Comparative LC-MS/MS Metabolomics of Wild and Cultivated Strawberries Reveals Enhanced Triterpenoid Accumulation and Superior Free Radical Scavenging Activity in Fragaria nilgerrensis
Abstract
1. Introduction
2. Materials and Methods
2.1. Growth Conditions and Sample Preparation
2.2. Chemicals and Reagents
2.3. DPPH Radical Scavenging Assay
2.4. Terpenoid Profiling by LC-MS/MS
2.4.1. Sample Preparation and Extraction
2.4.2. Chromatographic and Mass Spectrometric Conditions
2.5. Multivariate Statistical Analysis
3. Results
3.1. Hierarchical Clustering Analysis of Terpenoid Profiles Among Strawberry Cultivars
3.2. Principal Component Analysis Reveals Distinct Genetic Variation Among Strawberry Cultivars
3.3. Comparative Analysis of Terpenoid Distribution Across Cultivars
3.4. Differential Terpenoid Abundance and Total Content Across Cultivars
3.5. Comparative Metabolomic Profiling Reveals Significant Differential Accumulation Across Strawberry Cultivars
3.6. Key Metabolites Differentially Accumulated in the HM Cultivar vs. Commercial Cultivars
3.7. Relative Composition of Major Terpenoid Subclasses
3.8. HM Cultivar Demonstrates Superior Antioxidant Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, M.; Jiang, T.; Wang, X.; Song, K.; Xiao, X.; Fu, X.; He, S.; Feng, J.; Rao, M.J.; Guo, H. LC-MS/MS Reveals Variation in Bioactive Flavonoid Profiles and MYB Regulatory Networks in Wild vs. Cultivated Strawberries (White, Pink, Red). LWT 2025, 231, 118319. [Google Scholar] [CrossRef]
- Chamorro, M.F.; Mazzoni, A.; Lescano, M.N.; Fernandez, A.; Reiner, G.; Langenheim, M.E.; Mattera, G.; Robredo, N.; Garibaldi, L.; Quintero, C. Wild vs. Cultivated Strawberries: Differential Fruit Quality Traits and Antioxidant Properties in Fragaria Chiloensis and Fragaria × ananassa. Discov. Food 2025, 5, 71. [Google Scholar] [CrossRef]
- Hannum, S.M. Potential Impact of Strawberries on Human Health: A Review of the Science. Crit. Rev. Food Sci. Nutr. 2004, 44, 1–17. [Google Scholar] [CrossRef]
- Zheng, T.; Wei, L.; Xiang, J.; Wu, J.; Cheng, J. HMGR Modulates Strawberry Fruit Coloration and Aroma Through Regulating Terpenoid and Anthocyanin Pathways. Foods 2025, 14, 1199. [Google Scholar] [CrossRef]
- Hussain, A.; Batool, A.; Yaqub, S.; Iqbal, A.; Kauser, S.; Arif, M.R.; Ali, S.; Gorsi, F.I.; Nisar, R.; Firdous, N.; et al. Effects of Spray Drying and Ultrasonic Assisted Extraction on the Phytochemicals, Antioxidant and Antimicrobial Activities of Strawberry Fruit. Food Chem. Adv. 2024, 5, 100755. [Google Scholar] [CrossRef]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Strawberry (F. × ananassa)—Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2021; pp. 219–228. [Google Scholar]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry as a Health Promoter: An Evidence Based Review. Food Funct. 2015, 6, 1386–1398. [Google Scholar] [CrossRef]
