.; Gür, E.; Kaçan, A. Agricultural Potential of Lapseki District. LJAR 2020, 1, 83–89. [Google Scholar]
- Lesmes-Vesga, R.A.; Cano, L.M.; Ritenour, M.A.; Sarkhosh, A.; Chaparro, J.X.; Rossi, L. Variation in the root system architecture of peach × (peach × almond) backcrosses. Plants 2023, 12, 1874. [Google Scholar] [CrossRef]
- Muto, A.; Müller, C.T.; Bruno, L.; McGregor, L.; Ferrante, A.; Chiappetta, A.A.; Bitonti, M.B.; Rogers, H.J.; Spadafora, N.D. Fruit volatilome profiling through GC × GC-ToF-MS and gene expression analyses reveal differences amongst peach cultivars in their response to cold storage. Sci. Rep. 2020, 10, 18333. [Google Scholar]
- Sirangelo, T.M.; Rogers, H.J.; Spadafora, N.D. Molecular investigations of peach post-harvest ripening processes and VOC biosynthesis pathways: A review focused on integrated genomic, transcriptomic, and metabolomic approaches. Chem. Proc. 2022, 10, 8. [Google Scholar] [CrossRef]
- Loreti, F.; Massai, R. State of the art on peach rootstocks and orchard systems. Acta Hortic. 2006, 713, 253–268. [Google Scholar]
- Wang, Y.J.; Yang, C.X.; Li, S.H.; Yang, L.; Wang, Y.N.; Zhao, J.B.; Jiang, Q. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC–MS. Food Chem. 2009, 116, 356–364. [Google Scholar]
- Rubiola, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicch, C. Analysis of the plant volatile fraction. In The Chemistry and Biology of Volatiles; Herrmann, A., Ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2010; pp. 49–93. [Google Scholar]
- I Forcada, C.F.; Gogorcena, Y.; Moreno, M.Á. Agronomical and fruit quality traits of two peach cultivars on peach-almond hybrid rootstocks growing on Mediterranean conditions. Sci. Hortic. 2012, 140, 157–163. [Google Scholar]
- Mohammed, J.; Belisle, C.E.; Wang, S.; Itle, R.A.; Adhikari, K.; Chavez, D.J. Volatile profile characterization of commercial peach (Prunus persica) cultivars grown in Georgia, USA. Horticulturae 2021, 7, 516. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Zhang, C.; Xiao, X.; Chen, C.; Song, F. Aroma of peach fruit: A review on aroma volatile compounds and underlying regulatory mechanisms. Int. J. Food Sci. Technol. 2023, 58, 4965–4979. [Google Scholar]
- MGM. 2023 Climate Assessment. 2024. Available online: https://www.mgm.gov.tr/FILES/iklim/yillikiklim/2023-iklim-raporu.pdf (accessed on 20 March 2025).
- Ertürk, Ü.; Oran, R.B.; Kosar, D.A. Peach Rootstocks and Characteristics. In Peach and Nectarine Cultivation; Pakyürek, M., Seker, M., Gür, E., Eds.; Iksad Publishing House: Ankara, Türkiye, 2024; pp. 65–78. [Google Scholar]
- Reighard, G.L.; Loreti, F. Rootstock Development. In The Peach Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CAB International: London, UK, 2008; pp. 193–220. [Google Scholar]
- Gür, E.; Gündoğdu, M.A.; Şeker, M. Determination of pomological characteristics of peach varieties extensively cultivated in Lapseki ecology. LJAR 2020, 1, 90–100. [Google Scholar]
- Şeker, M.; Kaya, C. Peach Breeding: Breeding Methods, Future Perspectives and Innovative Approaches. In Peach and Nectarine Cultivation; Pakyürek, M., Seker, M., Gür, E., Eds.; Iksad Publishing House: Ankara, Türkiye, 2024; pp. 33–63. [Google Scholar]
- Ekinci, N.; Varli Yunusoglu, S.; Çelik, M. Quality Criteria and Storage Performance of ‘Hayward’ Kiwifruit (Actinidia chinensis var. deliciosa) Cultivated in Gonen Plain. COMU J. Agric. Fac. 2023, 11, 58–65. [Google Scholar]
