Contribution of Artificial Neural Networks (ANNs) in Analyzing and Modeling Phenological Synchronization of Fig and Caprifig in Northern Morocco
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Microclimatic Data Collection
2.3. Phenological Observations
2.4. Phenological Model
2.5. Statistical Analysis
3. Results
3.1. Microclimatic Data
3.2. Phenological Stages
3.2.1. Phenology of Fig Tree Varieties
Phenology of Leafing out and Senescence
Fig Flower Phenology
Autumn Fig Phenology
3.2.2. Phenology of Caprifig Varieties
Phenology of Leafing out and Senescence
Fruiting Phenology
3.2.3. Female Fig Tree Receptivity Period and Profichi Maturation
3.3. Correlation Analysis
3.4. Analysis of Variance
3.5. Evaluation and Analysis of the ANN Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
R2 | Coefficient of Determination |
MAPE | Mean Absolute Percentage Error |
RMSE | Root Mean Square Error |
DOY | The day of year |
BBCH | Biologische Bundesanstalt, Bundessortenamt, und Chemische Industrie (Federal Biological Research Center, Federal Plant Variety Office, and Chemical Industry) |
References
- Hmimsa, Y.; Ater, M. Agrodiversity in the Traditional Agrosystems of the Rif Mountains (North of Morocco). Biodiversity 2008, 9, 78–81. [Google Scholar] [CrossRef]
- Achtak, H.; Ater, M.; Oukabli, A.; Santoni, S.; Kjellberg, F.; Khadari, B. Traditional Agroecosystems as Conservatories and Incubators of Cultivated Plant Varietal Diversity: The Case of Fig (Ficus carica L.) in Morocco. BMC Plant Biol. 2010, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- El Fatehi, S.; Hmimsa, Y.; Ater, M. Assessment of Agromorphological Diversity of Chickling-Vetch (‘Lathyrus cicera’ L.) Landraces in the Traditional Agroecosystems of Morocco. Aust. J. Crop Sci. 2021, 15, 1289–1297. [Google Scholar] [CrossRef]
- Cobelli, O.; Teixidor-Toneu, I.; El Fatehi, S.; Hmimsa, Y.; Leclerc, C.; Labeyrie, V. The Impact of Agricultural Policies on Agrobiodiversity Management in a Pre-Rif Farming System in Morocco: What Implications for Resilience? Agric. Hum. Values 2025, 42, 1–21. [Google Scholar] [CrossRef]
- Driouech, F. Distribution Des Précipitations Hivernales Sur Le Maroc Dans Le Cadre d’un Changement Climatique: Descente d’échelle et Incertitudes. Ph.D. Thesis, Institut National Polytechnique de Toulouse-INPT, Toulouse, France, 2010. [Google Scholar]
- Rankou, H.; Culham, A.; Jury, S.L.; Christenhusz, M.J. The Endemic Flora of Morocco. Phytotaxa 2013, 78, 1–69. [Google Scholar] [CrossRef]
- El Aoula, R.; Mahé, G.; Mhammdi, N.; Ezzahouani, A.; Kacimi, I.; Khomsi, K. Évolution Du Régime Hydrologique Dans Le Bassin Versant Du Bouregreg, Maroc. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 163–168. [Google Scholar] [CrossRef]
- Gitz, V.; Meybeck, A.; Lipper, L.; Young, C.D.; Braatz, S. Climate Change and Food Security: Risks and Responses; Food and Agriculture Organization United Nations (FAO): Rome, Italy, 2016; Volume 110, pp. 3–36. [Google Scholar]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic Climate Change Has Slowed Global Agricultural Productivity Growth. Nat. Clim. Change 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Medda, S.; Fadda, A.; Mulas, M. Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. Horticulturae 2022, 8, 273. [Google Scholar] [CrossRef]
- Ammar, A.; Aissa, I.B.; Gouiaa, M.; Mars, M. Fig (Ficus carica L.) vulnerability to climate change: Combined effects of water stress and high temperature on ecophysiological behaviour of different cultivars. S. Afr. J. Bot. 2022, 147, 482–492. [Google Scholar] [CrossRef]
- Meng, L. Green with Phenology. Science 2021, 374, 1065–1066. [Google Scholar] [CrossRef] [PubMed]
- Valentini, N.; Me, G.; Ferrero, R.; Spanna, F. Use of Bioclimatic Indexes to Characterize Phenological Phases of Apple Varieties in Northern Italy. Int. J. Biometeorol. 2001, 45, 191–195. [Google Scholar] [CrossRef]
- Chmielewski, F.-M. Phenology in Agriculture and Horticulture. In Phenology: An Integrative Environmental Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 539–561. [Google Scholar]
- Adiga, J.D.; Muralidhara, B.M.; Preethi, P.; Savadi, S. Phenological Growth Stages of the Cashew Tree (Anacardium occidentale L.) According to the Extended BBCH Scale. Ann. Appl. Biol. 2019, 175, 246–252. [Google Scholar] [CrossRef]
- Akshitha, H.J.; Shivakumar, M.S.; Ankegowda, S.J. Phenological Growth Stages of Cardamom (Elettaria cardamomum Maton): Detailed Identification and Description Using the Extended BBCH Scale. Ann. Appl. Biol. 2024, 184, 391–399. [Google Scholar] [CrossRef]
- Singh, A.K.; Bajpai, A.; Rajan, S.; Das, S.S.; Mishra, K.K. Modified BBCH Codification and Correlation of Phenological Characteristics with Climatic Variables in Jamun (Syzigium cuminii Skeels). Sci. Hortic. 2021, 283, 110081. [Google Scholar] [CrossRef]
- Awachare, C.M.; Upreti, K.K. Phenological Growth Stages in Mangosteen (Garcinia mangostana L.) According to the Extended BBCH Scale. Ann. Appl. Biol. 2020, 176, 16–25. [Google Scholar] [CrossRef]
- Kishore, K. Phenological Growth Stages of Jackfruit (Artocarpus heterophyllus) According to the Extended BBCH Scale. Ann. Appl. Biol. 2018, 172, 366–374. [Google Scholar] [CrossRef]
- Kishore, K. Phenological Growth Stages of Indian Gooseberry (Phyllanthus emblica L.) According to the Extended BBCH Scale. Sci. Hortic. 2017, 225, 607–614. [Google Scholar] [CrossRef]
- Kishore, K.; Mahanti, K.K.; Samant, D. Phenological Growth Stages of Bael (Aegle marmelos) According to the Extended Biologische Bundesantalt, Bundessortenamt Und Chemische Industrie Scale. Ann. Appl. Biol. 2017, 170, 425–433. [Google Scholar] [CrossRef]
