Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.; Crawford, G.W.; Chen, X. Archaeological Evidence for Peach (Prunus persica) Cultivation and Domestication in China. PLoS ONE 2014, 9, e106595. [Google Scholar] [CrossRef] [PubMed]
- Özçağıran, R.; Ünal, A.; Özeker, E.; İsfendiyaroğlu, M. Ilıman İklim Meyve Türleri: Sert Çekirdekli Meyveler Cilt-I; Ege Üniversitesi Ziraat Fakültesi Yayınları: İzmir, Türkiye, 2011; pp. 1–500. [Google Scholar]
- Byrne, D.H.; Raseira, M.B.; Bassi, D.; Piagnani, M.C.; Gasic, K.; Reighard, G.L.; Monero, M.A.; Pérez, S. Peach. In Fruit Breeding, 2nd ed.; Badenes, M.L., Byrne, D.H., Eds.; Springer: New York, NY, USA, 2012; pp. 505–569. [Google Scholar]
- Bassi, D.; Monet, R. Botany and Taxonomy. In The Peach Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CAB International: London, UK, 2008; pp. 1–36. [Google Scholar]
- Yılmaz, N.; Gür, E.; Polatöz, S.; Gündoğdu, M.A.; Şeker, M. The Peach: Brief Description and Growing. In Recent Headways in Pomology; Pakyürek, M., Ed.; Iksad Publishing House: Ankara, Türkiye, 2021; pp. 151–172. [Google Scholar]
- Liu, W.; Zhang, Y.; Ma, R.; Yu, M. Comparison of aroma trait of the white-fleshed peach ‘Hu Jing Mi Lu’ and the yellow-fleshed peach ‘Jin Yuan’ based on odor activity value and odor characteristics. Horticulturae 2022, 8, 245. [Google Scholar] [CrossRef]
- FAOSTAT Production Statistics. Available online: http://www.fao.org/faostat/en/#data/QC/ (accessed on 5 January 2025).
- TUIK Crop Production Statistics. Available online: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (accessed on 5 January 2025).
- Gür, E. Comparison of AFLP Polymorphism and Aromatic Compounds of White Nectarine Types with Important Prunus Species and Varieties, Creation of Hybrid Populations. Ph.D. Thesis, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye, 2012. [Google Scholar]
- Yıldız, N.; Gür, E.; Kaçan, A. Agricultural Potential of Lapseki District. LJAR 2020, 1, 83–89. [Google Scholar]
- Lesmes-Vesga, R.A.; Cano, L.M.; Ritenour, M.A.; Sarkhosh, A.; Chaparro, J.X.; Rossi, L. Variation in the root system architecture of peach × (peach × almond) backcrosses. Plants 2023, 12, 1874. [Google Scholar] [CrossRef]
- Muto, A.; Müller, C.T.; Bruno, L.; McGregor, L.; Ferrante, A.; Chiappetta, A.A.; Bitonti, M.B.; Rogers, H.J.; Spadafora, N.D. Fruit volatilome profiling through GC × GC-ToF-MS and gene expression analyses reveal differences amongst peach cultivars in their response to cold storage. Sci. Rep. 2020, 10, 18333. [Google Scholar]
- Sirangelo, T.M.; Rogers, H.J.; Spadafora, N.D. Molecular investigations of peach post-harvest ripening processes and VOC biosynthesis pathways: A review focused on integrated genomic, transcriptomic, and metabolomic approaches. Chem. Proc. 2022, 10, 8. [Google Scholar] [CrossRef]
- Loreti, F.; Massai, R. State of the art on peach rootstocks and orchard systems. Acta Hortic. 2006, 713, 253–268. [Google Scholar]
- Wang, Y.J.; Yang, C.X.; Li, S.H.; Yang, L.; Wang, Y.N.; Zhao, J.B.; Jiang, Q. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC–MS. Food Chem. 2009, 116, 356–364. [Google Scholar]
- Rubiola, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicch, C. Analysis of the plant volatile fraction. In The Chemistry and Biology of Volatiles; Herrmann, A., Ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2010; pp. 49–93. [Google Scholar]
- I Forcada, C.F.; Gogorcena, Y.; Moreno, M.Á. Agronomical and fruit quality traits of two peach cultivars on peach-almond hybrid rootstocks growing on Mediterranean conditions. Sci. Hortic. 2012, 140, 157–163. [Google Scholar]
- Mohammed, J.; Belisle, C.E.; Wang, S.; Itle, R.A.; Adhikari, K.; Chavez, D.J. Volatile profile characterization of commercial peach (Prunus persica) cultivars grown in Georgia, USA. Horticulturae 2021, 7, 516. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Zhang, C.; Xiao, X.; Chen, C.; Song, F. Aroma of peach fruit: A review on aroma volatile compounds and underlying regulatory mechanisms. Int. J. Food Sci. Technol. 2023, 58, 4965–4979. [Google Scholar]
- MGM. 2023 Climate Assessment. 2024. Available online: https://www.mgm.gov.tr/FILES/iklim/yillikiklim/2023-iklim-raporu.pdf (accessed on 20 March 2025).