- Şeker, M.; Kaçan, A.; Gür, E.; Ekinci, N.; Gündoğdu, M.A. Investigation of aromatic compounds of peach and nectarine varieties grown in Canakkale ecological conditions. Res. J. Agric. Sci. 2013, 1, 62–67. [Google Scholar]
- Şeker, M.; Gür, E.; Ekinci, N.; Gündoğdu, M.A. Volatile constituents of different apricot varieties in cool subtropical climate conditions. Hortic. Int. J. 2018, 2, 103–111. [Google Scholar]
- Gür, I.; Pırlak, L. Determination of phenological and pomological characters of some peach cultivars grown in Eğirdir ecological conditions. Derim 2011, 28, 27–41. [Google Scholar]
- Şeker, M.; Ekinci, N.; Gür, E. Effects of different rootstocks on aroma volatile constituents in the fruits of peach (Prunus persica L. Batsch cv. “Cresthaven”). N. Z. J. Crop Hortic. Sci. 2017, 45, 1–13. [Google Scholar]
- Caliskan, O.; Kamiloglu, O.; Polat, A.A. Performance of some peach and nectarine cultivars under East Mediterranean (Hatay/Turkey) conditions. Acta Hortic. 2012, 940, 407–414. [Google Scholar]
- Türkmen, Ö. Investigations on the Performances of Some New Peach and Nectarine Cultivars Grown in Çukurova Conditions. Master’s Thesis, Çukurova University, Adana, Türkiye, 2003. [Google Scholar]
- Yıldız, N. Investigation of the Phenological and Pomological Characteristics of Some (Non-Melting) Peach (Prunus persica var. lonuqinosa) Cultivars. Master’s Thesis, Uludağ University, Bursa, Türkiye, 2018. [Google Scholar]
- Kader, A.A. Fruit Maturity, Ripening, And Quality Relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar]
- Crisosto, C.H.; Valero, D. Harvesting and Postharvest Handling of Peaches for the Fresh Market. In The Peach Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CAB International: London, UK, 2008; pp. 575–596. [Google Scholar]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolics compounds, carotenoids, and vitamin C content of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar]
- Tomás-Barberán, F.A.; Gil, M.I.; Cremin, P.; Waterhouse, A.L.; Hess-Pierce, B.; Kader, A.A. HPLCDAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [PubMed]
- Şeker, M.; Gündoğdu, M.A.; Ekinci, N.; Gür, E. Recent developments on aroma biochemistry in fresh fruits. Int. J. Innov. Approaches Sci. Res. 2021, 5, 84–103. [Google Scholar] [CrossRef]
- Gür, E. The effects of different rootstocks on aroma volatile constituents in the fruits of ‘Fuji’ apples (Malus domestica Borkh). Appl. Ecol. Environ. Res. 2019, 17, 11745–11756. [Google Scholar]
Parameters | Rootpac® R | GF-677 | Seedling | MSD 1 (p < 0.05) | |
---|---|---|---|---|---|
Fruit width (mm) | 74.12 ± 2.10 B 2 | 78.86 ± 1.73 A | 79.92 ± 2.20 A | 2.0371 | |
Fruit length (mm) | 72.46 ± 2.42 B | 77.85 ± 2.09 A | 78.58 ± 3.79 A | 2.5866 | |
Fruit weight (g) | 221.18 ± 16.61 C | 259.80 ± 16.32 B | 284.40 ± 18.66 A | 17.05 | |
Fruit skin color | L | 32.70 ± 4.00 B | 46.49 ± 1.74 A | 45.35 ± 3.44 A | 2.9123 |
h° | 34.15 ± 4.62 B | 53.67 ± 4.28 A | 51.54 ± 5.46 A | 4.5417 | |
C° | 26.55 ± 3.26 B | 28.61 ± 1.25 A | 27.59 ± 1.32 AB | 1.9181 | |
Fruit flesh color | L | 63.66 ± 2.21 | 65.10 ± 1.60 | 63.97 ± 2.39 | N.S. |
h° | 95.12 ± 1.59 | 95.09 ± 1.68 | 95.46 ± 1.89 | N.S. | |
C° | 31.88 ± 1.39 B | 33.57 ± 1.16 A | 31.02 ± 1.44 B | 1.2218 | |