- Hernández, F.C.A.; Legua, P.; Melgarejo, P.; Martínez, R.; Martínez, J.J. Phenological Growth Stages of Jujube Tree (Ziziphus jujube): Codification and Description According to the BBCH Scale. Ann. Appl. Biol. 2015, 166, 136–142. [Google Scholar] [CrossRef]
- Liu, G.-X.; Yang, D.-R.; Peng, Y.-Q.; Compton, S.G. Complementary fruiting phenologies facilitate sharing of one pollinator fig wasp by two fig trees. J. Plant Ecol. 2015, 8, 197–206. [Google Scholar] [CrossRef]
- Fadón, E.; Herrero, M.; Rodrigo, J. Flower Development in Sweet Cherry Framed in the BBCH Scale. Sci. Hortic. 2015, 192, 141–147. [Google Scholar] [CrossRef]
- Delgado, P.H.; Aranguren, M.; Reig, C.; Galvan, D.F.; Mesejo, C.; Fuentes, A.M.; Sauco, V.G.; Agustí, M. Phenological Growth Stages of Mango (Mangifera indica L.) According to the BBCH Scale. Sci. Hortic. 2011, 130, 536–540. [Google Scholar] [CrossRef]
- Salinero, M.C.; Vela, P.; Sainz, M.J. Phenological Growth Stages of Kiwifruit (Actinidia deliciosa ‘Hayward’). Sci. Hortic. 2009, 121, 27–31. [Google Scholar] [CrossRef]
- Özkul, M.; Ozkul, M.; Mesut, O.; Belge, A.; Mutlu, D. Phenological Development Stages and Effective Temperature Total Demand in Bursa Siyahı Fig Variety. ISPEC J. Agric. Sci. 2022, 6, 260–271. [Google Scholar] [CrossRef]
- Singh, A.; Kishore, K.; Kumar, P.; Khapte, P.S.; Mishra, D.S.; Singh, D.; Kothyari, H.S. Phenological Growth and Development Stages of Common Fig (Ficus carica L.) under Arid Climate of India. Folia Hortic. 2023, 35, 395–402. [Google Scholar] [CrossRef]
- Hess, M.; Barralis, G.; Bleiholder, H.; Buhr, L.; Eggers, T.H.; Hack, H.; Stauss, R. Use of the Extended BBCH Scale—General for the Descriptions of the Growth Stages of Mono; and Dicotyledonous Weed Species. Weed Res. 1997, 37, 433–441. [Google Scholar] [CrossRef]
- Herraiz, F.J.; Vilanova, S.; Plazas, M.; Gramazio, P.; Andújar, I.; Rodríguez-Burruezo, A.; Fita, A.; Anderson, G.J.; Prohens, J. Phenological Growth Stages of Pepino (Solanum muricatum) According to the BBCH Scale. Sci. Hortic. 2015, 183, 1–7. [Google Scholar] [CrossRef]
- Acosta-Quezada, P.G.; Riofrío-Cuenca, T.; Rojas, J.; Vilanova, S.; Plazas, M.; Prohens, J. Phenological Growth Stages of Tree Tomato (Solanum betaceum Cav.), an Emerging Fruit Crop, According to the Basic and Extended BBCH Scales. Sci. Hortic. 2016, 199, 216–223. [Google Scholar] [CrossRef]
- Vârban, R.; Ona, A.; Stoie, A.; Vârban, D.; Crișan, I. Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale. Agronomy 2021, 11, 2280. [Google Scholar] [CrossRef]
- Gobin, A.; Sallah, A.H.M.; Curnel, Y.; Delvoye, C.; Weiss, M.; Wellens, J.; Piccard, I.; Planchon, V.; Tychon, B.; Goffart, J.P. Crop Phenology Modelling Using Proximal and Satellite Sensor Data. Remote Sens. 2023, 15, 2090. [Google Scholar] [CrossRef]
- Schieler, M.; Riemer, N.; Kleinhenz, B.; Saucke, H.; Veith, M.; Racca, P. SIMONTO-Pea: Phenological Models to Predict Crop Growth Stages in BBCH of Grain and Green Peas (Pisum sativum) for Temporal Pest Management. Agriculture 2023, 14, 15. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, M.; Gu, Q.; Zhao, Y.; Zhang, X.; Sun, Q.; Gu, X.; Zheng, K. Machine Learning Methods for Efficient and Automated in Situ Monitoring of Peach Flowering Phenology. Comput. Electron. Agric. 2022, 202, 107370. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; et al. Uncertainty in Simulating Wheat Yields under Climate Change. Nat. Clim. Change 2013, 3, 827–832. [Google Scholar] [CrossRef]
- Renno, C.; Petito, F.; Gatto, A. ANN Model for Predicting the Direct Normal Irradiance and the Global Radiation for a Solar Application to a Residential Building. J. Clean. Prod. 2016, 135, 1298–1316. [Google Scholar] [CrossRef]
- Law, R. Back-Propagation Learning in Improving the Accuracy of Neural Network-Based Tourism Demand Forecasting. Tour. Manag. 2000, 21, 331–340. [Google Scholar] [CrossRef]
- Sathe, P.M.; Venitz, J. Comparison of Neural Network and Multiple Linear Regression as Dissolution Predictors. Drug Dev. Ind. Pharm. 2003, 29, 349–355. [Google Scholar] [CrossRef]
- Malinova, T.; Guo, Z.X. Artificial Neural Network Modelling of Hydrogen Storage Properties of Mg-Based Alloys. Mater. Sci. Eng. A 2004, 365, 219–227. [Google Scholar] [CrossRef]
- Kulkarni, S.; Haidar, I. Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices. arXiv 2009, arXiv:0906.4838. [Google Scholar] [CrossRef]
- Lin, S.L. A Two-Stage Logistic Regression-ANN Model for the Prediction of Distress Banks: Evidence from 11 Emerging Countries. Afr. J. Bus. Manag. 2010, 4, 3149. [Google Scholar]
- Arsad, P.M.; Buniyamin, N. Neural Network and Linear Regression Methods for Prediction of Students’ Academic Achievement. In Proceedings of the 2014 IEEE Global Engineering Education Conference (EDUCON), IEEE, Istanbul, Turkey, 3–5 April 2014; pp. 916–921. [Google Scholar]
- Dilek, S.; Çakır, H.; Aydın, M. Applications of Artificial Intelligence Techniques to Combating Cyber Crimes: A Review. arXiv 2015, arXiv:1502.03552. [Google Scholar] [CrossRef]
- Gandhi, N.; Petkar, O.; Armstrong, L.J. Rice Crop Yield Prediction Using Artificial Neural Networks. In Proceedings of the 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), IEEE, Chennai, India, 15–16 July 2016; pp. 105–110. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-Art in Artificial Neural Network Applications: A Survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Barone, G.; Mazzoleni, P.; Spagnolo, G.V.; Raneri, S. Artificial Neural Network for the Provenance Study of Archaeological Ceramics Using Clay Sediment Database. J. Cult. Herit. 2019, 38, 147–157. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P. An Overview of the Crop Model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.-X.; Huard, F. Why Are Wheat Yields Stagnating in Europe? A Comprehensive Data Analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Kim, S.M.; Paek, S.H.; Lee, J.H. Infratemporal Fossa Approach: The Modified Zygomatico-Transmandibular Approach. Maxillofac. Plast. Reconstr. Surg. 2019, 41, 3. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.S. Predictive Non-Linear Modeling of Complex Data by Artificial Neural Networks. Curr. Opin. Biotechnol. 2002, 13, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Abrahart, R.J.; See, L.M. Neural Network Modelling of Non-Linear Hydrological Relationships. Hydrol. Earth Syst. Sci. 2007, 11, 1563–1579. [Google Scholar] [CrossRef]