- Ertürk, Ü.; Oran, R.B.; Kosar, D.A. Peach Rootstocks and Characteristics. In Peach and Nectarine Cultivation; Pakyürek, M., Seker, M., Gür, E., Eds.; Iksad Publishing House: Ankara, Türkiye, 2024; pp. 65–78. [Google Scholar]
- Reighard, G.L.; Loreti, F. Rootstock Development. In The Peach Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CAB International: London, UK, 2008; pp. 193–220. [Google Scholar]
- Gür, E.; Gündoğdu, M.A.; Şeker, M. Determination of pomological characteristics of peach varieties extensively cultivated in Lapseki ecology. LJAR 2020, 1, 90–100. [Google Scholar]
- Şeker, M.; Kaya, C. Peach Breeding: Breeding Methods, Future Perspectives and Innovative Approaches. In Peach and Nectarine Cultivation; Pakyürek, M., Seker, M., Gür, E., Eds.; Iksad Publishing House: Ankara, Türkiye, 2024; pp. 33–63. [Google Scholar]
- Ekinci, N.; Varli Yunusoglu, S.; Çelik, M. Quality Criteria and Storage Performance of ‘Hayward’ Kiwifruit (Actinidia chinensis var. deliciosa) Cultivated in Gonen Plain. COMU J. Agric. Fac. 2023, 11, 58–65. [Google Scholar]
- Şeker, M.; Kaçan, A.; Gür, E.; Ekinci, N.; Gündoğdu, M.A. Investigation of aromatic compounds of peach and nectarine varieties grown in Canakkale ecological conditions. Res. J. Agric. Sci. 2013, 1, 62–67. [Google Scholar]
- Şeker, M.; Gür, E.; Ekinci, N.; Gündoğdu, M.A. Volatile constituents of different apricot varieties in cool subtropical climate conditions. Hortic. Int. J. 2018, 2, 103–111. [Google Scholar]
- Gür, I.; Pırlak, L. Determination of phenological and pomological characters of some peach cultivars grown in Eğirdir ecological conditions. Derim 2011, 28, 27–41. [Google Scholar]
- Şeker, M.; Ekinci, N.; Gür, E. Effects of different rootstocks on aroma volatile constituents in the fruits of peach (Prunus persica L. Batsch cv. “Cresthaven”). N. Z. J. Crop Hortic. Sci. 2017, 45, 1–13. [Google Scholar]
- Caliskan, O.; Kamiloglu, O.; Polat, A.A. Performance of some peach and nectarine cultivars under East Mediterranean (Hatay/Turkey) conditions. Acta Hortic. 2012, 940, 407–414. [Google Scholar]
- Türkmen, Ö. Investigations on the Performances of Some New Peach and Nectarine Cultivars Grown in Çukurova Conditions. Master’s Thesis, Çukurova University, Adana, Türkiye, 2003. [Google Scholar]
- Yıldız, N. Investigation of the Phenological and Pomological Characteristics of Some (Non-Melting) Peach (Prunus persica var. lonuqinosa) Cultivars. Master’s Thesis, Uludağ University, Bursa, Türkiye, 2018. [Google Scholar]
- Kader, A.A. Fruit Maturity, Ripening, And Quality Relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar]