- Liu, H.; Wei, L.; Ni, Y.; Chang, L.; Dong, J.; Zhong, C.; Sun, R.; Li, S.; Xiong, R.; Wang, G.; et al. Genome-Wide Analysis of Ascorbic Acid Metabolism Related Genes in Fragaria × ananassa and Its Expression Pattern Analysis in Strawberry Fruits. Front. Plant Sci. 2022, 13, 954505. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.-B.; Noh, Y.-H.; Min, S.R.; Lee, H.-S.; Jung, J.; Park, K.-H.; Kim, D.-S.; Nam, M.H.; Kim, T. Il Sugar Content and Expression of Sugar Metabolism-Related Gene in Strawberry Fruits from Various Cultivars. J. Plant Biotechnol. 2018, 45, 90–101. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, X.; Liang, J.; Fu, Y.; Wang, J.; Jiang, M.; Pan, L. Cell Wall and Reactive Oxygen Metabolism Responses of Strawberry Fruit during Storage to Low Voltage Electrostatic Field Treatment. Postharvest Biol. Technol. 2022, 192, 112017. [Google Scholar] [CrossRef]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic Compounds in Strawberry (Fragaria × ananassa Duch.) Fruits: Composition in 27 Cultivars and Changes during Ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Jiang, L.; Zhang, N.; Zhang, L.; Liu, Y.; Lin, Y.; Zhang, Y.; Luo, Y.; Zhang, Y.; Wang, Y. Regulation of Flavonoids in Strawberry Fruits by FaMYB5/FaMYB10 Dominated MYB-BHLH-WD40 Ternary Complexes. Front. Plant Sci. 2023, 14, 1145670. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, T.; Patel, H.; Akande, O.E.; Galam, D.C.A. Total Anthocyanin Content of Strawberry and the Profile Changes by Extraction Methods and Sample Processing. Foods 2022, 11, 1072. [Google Scholar] [CrossRef]
- Noushahi, H.A.; Khan, A.H.; Noushahi, U.F.; Hussain, M.; Javed, T.; Zafar, M.; Batool, M.; Ahmed, U.; Liu, K.; Harrison, M.T.; et al. Biosynthetic Pathways of Triterpenoids and Strategies to Improve Their Biosynthetic Efficiency. Plant Growth Regul. 2022, 97, 439–454. [Google Scholar] [CrossRef]
- Fan, J.; Chen, C.; Yu, Q.; Li, Z.-G.; Gmitter, F.G. Characterization of Three Terpenoid Glycosyltransferase Genes in ‘Valencia’ Sweet Orange (Citrus sinensis L. Osbeck). Genome 2010, 53, 816–823. [Google Scholar] [CrossRef]
- He, J.; Yao, L.; Pecoraro, L.; Liu, C.; Wang, J.; Huang, L.; Gao, W. Cold Stress Regulates Accumulation of Flavonoids and Terpenoids in Plants by Phytohormone, Transcription Process, Functional Enzyme, and Epigenetics. Crit. Rev. Biotechnol. 2023, 43, 680–697. [Google Scholar] [CrossRef] [PubMed]
- Hammed, A.; Yeasmen, N.; Orsat, V. Eco-Friendly Extraction and Characterization of Terpenoids from Plants as Functional Food Ingredients: A Review. J. Food Biochem. 2025, 2025, 9746960. [Google Scholar] [CrossRef]
- Miranda, R.D.S.; de Jesus, B.D.S.M.; da Silva Luiz, S.R.; Viana, C.B.; Adao Malafaia, C.R.; Figueiredo, F.D.S.; Carvalho, T.D.S.C.; Silva, M.L.; Londero, V.S.; da Costa-Silva, T.A.; et al. Antiinflammatory Activity of Natural Triterpenes—An Overview from 2006 to 2021. Phytother. Res. 2022, 36, 1459–1506. [Google Scholar] [CrossRef]
- Malik, J.; Mandal, S.C. Pentacyclic Triterpenoids: Diversity, Distribution and Their Propitious Pharmacological Potential. Phytochem. Rev. 2024, 24, 4791–4823. [Google Scholar] [CrossRef]
- Bildziukevich, U.; Wimmerová, M.; Wimmer, Z. Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review. Pharmaceuticals 2023, 16, 386. [Google Scholar] [CrossRef]
- El-Dawy, K.; Mohamed, D.; Abdou, Z. Nanoformulations of Pentacyclic Triterpenoids: Chemoprevention and Anticancer. Int. J. Vet. Sci. 2022, 11, 384–391. [Google Scholar]
- Liu, Y.; Yang, L.; Wang, H.; Xiong, Y. Recent Advances in Antiviral Activities of Triterpenoids. Pharmaceuticals 2022, 15, 1169. [Google Scholar] [CrossRef]