- Miller, T.; Durlik, I.; Łobodzińska, A.; Kisiel, A.; Cembrowska-Lech, D.; Spychalski, I.; Tuński, T. Predictive Modeling of Urban Lake Water Quality Using Machine Learning: A 20-Year Study. Appl. Sci. 2023, 13, 11217. [Google Scholar] [CrossRef]
- Haghverdi, A.; Washington-Allen, R.A.; Leib, B.G. Prediction of Cotton Lint Yield from Phenology of Crop Indices Using Artificial Neural Networks. Comput. Electron. Agric. 2018, 152, 186–197. [Google Scholar] [CrossRef]
- Potgieter, A.B.; Zhao, Y.; Zarco-Tejada, P.J.; Chenu, K.; Zhang, Y.; Porker, K.; Biddulph, B.; Dang, Y.P.; Neale, T.; Roosta, F. Evolution and Application of Digital Technologies to Predict Crop Type and Crop Phenology in Agriculture. Silico Plants 2021, 3, diab017. [Google Scholar] [CrossRef]
- Safa, B. Prediction of Wheat Yield and Phenological Stages Using Neural Network; Lambert Academic Publishing: Saarbrücken, Germany, 2017. [Google Scholar]
- Moriondo, M.; Bindi, M.; Fagarazzi, C.; Ferrise, R.; Trombi, G. Framework for High-Resolution Climate Change Impact Assessment on Grapevines at a Regional Scale. Reg. Environ. Change 2011, 11, 553–567. [Google Scholar] [CrossRef]
- Lacueva-Pérez, F.J.; Ilarri, S.; Barriuso, J.J.; Balduque, J.; Labata, G.; del-Hoyo, R. Grapevine Phenology Prediction: A Comparison of Physical and Machine Learning Models. In Proceedings of the International Conference on Big Data Analytics and Knowledge Discovery, Vienna, Austria, 22–24 August 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 263–269. [Google Scholar]
- Rahimi, Y.; Bihamta, M.R.; Taleei, A.; Alipour, H.; Ingvarsson, P.K. Applying an Artificial Neural Network Approach for Drought Tolerance Screening among Iranian Wheat Landraces and Cultivars Grown under Well-Watered and Rain-Fed Conditions. Acta Physiol. Plant. 2019, 41, 156. [Google Scholar] [CrossRef]
- Mancero-Castillo, D.; Garcia, Y.; Aguirre-Munizaga, M.; Ponce de Leon, D.; Portalanza, D.; Avila-Santamaria, J. Dynamic Perspectives into Tropical Fruit Production: A Review of Modeling Techniques. Front. Agron. 2024, 6, 1482893. [Google Scholar] [CrossRef]
- Mancuso, S.; Fiorino, P.; Pasquali, G. Phenology Modelling and Forecasting in Olive (Olea europaea L.) Using Artificial Neural Networks. Adv. Hortic. Sci. 2002, 2002, 1000–1010. [Google Scholar]
- Khadari, B.; Charafi, J.; Moukhli, A.; Ater, M. Substantial Genetic Diversity in Cultivated Moroccan Olive despite a Single Major Cultivar: A Paradoxical Situation Evidenced by the Use of SSR Loci. Tree Genet. Genomes 2008, 4, 213–221. [Google Scholar] [CrossRef]
- Hssaini, L.; Hanine, H.; Razouk, R.; Ennahli, S.; Mekaoui, A.; Ejjilani, A.; Charafi, J. Assessment of Genetic Diversity in Moroccan Fig (Ficus carica L.) Collection by Combining Morphological and Physicochemical Descriptors. Genet. Resour. Crop Evol. 2020, 67, 457–474. [Google Scholar] [CrossRef]
- Barolo, M.I.; Mostacero, N.R.; López, S.N. Ficus carica L. (Moraceae): An Ancient Source of Food and Health. Food Chem. 2014, 164, 119–127. [Google Scholar] [CrossRef]
- Pérez-Sánchez, R.; Morales-Corts, R.M.; Gómez-Sánchez, Á.M. Agro-Morphological Diversity of Traditional Fig Cultivars Grown in Central-Western Spain. Genetika 2016, 48, 533–546. [Google Scholar] [CrossRef]
- Vitelli, M.; Vessella, F.; Cardoni, S.; Pollegioni, P.; Denk, T.; Grimm, G.W.; Simeone, M.C. Phylogeographic Structuring of Plastome Diversity in Mediterranean Oaks (Quercus Group Ilex, Fagaceae). Tree Genet. Genomes 2017, 13, 3. [Google Scholar] [CrossRef]
- Berg, C.C. Classification and Distribution of Ficus. Experientia 1989, 45, 605–611. [Google Scholar] [CrossRef]
- Falistocco, E. Molecular Cytogenetics of Vitis vinifera L. and Ficus carica L.: Location of rDNA Sequences. In Proceedings of the XLVI Convegno Annuale della Società Italiana di Genetica Agraria, Giardini Naxos, Italy, 18–20 September 2020; ISBN 88-900622-3-1. [Google Scholar]
- Condit, I.J. Fig Characteristics Useful in the Identification of Varieties; University of California Press: Oakland, CA, USA, 1941. [Google Scholar]
- Stover, E.; Aradhya, M.; Ferguson, L.; Crisosto, C.H. The Fig: Overview of an Ancient Fruit. HortScience 2007, 42, 1083–1087. [Google Scholar] [CrossRef]
- Flaishman, M.A.; Rodov, V.; Stover, E. The Fig: Botany, Horticulture, and Breeding; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Zare, H. Comparison of Fig Caprification Vessels, Period and Caprifig Cultivar Usable in Iran. In Proceedings of the III International Symposium on Fig 798, Algarve, Portugal, 16–20 May 2005; pp. 233–239. [Google Scholar]
- Pourghayoumi, M.; Bakhshi, D.; Rahemi, M.; Jafari, M. Effect of Pollen Source on Quantitative and Qualitative Characteristics of Dried Figs (Ficus carica L.) Cvs ‘Payves’ and ‘Sabz’in Kazerun–Iran. Sci. Hortic. 2012, 147, 98–104. [Google Scholar] [CrossRef]
- Hmimsa, Y.; Ramet, A.; Dubuisson, C.; El Fatehi, S.; Hossaert-McKey, M.; Kahi, H.; Munch, J.; Proffit, M.; Salpeteur, M.; Aumeeruddy-Thomas, Y. Pollination of the Mediterranean Fig Tree, Ficus carica L.: Caprification Practices and Social Networks of Exchange of Caprifigs among Jbala Farmers in Northern Morocco. Hum. Ecol. 2024, 52, 289–302. [Google Scholar] [CrossRef]