- Crisosto, C.H.; Valero, D. Harvesting and Postharvest Handling of Peaches for the Fresh Market. In The Peach Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CAB International: London, UK, 2008; pp. 575–596. [Google Scholar]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolics compounds, carotenoids, and vitamin C content of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar]
- Tomás-Barberán, F.A.; Gil, M.I.; Cremin, P.; Waterhouse, A.L.; Hess-Pierce, B.; Kader, A.A. HPLCDAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [PubMed]
- Şeker, M.; Gündoğdu, M.A.; Ekinci, N.; Gür, E. Recent developments on aroma biochemistry in fresh fruits. Int. J. Innov. Approaches Sci. Res. 2021, 5, 84–103. [Google Scholar] [CrossRef]
- Gür, E. The effects of different rootstocks on aroma volatile constituents in the fruits of ‘Fuji’ apples (Malus domestica Borkh). Appl. Ecol. Environ. Res. 2019, 17, 11745–11756. [Google Scholar]
Parameters | Rootpac® R | GF-677 | Seedling | MSD 1 (p < 0.05) | |
---|---|---|---|---|---|
Fruit width (mm) | 74.12 ± 2.10 B 2 | 78.86 ± 1.73 A | 79.92 ± 2.20 A | 2.0371 | |
Fruit length (mm) | 72.46 ± 2.42 B | 77.85 ± 2.09 A | 78.58 ± 3.79 A | 2.5866 | |
Fruit weight (g) | 221.18 ± 16.61 C | 259.80 ± 16.32 B | 284.40 ± 18.66 A | 17.05 | |
Fruit skin color | L | 32.70 ± 4.00 B | 46.49 ± 1.74 A | 45.35 ± 3.44 A | 2.9123 |
h° | 34.15 ± 4.62 B | 53.67 ± 4.28 A | 51.54 ± 5.46 A | 4.5417 | |
C° | 26.55 ± 3.26 B | 28.61 ± 1.25 A | 27.59 ± 1.32 AB | 1.9181 | |
Fruit flesh color | L | 63.66 ± 2.21 | 65.10 ± 1.60 | 63.97 ± 2.39 | N.S. |
h° | 95.12 ± 1.59 | 95.09 ± 1.68 | 95.46 ± 1.89 | N.S. | |
C° | 31.88 ± 1.39 B | 33.57 ± 1.16 A | 31.02 ± 1.44 B | 1.2218 | |
Pit width (mm) | 15.62 ± 0.97 C | 22.32 ± 0.78 A | 20.12 ± 1.20 B | 0.9434 | |
Pit length (mm) | 38.00 ± 1.60 C | 45.95 ± 1.62 A | 43.81 ± 1.87 B | 1.6284 | |
Pit weight (g) | 7.30 ± 0.55 C | 11.44 ± 0.58 A | 10.37 ± 0.67 B | 0.6772 | |
Firmness (kg/cm2) | 2.79 ± 1.30 B | 3.87 ± 1.29 A | 2.90 ± 0.53 AB | 1.0319 | |
Fruit–Flesh Ratio (%) | 96.68 ± 0.30 A | 95.58 ± 0.32 C | 96.35 ± 0.30 B | 0.2931 | |
SSC (%) | 11.10 ± 0.36 C | 11.93 ± 0.21 B | 12.57 ± 0.06 A | 0.6079 | |
pH | 3.74 ± 0.05 | 3.77 ± 0.03 | 3.72 ± 0.02 | N.S. | |
TA (g/100 mL) | 0.599 ± 0.0052 AB | 0.587 ± 0.0014 B | 0.677± 0.0007 A | 0.079 | |
Total Phenolic Cont. (mg/kg GAE) | 62.81 ± 0.52 B | 60.01 ± 0.38 C | 65.92 ± 0.37 A | 0.8629 |
Volatile Compounds | Rootpac® R | GF-677 | Seedling | MSD 1 (p < 0.05) |
---|---|---|---|---|
Hexanal | 34.33 ± 0.57 A 2 | 33.01 ± 0.39 AB | 32.31 ± 0.61 B | 1.3328 |