- Bhuia, M.S.; Chowdhury, R.; Sonia, F.A.; Biswas, S.; Ferdous, J.; El-Nashar, H.A.S.; El-Shazly, M.; Islam, M.T. Efficacy of Rotundic Acid and Its Derivatives as Promising Natural Anticancer Triterpenoids: A Literature-based Study. Chem. Biodivers. 2024, 21, e202301492. [Google Scholar] [CrossRef]
- Chen, D.; Chen, X.; Zheng, X.; Zhu, J.; Xue, T. Combined Metabolomic and Transcriptomic Analysis Reveals the Key Genes for Triterpenoid Biosynthesis in Cyclocarya paliurus. BMC Genom. 2024, 25, 1197. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Ullevig, S.L.; Short, J.D.; Wang, L.; Ahn, Y.J.; Asmis, R. Ursolic Acid and Related Analogues: Triterpenoids with Broad Health Benefits. Antioxidants 2021, 10, 1161. [Google Scholar] [CrossRef] [PubMed]
- Abouelenein, D.; Acquaticci, L.; Alessandroni, L.; Borsetta, G.; Caprioli, G.; Mannozzi, C.; Marconi, R.; Piatti, D.; Santanatoglia, A.; Sagratini, G.; et al. Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review. Molecules 2023, 28, 5810. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Zhu, N.; Lan, G.; Yuan, B.; Wang, J.; Crabbe, M.J.C.; Zhang, T.; Qiao, Q. Multi-Omics Analysis of Peach-like Aroma Formation in Fruits of Wild Strawberry (Fragaria nilgerrensis). Hortic. Plant J. 2024, in press. [Google Scholar] [CrossRef]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef]
- Mu, H.; Chen, J.; Huang, W.; Huang, G.; Deng, M.; Hong, S.; Ai, P.; Gao, C.; Zhou, H. OmicShare Tools: A Zero-code Interactive Online Platform for Biological Data Analysis and Visualization. iMeta 2024, 3, e228. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J. MetaboAnalystR: An R Package for Flexible and Reproducible Analysis of Metabolomics Data. Bioinformatics 2018, 34, 4313–4314. [Google Scholar] [CrossRef]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef]
- Colquhoun, D. An Investigation of the False Discovery Rate and the Misinterpretation of P-Values. R. Soc. Open Sci. 2014, 1, 140216. [Google Scholar] [CrossRef]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-Discovery Approach for Sample Matching of a Nerve-Agent Precursor Using Liquid Chromatography—Mass Spectrometry, XCMS, and Chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef]
- Cárdenas, P.D.; Almeida, A.; Bak, S. Evolution of Structural Diversity of Triterpenoids. Front. Plant Sci. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Mathur, V.; Dokka, N.; Raghunathan, G.; Rathinam, M.; Parashar, M.; Srivastava, S.; Sreevathsa, R. Beyond Bitter: Plant Triterpenoids in the Battle against Herbivorous Insects. J. Exp. Bot. 2025, 76, 4441–4457. [Google Scholar] [CrossRef]
- Holopainen, J.K.; Himanen, S.J.; Yuan, J.S.; Chen, F.; Stewart, C.N., Jr. Ecological Functions of Terpenoids in Changing Climates. In Natural Products: Phytochemistry, Botany, Metabolism of Alkaloids, Phenolics and Terpenes; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–44. [Google Scholar]
- Mandal, S. Shaping the Plant Specialized Metabolites Through Modern Breeding Technique. Mol. Biotechnol. 2025, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D. Biosynthesis and Biological Functions of Terpenoids in Plants. In Biotechnology of Isoprenoids; Springer: Cham, Switzerland, 2015; pp. 63–106. [Google Scholar]
- Kasangana, P.B.; Stevanovic, T. Studies of Pentacyclic Triterpenoids Structures and Antidiabetic Properties of Myrianthus Genus. Stud. Nat. Prod. Chem. 2021, 68, 1–27. [Google Scholar]