- Hmimsa, Y.; Aumeeruddy-Thomas, Y.; Ater, M. Vernacular Taxonomy, Classification and Varietal Diversity of Fig (Ficus carica L.) among Jbala Cultivators in Northern Morocco. Hum. Ecol. 2012, 40, 301–313. [Google Scholar] [CrossRef]
- Oukabli, A.; Mamouni, A.; Laghezali, M.; Ater, M.; Roger, J.P.; Khadari, B. Local Caprifig Tree Characterization and Analysis of Interest for Pollination. Acta Hortic. 2003, 605, 61–64. [Google Scholar] [CrossRef]
- Chmarkhi, A.; Fatehi, S.E.; Khatib, K.E.; Hmimsa, Y. Contribution of Agromorphological and Qualitative Traits to the Study of the Diversity of the Caprifig (Ficus carica L.) in Traditional Agroecosystems in Northern Morocco. J. Saudi Soc. Agric. Sci. 2024. [Google Scholar] [CrossRef]
- Aumeeruddy-Thomas, Y.; Hmimsa, Y. Fig and Olive Domestication in the Rif, Northern Morocco: Entangled Human and Tree Lives and History. In Hybrid Communities; Routledge: Oxfordshire, UK, 2018; pp. 179–196. [Google Scholar]
- Cao, L.; Hmimsa, Y.; El Fatehi, S.; Buatois, B.; Dubois, M.-P.; Le Moigne, M.; Hossaert-McKey, M.; Aumeeruddy-Thomas, Y.; Bagnères, A.-G.; Proffit, M. Floral Scent of the Mediterranean Fig Tree: Significant Inter-Varietal Difference but Strong Conservation of the Signal Responsible for Pollinator Attraction. Sci. Rep. 2023, 13, 5642. [Google Scholar] [CrossRef]
- Aksoy, U.; Balci, B.; Can, H.Z.; Hepaksoy, S. Some Significant Results of the Research-Work in Turkey on Fig. Acta Hortic. 2003, 605, 173–181. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Pacucci, C.; Matarrese, A.M.S.; Tarantino, A.; Crisosto, C.; Incerti, O.; Marcotuli, I.; Nigro, D.; Blanco, A.; et al. Characterization of edible fig germplasm from Puglia, southeastern Italy: Is the distinction of three fig types (Smyrna, San Pedro and Common) still valid? Sci. Hortic. 2016, 205, 52–58. [Google Scholar] [CrossRef]
- Rosianski, Y.; Freiman, Z.E.; Cochavi, S.M.; Yablovitz, Z.; Kerem, Z.; Flaishman, M.A. Advanced Analysis of Developmental and Ripening Characteristics of Pollinated Common-Type Fig (Ficus carica L.). Sci. Hortic. 2016, 198, 98–106. [Google Scholar] [CrossRef]
- Köppen, W.P. Die Klimate der Erde: Grundriss der Klimakunde; Walter de Gruyter & Sons: Berlin, Germany, 1923; ISBN 3-11-112511-4. [Google Scholar]
- Qazi, A.; Fayaz, H.; Wadi, A.; Raj, R.G.; Rahim, N.A.; Khan, W.A. The Artificial Neural Network for Solar Radiation Prediction and Designing Solar Systems: A Systematic Literature Review. J. Clean. Prod. 2015, 104, 1–12. [Google Scholar] [CrossRef]
- Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Chau, K. Combined Life Cycle Assessment and Artificial Intelligence for Prediction of Output Energy and Environmental Impacts of Sugarcane Production. Sci. Total Environ. 2019, 664, 1005–1019. [Google Scholar] [CrossRef]
- Chinchanikar, S.; Shinde, S.; Gaikwad, V.; Shaikh, A.; Rondhe, M.; Naik, M. ANN Modelling of Surface Roughness of FDM Parts Considering the Effect of Hidden Layers, Neurons, and Process Parameters. Adv. Mater. Process. Technol. 2024, 10, 22–32. [Google Scholar] [CrossRef]
- Gonzalez, C. Building Human-like Artificial Agents: A General Cognitive Algorithm for Emulating Human Decision-Making in Dynamic Environments. Perspect. Psychol. Sci. 2024, 19, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, I.; Chmarkhi, A.; Ammari, M.; Allal, L.B. Combined Application of Life Cycle Assessment and Neural Network Model for Modeling Energy and Environmental Emissions in Sugar Beet Production. Results Eng. 2024, 24, 103356. [Google Scholar] [CrossRef]
- Saska, M.M.; Kuzovkina, Y.A. Phenological Stages of Willow (Salix). Ann. Appl. Biol. 2010, 156, 431–437. [Google Scholar] [CrossRef]
- Taratuhin, O.D.; Novikova, L.Y.; Seferova, I.V.; Gerasimova, T.V.; Nuzhdin, S.V.; Samsonova, M.G.; Kozlov, K.N. An Artificial Neural Network Model to Predict the Phenology of Early-Maturing Soybean Varieties from Climatic Factors. Biophysics 2020, 65, 106–117. [Google Scholar] [CrossRef]
- Rafique, R.; Ahmad, T.; Ahmed, M.; Khan, M.A. Adapting the Process Based STICS Model to Simulate Phenology and Yield of Table Grapes-a High Value Fruit Crop in a New Emerging Viticulture Zone of South Asia. Sci. Hortic. 2024, 336, 113419. [Google Scholar] [CrossRef]
- Grünig, M.; Razavi, E.; Calanca, P.; Mazzi, D.; Wegner, J.D.; Pellissier, L. Applying Deep Neural Networks to Predict Incidence and Phenology of Plant Pests and Diseases. Ecosphere 2021, 12, e03791. [Google Scholar] [CrossRef]
- Ojo, A.; Adeyemo, A.B. A Comparison of the Predictive Capabilities of Artificial Neural Networks and Regression Models for Knowledge Discovery. Comput. Inf. Syst. Dev. Inform. Allied Res. J. 2013, 4, 15–22. [Google Scholar]
- Ojo, A.; Adeyemo, B.A. Knowledge Discovery in Artificial Neural Networks and Regression Models. Int. J. Comput. Sci. Issues 2017, 14, 29. [Google Scholar]
- Ruml, M.; Vuković, A.; Milatović, D. Evaluation of Different Methods for Determining Growing Degree-Day Thresholds in Apricot Cultivars. Int. J. Biometeorol. 2010, 54, 411–422. [Google Scholar] [CrossRef]
- Aslam, M.A.; Ahmed, M.; Stöckle, C.O.; Higgins, S.S.; ul Hassan, F.; Hayat, R. Can Growing Degree Days and Photoperiod Predict Spring Wheat Phenology? Front. Environ. Sci. 2017, 5, 57. [Google Scholar] [CrossRef]
- Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Variability of Growing Degree Days in Poland in Response to Ongoing Climate Changes in Europe. Int. J. Biometeorol. 2017, 61, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme, R. Bases and Limits to Using ‘Degree. Day’Units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar] [CrossRef]
- Chamberlain, C.J.; Wolkovich, E.M. Variation across Space, Species and Methods in Models of Spring Phenology. Clim. Change Ecol. 2023, 5, 100071. [Google Scholar] [CrossRef]