(E)-2-Hexenal | 27.78 ± 0.55 A | 28.59 ± 0.37 A | 26.63 ± 0.39 B | 1.1121 |
Benzaldehyde | 2.64 ± 0.39 | 3.41 ± 0.51 | 3.03 ± 0.52 | N.S. |
(E)-2-Pentenal | 1.81 ± 0.22 | 2.01 ± 0.23 | 1.77 ± 0.23 | N.S. |
Total Aldehydes | 66.56 ± 0.85 AB | 67.02 ± 1.50 A | 63.74 ± 1.36 B | 3.1774 |
δ-Decalactone | 4.53 ± 0.46 | 4.74 ± 0.35 | 4.09 ± 0.42 | N.S. |
γ-Decalactone | 2.71 ± 0.32 | 2.59 ± 0.38 | 2.34 ± 0.37 | N.S. |
δ-Octalactone | 0.97 ± 0.1 | 1.01 ± 0.13 | 0.88 ± 0.11 | N.S. |
γ-Hexalactone | 0.75 ± 0.15 | 0.79 ± 0.18 | 0.68 ± 0.11 | N.S. |
Total Lactones | 8.96 ± 0.63 | 9.14 ± 1.04 | 7.99 ± 1.00 | N.S. |
(Z)-3-Hexen-1-ol | 2.48 ± 0.47 | 2.23 ± 0.32 | 2.59 ± 0.42 | N.S. |
1-Hexanol | 0.85 ± 0.15 | 0.88 ± 0.13 | 1 ± 0.16 | N.S. |
(E)-2-Hexen-1-ol | 0.81 ± 0.19 | 0.76 ± 0.19 | 0.86 ± 0.14 | N.S. |
Total Alcohols | 4.14 ± 0.81 | 3.88 ± 0.60 | 4.44 ± 0.72 | N.S. |
Ethyl Acetate | 3.49 ± 0.4 | 3.63 ± 0.39 | 3.15 ± 0.36 | N.S. |
Hexyl Acetate | 2.72 ± 0.19 | 2.58 ± 0.34 | 2.84 ± 0.22 | N.S. |
(Z)-3-Hexyl Acetate | 2.51 ± 0.15 | 2.62 ± 0.15 | 2.27 ± 0.13 | N.S. |
2-Hexyl Acetate | 2.23 ± 0.08 | 2.14 ± 0.11 | 2.34 ± 0.08 | N.S. |
Hexyl Butanoate | 1.47 ± 0.23 | 1.54 ± 0.15 | 1.32 ± 0.18 | N.S. |
Total Esters | 12.41 ± 1.05 | 12.51 ± 1.14 | 11.92 ± 0.97 | N.S. |
Linalool | 2.34 ± 0.17 | 2.45 ± 0.21 | 2.11 ± 0.12 | N.S. |
D-Limonene | 1.84 ± 0.14 | 1.75 ± 0.15 | 1.92 ± 0.18 | N.S. |
Ocimene | 1.49 ± 0.3 | 1.56 ± 0.15 | 1.33 ± 0.13 | N.S. |
Total Terpenoids | 5.67 ± 0.61 | 5.76 ± 0.51 | 5.37 ± 0.43 | N.S. |
Hexane | 2.25 ± 0.28 B | 1.70 ± 0.22 B | 6.53 ± 0.50 A | 0.8846 |
TotalHydrocarbons | 2.25 ± 0.28 B | 1.70 ± 0.22 B | 6.53 ± 0.50 A | 0.8846 |
Total Ratio | 100% | 100% | 100% | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gur, E.; Gundogdu, M.A.; Yilmaz, N.; Seker, M. Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area. Horticulturae 2025, 11, 364. https://doi.org/10.3390/horticulturae11040364
Gur E, Gundogdu MA, Yilmaz N, Seker M. Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area. Horticulturae. 2025; 11(4):364. https://doi.org/10.3390/horticulturae11040364
Chicago/Turabian StyleGur, Engin, Mehmet Ali Gundogdu, Nese Yilmaz, and Murat Seker. 2025. "Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area" Horticulturae 11, no. 4: 364. https://doi.org/10.3390/horticulturae11040364
APA StyleGur, E., Gundogdu, M. A., Yilmaz, N., & Seker, M. (2025). Assessing the Aromatic and Quality Components of a Novel Peach Genotype (‘Sırrı’) Grafted onto Various Rootstocks in the Lapseki Area. Horticulturae, 11(4), 364. https://doi.org/10.3390/horticulturae11040364