- Pedrosa, M.C.; Lima, L.; Heleno, S.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L. Food Metabolites as Tools for Authentication, Processing, and Nutritive Value Assessment. Foods 2021, 10, 2213. [Google Scholar] [CrossRef] [PubMed]









| Serial No. | Compounds | Class | HM vs. DX | ||||
|---|---|---|---|---|---|---|---|
| VIP | p-Value | Fold Change | Log2FC | Type | |||
| 1 | 3β,6β,19α,24-Tetrahydroxyurs-12-en-28-oic acid | Triterpene | 1.12 | 0.001 | 3973.84 | 11.96 | up |
| 2 | Rhodiolol A | Monoterpenoids | 1.12 | 0.007 | 1832.43 | 10.84 | up |
| 3 | 13,27-Cyclo-2,3-Dihydroxy-11,19(29)-Ursadien-28-Oic Acid | Triterpene | 1.12 | 0.005 | 1308.87 | 10.35 | up |
| 4 | Jasminoside E | Monoterpenoids | 1.12 | 0.000 | 716.00 | 9.48 | up |
| 5 | Elaeocarpucin C | Triterpene | 1.12 | 0.007 | 609.10 | 9.25 | up |
| 6 | 2,7-Dimethylocta-2,4-Dienal-8-ol 8-O-(beta-D-Xylopyranosyl)-beta-D-glucopyranoside | Monoterpenoids | 1.12 | 0.003 | 580.95 | 9.18 | up |
| 7 | (1R,4S,5R,8S)-8-(hydroxymethyl)-4-isopropylbicyclo[3.2.1]oct-6-ene-6-carbaldehyde | Sesquiterpenoids | 1.12 | 0.000 | 436.05 | 8.77 | up |
| 8 | 28-Hydroxy-1,20(29)-Lupadien-3-one | Triterpene | 1.12 | 0.013 | 434.59 | 8.76 | up |
| 9 | Trachelosperonide B-1 | Triterpene Saponin | 1.12 | 0.001 | 391.67 | 8.61 | up |
| 10 | Humulene epoxide II | Sesquiterpenoids | 1.10 | 0.093 | 0.03 | −4.99 | down |
| 11 | Icariside F * | Sesquiterpenoids | 1.12 | 0.016 | 0.03 | −5.06 | down |
| 12 | Deacetyl asperulosidic acid methyl ester | Monoterpenoids | 1.12 | 0.016 | 0.03 | −5.30 | down |
| 13 | 3,7,11-trimethyldodeca-3,7-diene-1,10,11-triol 10-O-(beta-D-Xylopyranosyl)-beta-D-glucopyranoside | Sesquiterpenoids | 1.11 | 0.036 | 0.02 | −5.33 | down |
| 14 | 2-[2-(5-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1H-naphthalen-2-yl)prop-2-enoxy]-6-(hydroxymethyl)oxane-3,4,5-triol * | Sesquiterpenoids | 1.12 | 0.025 | 0.01 | −6.23 | down |
| 15 | 6″-O-Caffeoylharpagide | Terpene | 1.12 | 0.019 | 0.01 | −6.37 | down |
| 16 | Pterocarpol | Sesquiterpenoids | 1.12 | 0.008 | 0.01 | −7.48 | down |
| 17 | Alismol | Sesquiterpenoids | 1.12 | 0.001 | 0.00 | −7.98 | down |
| Compounds | Class | HM vs. FY | |||||
| VIP | p-value | Fold Change | Log2FC | Type | |||
| 18 | 1β-Hydroxy-2-oxopomolic acid | Triterpene | 1.11 | 0.008 | 411.89 | 8.69 | up |
| 19 | 28-Hydroxy-1,20(29)-Lupadien-3-one | Triterpene | 1.11 | 0.013 | 434.59 | 8.76 | up |
| 20 | 3β,6β,19α,24-Tetrahydroxyurs-12-en-28-oic acid | Triterpene | 1.11 | 0.001 | 463.75 | 8.86 | up |
| 21 | 2,3,19,23-Tetrahydroxyolean-12-en-28-oic acid | Triterpene | 1.11 | 0.000 | 466.18 | 8.86 | up |
| 22 | 1,2,3,19-Tetrahydroxyurs-12-en-28-oic acid | Triterpene | 1.11 | 0.000 | 531.91 | 9.06 | up |
| 23 | 3,11-Dihydroxy-23-Oxo-20(29)-Lupen-28-Oic Acid | Triterpene | 1.11 | 0.002 | 570.82 | 9.16 | up |
| 24 | Guavenoic Acid | Triterpene | 1.11 | 0.001 | 708.29 | 9.47 | up |
| 25 | Viburolide | Triterpene | 1.11 | 0.003 | 782.64 | 9.61 | up |
| 26 | 13,27-Cyclo-2,3-Dihydroxy-11,19(29)-Ursadien-28-Oic Acid | Triterpene | 1.11 | 0.005 | 1308.87 | 10.35 | up |
| 27 | Alismol | Sesquiterpenoids | 1.11 | 0.001 | 0.00 | −8.67 | down |
| 28 | Pterocarpol | Sesquiterpenoids | 1.11 | 0.004 | 0.00 | −8.16 | down |