- Kang, L.; Di, L.; Deng, M.; Yu, E.; Xu, Y. Forecasting Vegetation Index Based on Vegetation-Meteorological Factor Interactions with Artificial Neural Network. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; pp. 1–6. [Google Scholar]
- Fateh, R.; Darif, A.; Pouliquen, M.; Frikel, M.; Safi, S. Machine Learning for Nonlinear System Identification: Kernels and ANN. In Proceedings of the 2024 3rd International Conference on Embedded Systems and Artificial Intelligence (ESAI), Fez, Moroco, 19–24 December 2024; pp. 1–6. [Google Scholar]
- Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant Carbon Metabolism and Climate Change: Elevated CO2 and Temperature Impacts on Photosynthesis, Photorespiration and Respiration. New Phytol. 2019, 221, 32–49. [Google Scholar] [CrossRef]
- Marcotuli, I.; Mazzeo, A.; Colasuonno, P.; Terzano, R.; Nigro, D.; Porfido, C.; Tarantino, A.; Aiese Cigliano, R.; Sanseverino, W.; Gadaleta, A. Fruit Development in Ficus Carica L.: Morphological and Genetic Approaches to Fig Buds for an Evolution from Monoecy toward Dioecy. Front. Plant Sci. 2020, 11, 1208. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Y.; Wu, W.; Lyu, L.; Li, W. Research Progress on the Physiological, Biochemical and Molecular Regulatory Mechanisms of Fruit Tree Responses to High-Temperature Stress. Hortic. Plant J. 2025, 11, 1–14. [Google Scholar] [CrossRef]
- Brown, R. The Effects of Temperature on the Durations of the Different Stages of Cell Division in the Root-Tip. J. Exp. Bot. 1951, 2, 96–110. [Google Scholar] [CrossRef]
- Loomis, W.E. Growth and Differentiation–an Introduction and Summary. In Growth and Differentiation in Plants; Iowa State College Press: Ames, Iowa, 1953; pp. 1–17. [Google Scholar]
- Ben-Haj-Salah, H.; Tardieu, F. Temperature Affects Expansion Rate of Maize Leaves without Change in Spatial Distribution of Cell Length (Analysis of the Coordination between Cell Division and Cell Expansion). Plant Physiol. 1995, 109, 861. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.H.; Nelson, C.J. Epidermal Cell Division and the Coordination of Leaf and Tiller Development. Ann. Bot. 1994, 74, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.G. What Is the Role of Cell Division in Leaf Development? Elsevier: Amsterdam, The Netherlands, 1996; Volume 7, pp. 839–848. [Google Scholar]
- Wu, W.; Du, K.; Kang, X.; Wei, H. The Diverse Roles of Cytokinins in Regulating Leaf Development. Hortic. Res. 2021, 118, 8. [Google Scholar] [CrossRef] [PubMed]
- Tyree, M.T.; Hammel, H.T. The Measurement of the Turgor Pressure and the Water Relations of Plants by the Pressure-Bomb Technique. J. Exp. Bot. 1972, 23, 267–282. [Google Scholar] [CrossRef]
- Ache, P.; Bauer, H.; Kollist, H.; Al-Rasheid, K.A.; Lautner, S.; Hartung, W.; Hedrich, R. Stomatal Action Directly Feeds Back on Leaf Turgor: New Insights into the Regulation of the Plant Water Status from Non-invasive Pressure Probe Measurements. Plant J. 2010, 62, 1072–1082. [Google Scholar] [CrossRef]
- Ferrante, A.; Mariani, L. Agronomic Management for Enhancing Plant Tolerance to Abiotic Stresses: High and Low Values of Temperature, Light Intensity, and Relative Humidity. Horticulturae 2018, 4, 21. [Google Scholar] [CrossRef]
- Chmielewski, F.-M.; Müller, A.; Bruns, E. Climate Changes and Trends in Phenology of Fruit Trees and Field Crops in Germany, 1961–2000. Agric. For. Meteorol. 2004, 121, 69–78. [Google Scholar] [CrossRef]
- Lopes, P.R.C.; Oliveira, I.V.D.M.; Silva, R.R.S.D.; Cavalcante, Ì.H.L. Growing Princesa apples under semiarid conditions in northeastern Brazil. Acta Sci. Agron. 2013, 35, 93–99. [Google Scholar] [CrossRef]
- Liu, G.; Xiang, A.; Wan, Z.; Lv, H.; Liu, H.; Hu, Z.; Chen, L. Phenological Changes of Woody Plants in the Southern and Northern Regions of Nanling Mountains and Their Relationship with Climatic Factors. Forests 2023, 14, 2363. [Google Scholar] [CrossRef]
- Chiang, Y.-P.; Bain, A.; Wu, W.-J.; Chou, L.-S. Adaptive phenology of Ficus subpisocarpa and Ficus caulocarpa in Taipei, Taiwan. Acta Oecologica 2018, 90, 35–45. [Google Scholar] [CrossRef]
- Vitasse, Y.; Baumgarten, F.; Zohner, C.M.; Kaewthongrach, R.; Fu, Y.H.; Walde, M.G.; Moser, B. Impact of Microclimatic Conditions and Resource Availability on Spring and Autumn Phenology of Temperate Tree Seedlings. New Phytol. 2021, 232, 537–550. [Google Scholar] [CrossRef]
- Ferraz, R.A.; Leonel, S.; Souza, J.M.A.; Ferreira, R.B.; Modesto, J.H.; Arruda, L.L. Phenology, Vegetative Growth, and Yield Performance of Fig in Southeastern Brazil. Pesq. Agropec. Bras. 2020, 55, e01192. [Google Scholar] [CrossRef]
- Rojas-Cortés, Á.P.; Gasca-Pineda, J.; González-Rodríguez, A.; Ibarra-Manríquez, G. Genomic Diversity and Structure of a Neotropical Microendemic Fig Tree. Ecol. Evol. 2024, 14, e11178. [Google Scholar] [CrossRef]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Fig (Ficus carica)—Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T., Bhat, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 77–90. ISBN 978-3-030-75502-7. [Google Scholar]
- Pothasin, P.; Compton, S.G.; Wangpakapattanawong, P. Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water. PLoS ONE 2016, 11, e0152380. [Google Scholar] [CrossRef]
- Cerezini, M.T.; Rattis, L.; Furini, P.R.; Pereira, R.A. Contrasting Phenological Patterns and Reproductive Strategies in Closely Related Monoecious Fig Tree Species. Plants 2024, 13, 1889. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lautenbach, S.; Nieto, A.P.G.; Bondeau, A.; Cramer, W.; Geijzendorffer, I.R. The Impact of Conservation Farming Practices on Mediterranean Agro-Ecosystem Services Provisioning—A Meta-Analysis. Reg. Environ. Change 2019, 19, 2187–2202. [Google Scholar] [CrossRef]