Pit width (mm) | 15.62 ± 0.97 C | 22.32 ± 0.78 A | 20.12 ± 1.20 B | 0.9434 | |
Pit length (mm) | 38.00 ± 1.60 C | 45.95 ± 1.62 A | 43.81 ± 1.87 B | 1.6284 | |
Pit weight (g) | 7.30 ± 0.55 C | 11.44 ± 0.58 A | 10.37 ± 0.67 B | 0.6772 | |
Firmness (kg/cm2) | 2.79 ± 1.30 B | 3.87 ± 1.29 A | 2.90 ± 0.53 AB | 1.0319 | |
Fruit–Flesh Ratio (%) | 96.68 ± 0.30 A | 95.58 ± 0.32 C | 96.35 ± 0.30 B | 0.2931 | |
SSC (%) | 11.10 ± 0.36 C | 11.93 ± 0.21 B | 12.57 ± 0.06 A | 0.6079 | |
pH | 3.74 ± 0.05 | 3.77 ± 0.03 | 3.72 ± 0.02 | N.S. | |
TA (g/100 mL) | 0.599 ± 0.0052 AB | 0.587 ± 0.0014 B | 0.677± 0.0007 A | 0.079 | |
Total Phenolic Cont. (mg/kg GAE) | 62.81 ± 0.52 B | 60.01 ± 0.38 C | 65.92 ± 0.37 A | 0.8629 |
Volatile Compounds | Rootpac® R | GF-677 | Seedling | MSD 1 (p < 0.05) |
---|---|---|---|---|
Hexanal | 34.33 ± 0.57 A 2 | 33.01 ± 0.39 AB | 32.31 ± 0.61 B | 1.3328 |
(E)-2-Hexenal | 27.78 ± 0.55 A | 28.59 ± 0.37 A | 26.63 ± 0.39 B | 1.1121 |
Benzaldehyde | 2.64 ± 0.39 | 3.41 ± 0.51 | 3.03 ± 0.52 | N.S. |
(E)-2-Pentenal | 1.81 ± 0.22 | 2.01 ± 0.23 | 1.77 ± 0.23 | N.S. |
Total Aldehydes | 66.56 ± 0.85 AB | 67.02 ± 1.50 A | 63.74 ± 1.36 B | 3.1774 |
δ-Decalactone | 4.53 ± 0.46 | 4.74 ± 0.35 | 4.09 ± 0.42 | N.S. |
γ-Decalactone | 2.71 ± 0.32 | 2.59 ± 0.38 | 2.34 ± 0.37 | N.S. |
δ-Octalactone | 0.97 ± 0.1 | 1.01 ± 0.13 | 0.88 ± 0.11 | N.S. |
γ-Hexalactone | 0.75 ± 0.15 | 0.79 ± 0.18 | 0.68 ± 0.11 | N.S. |
Total Lactones | 8.96 ± 0.63 | 9.14 ± 1.04 | 7.99 ± 1.00 | N.S. |
(Z)-3-Hexen-1-ol | 2.48 ± 0.47 | 2.23 ± 0.32 | 2.59 ± 0.42 | N.S. |
1-Hexanol | 0.85 ± 0.15 | 0.88 ± 0.13 | 1 ± 0.16 | N.S. |
(E)-2-Hexen-1-ol | 0.81 ± 0.19 | 0.76 ± 0.19 | 0.86 ± 0.14 | N.S. |
Total Alcohols | 4.14 ± 0.81 | 3.88 ± 0.60 | 4.44 ± 0.72 | N.S. |
Ethyl Acetate | 3.49 ± 0.4 | 3.63 ± 0.39 | 3.15 ± 0.36 | N.S. |
Hexyl Acetate | 2.72 ± 0.19 | 2.58 ± 0.34 | 2.84 ± 0.22 | N.S. |
(Z)-3-Hexyl Acetate | 2.51 ± 0.15 | 2.62 ± 0.15 | 2.27 ± 0.13 | N.S. |
2-Hexyl Acetate | 2.23 ± 0.08 | 2.14 ± 0.11 | 2.34 ± 0.08 | N.S. |
Hexyl Butanoate | 1.47 ± 0.23 | 1.54 ± 0.15 | 1.32 ± 0.18 | N.S. |
Total Esters | 12.41 ± 1.05 | 12.51 ± 1.14 | 11.92 ± 0.97 | N.S. |
Linalool | 2.34 ± 0.17 | 2.45 ± 0.21 | 2.11 ± 0.12 | N.S. |
D-Limonene | 1.84 ± 0.14 | 1.75 ± 0.15 | 1.92 ± 0.18 | N.S. |
Ocimene | 1.49 ± 0.3 | 1.56 ± 0.15 | 1.33 ± 0.13 | N.S. |
Total Terpenoids | 5.67 ± 0.61 | 5.76 ± 0.51 | 5.37 ± 0.43 | N.S. |
Hexane | 2.25 ± 0.28 B | 1.70 ± 0.22 B | 6.53 ± 0.50 A | 0.8846 |
TotalHydrocarbons | 2.25 ± 0.28 B | 1.70 ± 0.22 B | 6.53 ± 0.50 A | 0.8846 |
Total Ratio | 100% | 100% | 100% | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gur, E.; Gundogdu, M.A.; Yilmaz, N.; Seker, M. Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area. Horticulturae 2025, 11, 364. https://doi.org/10.3390/horticulturae11040364
Gur E, Gundogdu MA, Yilmaz N, Seker M. Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area. Horticulturae. 2025; 11(4):364. https://doi.org/10.3390/horticulturae11040364
Chicago/Turabian StyleGur, Engin, Mehmet Ali Gundogdu, Nese Yilmaz, and Murat Seker. 2025. "Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area" Horticulturae 11, no. 4: 364. https://doi.org/10.3390/horticulturae11040364
APA StyleGur, E., Gundogdu, M. A., Yilmaz, N., & Seker, M. (2025). Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area. Horticulturae, 11(4), 364. https://doi.org/10.3390/horticulturae11040364