| 29 | 3,7,11-trimethyldodeca-3,7-diene-1,10,11-triol 10-O-(beta-D-Xylopyranosyl)-beta-D-glucopyranoside | Sesquiterpenoids | 1.11 | 0.023 | 0.01 | −6.09 | down |
| 30 | Humulene epoxide II | Sesquiterpenoids | 1.11 | 0.001 | 0.02 | −5.36 | down |
| 31 | pterodontoside E * | Sesquiterpenoids | 1.09 | 0.004 | 0.03 | −5.17 | down |
| 32 | 6″-O-Caffeoylharpagide | Terpene | 1.11 | 0.009 | 0.03 | −5.16 | down |
| Compounds | Class | HM vs. RF | |||||
| VIP | p-value | Fold Change | Log2FC | Type | |||
| 33 | 3,23-Dihydroxy-30-noroleana-12,20(29)-dien-28-oic acid (30-Norhederagenin) | Triterpene | 1.12 | 0.001 | 373.13 | 8.54 | up |
| 34 | Trachelosperonide B-1 | Triterpene Saponin | 1.12 | 0.001 | 391.67 | 8.61 | up |
| 35 | 1β-Hydroxy-2-oxopomolic acid | Triterpene | 1.12 | 0.008 | 411.89 | 8.69 | up |
| 36 | 3,13,15-Trihydroxyoleanane-12-one | Triterpene | 1.12 | 0.001 | 530.13 | 9.05 | up |
| 37 | Elaeocarpucin C | Triterpene | 1.12 | 0.007 | 609.10 | 9.25 | up |
| 38 | Jasminoside E | Monoterpenoids | 1.12 | 0.000 | 716.00 | 9.48 | up |
| 39 | 16,23:16,30-Diepoxydammar-24-ene-3,20-diol (Jujubogenin) * | Triterpene | 1.12 | 0.003 | 1678.95 | 10.71 | up |
| 40 | Rhodiolol A | Monoterpenoids | 1.12 | 0.007 | 1832.43 | 10.84 | up |
| 41 | Isothankunic acid | Triterpene | 1.12 | 0.000 | 3191.85 | 11.64 | up |
| 42 | Alismol | Sesquiterpenoids | 1.12 | 0.000 | 0.01 | −7.45 | down |
| 43 | Pterocarpol | Sesquiterpenoids | 1.11 | 0.003 | 0.01 | −6.93 | down |
| 44 | Humulene epoxide II | Sesquiterpenoids | 1.11 | 0.002 | 0.01 | −6.28 | down |
| 45 | pterodontoside E * | Sesquiterpenoids | 1.10 | 0.007 | 0.02 | −5.97 | down |
| 46 | Icariside C1 * | Sesquiterpenoids | 1.11 | 0.006 | 0.02 | −5.78 | down |
| 47 | 6-Eudesmene-1,4-diol 1-O-β-D-Glucopyranoside * | Sesquiterpenoids | 1.11 | 0.035 | 0.03 | −5.18 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, M.; Bao, L.; Jiang, T.; Song, K.; Chen, Y.; He, S.; Duan, X.; Ikram, M.; Yang, S.; Rao, M.J. Comparative LC-MS/MS Metabolomics of Wild and Cultivated Strawberries Reveals Enhanced Triterpenoid Accumulation and Superior Free Radical Scavenging Activity in Fragaria nilgerrensis. Horticulturae 2025, 11, 1417. https://doi.org/10.3390/horticulturae11121417
Duan M, Bao L, Jiang T, Song K, Chen Y, He S, Duan X, Ikram M, Yang S, Rao MJ. Comparative LC-MS/MS Metabolomics of Wild and Cultivated Strawberries Reveals Enhanced Triterpenoid Accumulation and Superior Free Radical Scavenging Activity in Fragaria nilgerrensis. Horticulturae. 2025; 11(12):1417. https://doi.org/10.3390/horticulturae11121417
Chicago/Turabian StyleDuan, Mingzheng, Liuyuan Bao, Ting Jiang, Kangjian Song, Yubo Chen, Sijiu He, Xiande Duan, Muhammad Ikram, Shunqiang Yang, and Muhammad Junaid Rao. 2025. "Comparative LC-MS/MS Metabolomics of Wild and Cultivated Strawberries Reveals Enhanced Triterpenoid Accumulation and Superior Free Radical Scavenging Activity in Fragaria nilgerrensis" Horticulturae 11, no. 12: 1417. https://doi.org/10.3390/horticulturae11121417
APA StyleDuan, M., Bao, L., Jiang, T., Song, K., Chen, Y., He, S., Duan, X., Ikram, M., Yang, S., & Rao, M. J. (2025). Comparative LC-MS/MS Metabolomics of Wild and Cultivated Strawberries Reveals Enhanced Triterpenoid Accumulation and Superior Free Radical Scavenging Activity in Fragaria nilgerrensis. Horticulturae, 11(12), 1417. https://doi.org/10.3390/horticulturae11121417