- Balzan, M.V.; Sadula, R.; Scalvenzi, L. Assessing Ecosystem Services Supplied by Agroecosystems in Mediterranean Europe: A Literature Review. Land 2020, 9, 245. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Leggieri, A.; Calisi, A.; De Caroli, M. Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies. Land 2023, 12, 1117. [Google Scholar] [CrossRef]
- Ait Brahim, Y.; Saidi, M.E.M.; Kouraiss, K.; Sifeddine, A.; Bouchaou, L. Analysis of Observed Climate Trends and High Resolution Scenarios for the 21st Century in Morocco. J. Mater. Environ. Sci 2017, 8, 1375–1384. [Google Scholar]
- Boulahfa, I.; ElKharrim, M.; Naoum, M.; Beroho, M.; Batmi, A.; Halimi, R.E.; Maâtouk, M.; Aboumaria, K. Assessment of Performance of the Regional Climate Model (RegCM4.6) to Simulate Winter Rainfall in the North of Morocco: The Case of Tangier-Tétouan-Al-Hociema Region. Heliyon 2023, 9, e17473. [Google Scholar] [CrossRef]
- Tahri, A.; Boulahfa, I.; Beroho, M.; El Kharrim, M.; Aboumaria, K. Fluctuations in Extreme Temperatures in Northern Morocco and the Impact of Climate Change: Contribution of the Regional Climate Model (RegCM). E3S Web Conf. 2024, 502, 1006. [Google Scholar] [CrossRef]
- Meliho, M.; Khattabi, A.; Braun, M.; Orlando, C.A. Future Climate Change Projections in the Agroecological, Bioclimatic, Biogeographical and Altitudinal Vegetation Zones of Morocco. Afr. J. Ecol. 2023, 61, 794–814. [Google Scholar] [CrossRef]
- Evangelista, T.Y.L.; Miranda, A.C.; Junior, F.A.C.M.; Cavalcante, E.S.; Aguiar, C.D.; Pereira, G.A. Phenology and Vegetative Growth of the Fig Tree Cv” Roxo de Valinhos” under a Drastic Pruning System. Emir. J. Food Agric. 2019, 31, 426–431. [Google Scholar]
- Chmarkhi, A.; El Fatehi, S.; El Khatib, K.; Benziane, W.; Dihaz, N.; Aumeeruddy-Thomas, Y.; Hmimsa, Y. Phenological Study of Ficus carica L. in Northern Morocco: Synchronization of Fruiting Periods and Interannual Climatic Influence. Appl. Fruit Sci. 2025, 67, 321. [Google Scholar] [CrossRef]
- Wani, S.P.; Singh, P.; Boomiraj, K.; Sahrawat, K.L. Climate Change and Sustainable Rain-Fed Agriculture: Challenges and Opportunities. Agric. Situat. India 2009, 66, 221–239. [Google Scholar]
- Tessema, I.; Simane, B. Vulnerability Analysis of Smallholder Farmers to Climate Variability and Change: An Agro-Ecological System-Based Approach in the Fincha’a Sub-Basin of the Upper Blue Nile Basin of Ethiopia. Ecol. Process. 2019, 8, 5. [Google Scholar] [CrossRef]
- Muralikrishnan, L.; Padaria, R.N.; Choudhary, A.K.; Dass, A.; Shokralla, S.; El-Abedin, T.K.Z.; Abdelmohsen, S.A.M.; Mahmoud, E.A.; Elansary, H.O. Climate Change-Induced Drought Impacts, Adaptation and Mitigation Measures in Semi-Arid Pastoral and Agricultural Watersheds. Sustainability 2022, 14, 6. [Google Scholar] [CrossRef]
- Ammar, A.; Aissa, I.B.; Mars, M.; Gouiaa, M. Seasonal Variation of Fig Tree (Ficus carica L.) Physiological Characteristics Reveals Its Adaptation Performance. S. Afr. J. Bot. 2020, 132, 30–37. [Google Scholar] [CrossRef]
- Can, H.Z.; Meyvacı, K.B.; Balci, B. Determination of Gas Exchange Capacity of Some Breba Fig Cultivars. Acta Hortic. 2008, 798, 117–122. [Google Scholar] [CrossRef]
- Walali, L.; Skiredj, A.; Alattir, H. Fiches Techniques: L’amandier, l’olivier, Le Figuier, Le Grenadier. Bull. De Transf. De Technol. En Agric. 2003, 105, 4. [Google Scholar]
- Quinlan, J.D.; Preston, A.P. Chemical Induction of Branching in Nursery Trees. Acta Hortic. 1973, 34, 123–128. [Google Scholar] [CrossRef]
- Özen, M.; Çobanoğlu, F.; Kocataş, H.; Tan, N.; Ertan, B.; Şahin, B.; Konak, R.; Doğan, Ö.; Tutmuş, E.; Köseoğlu, İ. İncir Yetiştiriciliği; TC Tarım ve Köy İşleri Bakanlığı, Erbeyli İncir Araştırma Enstitüsü Müdürlüğü: İncirliova, Turkey, 2007. [Google Scholar]
- Çalışkan, O.; Bayazıt, S.; Gündüz, K.; Kılıç, D. Bursa Siyahı Incir Çeşidin de Yer Örtüsü Kullanımının Erkencilik, Verim ve Meyve Kalite Özelliklerine Etkileri; Bahçe: Yalova, Turkey, 2020; Volume 49, pp. 153–157. ISSN 1300-8943. [Google Scholar]
- Nasja, M.P.; Razak, I.P.; Rafeeq, K. Effect of Recent Seasonal Rainfall Pattern on the Phenology of a Common Fig Plant from North Kerala, South India. Ecol. Environ. Conserv. 2024, 30, 971765X. [Google Scholar] [CrossRef]
- Oukabli, A.; Mekaoui, A. Dormancy of Fig Cultivated under Moroccan Conditions. Am. J. Plant Sci. 2012, 3, 473. [Google Scholar] [CrossRef]
- Gordo, O.; Sanz, J.J. Impact of Climate Change on Plant Phenology in Mediterranean Ecosystems. Glob. Change Biol. 2010, 16, 1082–1106. [Google Scholar] [CrossRef]
- Chiang, Y.-P.; Tzeng, H.-Y.; Lien-Siang, C.; Bain, A. Adaptation in a Changing Climate: The Phenology of Two Closely Related Sympatric Ficus Species in Taiwan. Taiwania 2021, 66, 561–568. [Google Scholar]
- Keller, M.; Tarara, J.M. Warm Spring Temperatures Induce Persistent Season-Long Changes in Shoot Development in Grapevines. Ann. Bot. 2010, 106, 131–141. [Google Scholar] [CrossRef]
- Rafique, R.; Ahmad, T.; Ahmed, M.; Abbasi, N.A.; Hoogenboom, G. Seasonal Variability in Temperature Affects Key Phenological Stages of Table Grapes Cultivars—A Case Study from Pothwar Region of Pakistan. In Proceedings of the ASA, CSSA, SSSA International Annual Meeting, ASA-CSSA-SSSA, Salt Lake City, UT, USA, 7–10 November 2021. [Google Scholar]
- Rafique, R.; Ahmad, T.; Ahmed, M.; Khan, M.A.; Wilkerson, C.J.; Hoogenboom, G. Seasonal Variability in the Effect of Temperature on Key Phenological Stages of Four Table Grapes Cultivars. Int. J. Biometeorol. 2023, 67, 745–759. [Google Scholar] [CrossRef]
- Estrella, N.; Menzel, A. Responses of Leaf Colouring in Four Deciduous Tree Species to Climate and Weather in Germany. Clim. Res. 2006, 32, 253–267. [Google Scholar] [CrossRef]
- Way, D.A. Tree Phenology Responses to Warming: Spring Forward, Fall Back? Tree Physiol. 2011, 31, 469–471. [Google Scholar] [CrossRef]
- Fu, Y.S.; Campioli, M.; Vitasse, Y.; De Boeck, H.J.; Van den Berge, J.; AbdElgawad, H.; Asard, H.; Piao, S.; Deckmyn, G.; Janssens, I.A. Variation in Leaf Flushing Date Influences Autumnal Senescence and next Year’s Flushing Date in Two Temperate Tree Species. Proc. Natl. Acad. Sci. USA 2014, 111, 7355–7360. [Google Scholar] [CrossRef]
- Bremer, V.; Norton, M.; Einhorn, T.; Crisosto, C.H. Use of Preharvest Ethephon Applications to Reduce Breba Crop Load. Ph.D. Dissertation, California State University, Fresno, CA, USA, 2008. [Google Scholar]
- Crisosto, C.H.; Bremer, V.; Ferguson, L.; Crisosto, G.M. Evaluating Quality Attributes of Four Fresh Fig (Ficus carica L.) Cultivars Harvested at Two Maturity Stages. HortScience 2010, 45, 707–710. [Google Scholar] [CrossRef]
- Fornaciari, M.; Marrapodi, S.; Ruga, L.; Proietti, C.; Orlandi, F. Tree Responses and Temperature Requirements in Two Central Italy Phenological Gardens. Int. J. Biometeorol. 2023, 67, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Doster, M.A.; Michailides, T.J. Fungal Decay of First-Crop and Main-Crop Figs. Plant Dis. 2007, 91, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Gaaliche, B.; Zarrouk, I.; Mars, M. Agro-phenological behaviour of several caprifigs grown in two different ecological areas in Tunisia. Acta Hortic. 2017, 1173, 149–156. [Google Scholar] [CrossRef]
- Çalişkan, O.; Polat, A.A. Morphological Diversity among Fig (Ficus carica L.) Accessions Sampled from the Eastern Mediterranean Region of Turkey. Turk. J. Agric. For. 2012, 36, 179–193. [Google Scholar] [CrossRef]
- Da Silva, D.M.A.; da Silva Santos, N.P.; Santos, E.E.d.S.A.; Pereira, G.A.; da Silva Júnior, G.B.; da Cunha, J.G. Effects of Formative and Production Pruning on Fig Growth, Phenology, and Production. Rev. Fac. Cienc. Agrar. UNCuyo 2022, 54, 13–24. [Google Scholar] [CrossRef]
- Gaaliche, B.; Narzary, D.; Mimoun, M.B.; Sarkhosh, A. Taxonomy, Botany and Physiology. In The Fig: Botany, Production and Uses; CABI GB: Wallingford, UK, 2022; pp. 9–46. [Google Scholar]
- Tangu, N.A.; Şen, A.; Kargıcak, M.A.; Türkay, C. Bazı ‘Bursa Siyahı’İncir Klonlarının Yalova Koşullarındaki Performansları. Bahçe 2021, 50, 95–102. [Google Scholar] [CrossRef]
- Crane, J.C.; Brown, J.G. Growth of the Fig Fruit, Ficus carica Var. Mission. Am. Soc. Hortic. Sci. 1950, 56, 93–97. [Google Scholar]
- Petrucci, V.E.; Crane, J.C. Fruit Bud Initiation and Differentiation in the Fig. Am. Soc. Hortic. Sci. 1950, 56, 86–92. [Google Scholar]
- Valdeyron, G.; Lloyd, D. Sex Differences and Flowering Phenology in the Common Fig, Ficus carica L. Evolution 1979, 33, 673. [Google Scholar] [CrossRef]
- Mamouni, A.; Laghezali, M.; Khadari, B.; Roger, J.P.; Kjellberg, F.; Ater, M.; Oukabli, A. Genetic Variability in Morrocan Fig Cultivars (Ficus carica L.) Based on Morphological and Pomological Data. In Proceedings of the II International Symposium on Fig 605, Corvallis, OR, USA, 7–11 May 2001; pp. 311–318. [Google Scholar]
- Chessa, I.; Nieddu, G.; Schirra, M. Growth and Ripening of Main-Crop Fig. Adv. Hortic. Sci. 1992, 6, 112–115. [Google Scholar]
- Gaaliche, B.; Trad, M.; Mars, M. Biodiversité et Efficacité Comparée de Caprifiguiers Tunisiens. Tunis. J. Med. Plants Nat. Prod. 2012, 7, 12–19. [Google Scholar]
- Khadivi-Khub, A.; Anjam, K. Characterization and Evaluation of Male Fig (Caprifig) Accessions in Iran. Plant Syst. Evol. 2014, 300, 2177–2189. [Google Scholar] [CrossRef]
- Safa, B.; Khalili, A.; Teshnehlab, M.; Liaghat, A. Artificial Neural Networks (ANNs) Application to Predict Occurrence of Phenological Stages in Wheat Using Climatic Data. Int. J. Agric. Policy Res. 2014, 2, 352–361. [Google Scholar]
- Rosado, R.D.S.; Cruz, C.D.; Barili, L.D.; de Souza Carneiro, J.E.; Carneiro, P.C.S.; Carneiro, V.Q.; da Silva, J.T.; Nascimento, M. Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars. Agriculture 2020, 10, 638. [Google Scholar] [CrossRef]
- Zavalloni, C.; Andresen, J.A.; Flore, J.A. Phenological Models of Flower Bud Stages and Fruit Growth Ofmontmorency’sour Cherry Based on Growing Degree-Day Accumulation. J.-Am. Soc. Hortic. Sci. 2006, 131, 601. [Google Scholar]
- Verdugo-Vásquez, N.; Pañitrur-De la Fuente, C.; Ortega-Farías, S. Model Development to Predict Phenological Scale of Table Grapes (Cvs. Thompson, Crimson and Superior Seedless and Red Globe) Using Growing Degree Days. Oeno One 2017, 51, 352–361. [Google Scholar] [CrossRef]
- Taei, J.; Amirizadeh, S.; Meighani, H. New Simple Approach for Site-Specific Prediction of Grapevine (Vitis vinifera) Budburst and Flowering Phases (the Case of Kerman, Iran). 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4492809 (accessed on 28 May 2025).
- Correia, D.L.; Bouachir, W.; Gervais, D.; Pureswaran, D.; Kneeshaw, D.D.; De Grandpre, L. Leveraging Artificial Intelligence for Large-Scale Plant Phenology Studies from Noisy Time-Lapse Images. IEEE Access 2020, 8, 13151–13160. [Google Scholar]
- Katal, N.; Rzanny, M.; Mäder, P.; Wäldchen, J. Deep Learning in Plant Phenological Research: A Systematic Literature Review. Front. Plant Sci. 2022, 13, 805738. [Google Scholar] [CrossRef]
- Keenan, T.F.; Richardson, A.D. The Timing of Autumn Senescence Is Affected by the Timing of Spring Phenology: Implications for Predictive Models. Glob. Change Biol. 2015, 21, 2634–2641. [Google Scholar]
- Mo, Y.; Zhang, J.; Jiang, H.; Fu, Y.H. A Comparative Study of 17 Phenological Models to Predict the Start of the Growing Season. Front. For. Glob. Change 2023, 5, 1032066. [Google Scholar] [CrossRef]
- Czernecki, B.; Nowosad, J.; Jabłońska, K. Machine Learning Modeling of Plant Phenology Based on Coupling Satellite and Gridded Meteorological Dataset. Int. J. Biometeorol. 2018, 62, 1297–1309. [Google Scholar] [CrossRef]
- Di Paola, A.; Chiriacò, M.V.; Di Paola, F.; Nieddu, G. A Phenological Model for Olive (Olea europaea L. Var Europaea) Growing in Italy. Plants 2021, 10, 1115. [Google Scholar] [CrossRef]
- Garnot, V.S.F.; Spafford, L.; Lever, J.; Sigg, C.; Pietragalla, B.; Vitasse, Y.; Gessler, A.; Wegner, J.D. Deep Learning Meets Tree Phenology Modeling: PhenoFormer vs. Process-Based Models. arXiv 2024, arXiv:2410.23327. [Google Scholar]
BBCH Code | Description (Based on BBCH Scale for F. carica) |
---|---|
01 | Beginning of bud swelling (leaf buds) |
11 | Beginning of leaf development |
15 | Mid leaf set (leaves ≈ 50% of final size) |
51 | Emergence of reproductive bud (fig flower bud; birth of profichi, mamme, mammoni for caprifig) |
53 | Beginning of syconium elongation (autumn fig bud) |
65 | Peak flowering (receptive period for autumn figs; start of caprification period) |
87 | Fig fruit ripe for picking (autumn figs ripe for eating) |
89 | End of mammoni and mamme (over-mature, senescent) |
91 | Beginning of senescence (first leaves change color) |
93 | End of senescence (≥90% leaves fallen) |
Variety | Type | Mean Receptivity Duration (Days) | Receptivity Period (Observed Range) | Main Synchronized Caprifig(s) | Synchronization Efficiency |
---|---|---|---|---|---|
L’hlou | Caprifig | 14–16 | 20 May–23 June | L’qouti, L’messari | Good in 2021, partial in 2022 (shift) |
L’morr | Caprifig | 12–25 | 28 May–28 June | L’mdar, L’qellal, L’âassal, Aïcha | Good in 2021, partial in 2022 |
L’louizi | Caprifig | 12–21 | 6 June–July 2 | L’âassal, L’qellal, L’hamri, Aïcha | Good in 2021, partial in 2022 |
L’qouti | Female | 15–28 | 15 May–14 June | L’hlou | Strong overlap in 2021, partial in 2022 |
L’messari | Female | 19–25 | 20 May–17 June | L’hlou | Good in 2021, partial in 2022 |
Aïcha | Female | 18–40 | 13 May–28 June | L’hlou, L’morr, L’louizi | Variable: good with L’louizi, partial with L’hlou and L’morr |
L’âassal | Female | 19–34 | 15 May–23 June | L’morr, L’louizi | Good in 2021, partial in 2022 |
L’qellal | Female | 19–35 | 14 May–24 June | L’morr, L’louizi (secondary) | Moderate synchronization |
L’mdar | Female | 18–33 | 16 May–21 June | L’morr (main) | Satisfactory synchronization |
L’h’archi | Female | 18–36 | 15 May–26 June | Broad overlap | Good but variable |
L’hamri | Female | 18–33 | 18 May–28 June | L’louizi, L’morr (late) | Good in 2021, partial in 2022 |
Phenological Stage | Factor | F | Pr > F | η2 |
---|---|---|---|---|
Fig Trees | ||||
Foliation | Variety | 322.592 | <2 × 10−16 *** | 0.89 |
Year | 12,141.367 | <2 × 10−16 *** | 0.98 | |
Orientation | 1721.818 | <2 × 10−16 *** | 0.86 | |
Variety × Year | 80.040 | <2 × 10−16 *** | 0.66 | |
Variety × Orientation | 1.678 | 0.1141 | 0.04 | |
Year × Orientation | 735.957 | <2 × 10−16 *** | 0.72 | |
Variety × Year × Orientation | 2.601 | 0.0129 * | 0.06 | |
Fig Flowers | Variety | 403.89 | <2 × 10−16 *** | 0.91 |
Year | 82,454.65 | <2 × 10−16 *** | 0.99 | |
Orientation | 103.51 | <2 × 10−16 *** | 0.29 | |
Variety × Year | 317.86 | <2 × 10−16 *** | 0.88 | |
Variety × Orientation | 24.95 | <2 × 10−16 *** | 0.37 | |
Year × Orientation | 264.36 | <2 × 10−16 *** | 0.51 | |
Variety × Year × Orientation | 41.98 | <2 × 10−16 *** | 0.50 | |
Fig Autumn | Variety | 161.763 | <2 × 10−16 *** | 0.80 |
Year | 14,248.381 | <2 × 10−16 *** | 0.98 | |
Orientation | 289.129 | <2 × 10−16 *** | 0.50 | |
Variety × Year | 259.439 | <2 × 10−16 *** | 0.86 | |
Variety × Orientation | 13.024 | 1.46 × 10−14 *** | 0.24 | |
Year × Orientation | 35.824 | 6.41 × 10−9 *** | 0.11 | |
Variety × Year × Orientation | 5.731 | 3.19 × 10−6 *** | 0.12 | |
Receptivity | Variety | 109.157 | <2 × 10−16 *** | 0.73 |
Year | 4585.097 | <2 × 10−16 *** | 0.94 | |
Orientation | 128.439 | <2 × 10−16 *** | 0.31 | |
Variety × Year | 95.149 | <2 × 10−16 *** | 0.70 | |
Variety × Orientation | 17.679 | <2 × 10−16 *** | 0.30 | |
Year × Orientation | 4.273 | 0.0396 * | 0.01 | |
Variety × Year × Orientation | 13.377 | 6.02 × 10−15 *** | 0.25 | |
Senescence | Variety | 188.62 | <2 × 10−16 *** | 0.82 |
Year | 5424.64 | <2 × 10−16 *** | 0.95 | |
Orientation | 124.22 | <2 × 10−16 *** | 0.30 | |
Variety × Year | 119.86 | <2 × 10−16 *** | 0.74 | |
Variety × Orientation | 13.35 | 6.42 × 10−15 *** | 0.25 | |
Year × Orientation | 192.74 | <2 × 10−16 *** | 0.40 | |
Variety × Year × Orientation | 12.09 | 1.56 × 10−13 *** | 0.23 | |
Caprifig Trees | ||||
Foliation | Variety | 25.487 | 3.98 × 10−10 *** | 0.27 |
Year | 2469.686 | <2 × 10−16 *** | 0.95 | |
Orientation | 778.421 | <2 × 10−16 *** | 0.85 | |
Variety × Year | 4.526 | 0.01251 * | 0.06 | |
Variety × Orientation | 10.350 | 6.55 × 10−5 *** | 0.13 | |
Year × Orientation | 74.728 | 1.32 × 10−14 *** | 0.35 | |
Variety × Year × Orientation | 6.910 | 0.00139 ** | 0.09 | |
Mamme | Variety | 11.98 | 1.61 × 10−5 *** | 0.15 |
Year | 2421.99 | <2 × 10−16 *** | 0.95 | |
Orientation | 1595.73 | <2 × 10−16 *** | 0.92 | |
Variety × Year | 50.58 | <2 × 10−16 *** | 0.43 | |
Variety × Orientation | 63.64 | <2 × 10−16 *** | 0.48 | |
Year × Orientation | 11,212.71 | <2 × 10−16 *** | 0.99 | |
Variety × Year × Orientation | 77.18 | <2 × 10−16 *** | 0.53 | |
Mammoni | Variety | 441.788 | <2 × 10−16 *** | 0.87 |
Year | 255.836 | <2 × 10−16 *** | 0.65 | |
Orientation | 286.878 | <2 × 10−16 *** | 0.68 | |
Variety × Year | 16.470 | 3.94 × 10−7 *** | 0.19 | |
Variety × Orientation | 5.416 | 0.005456 ** | 0.07 | |
Year × Orientation | 35.756 | 1.86 × 10−8 *** | 0.21 | |
Variety × Year × Orientation | 7.947 | 0.000545 *** | 0.10 | |
Profichi | Variety | 218.10 | <2 × 10−16 *** | 0.76 |
Year | 10,338.01 | <2 × 10−16 *** | 0.99 | |
Orientation | 11,099.69 | <2 × 10−16 *** | 0.99 | |
Variety × Year | 266.55 | <2 × 10−16 *** | 0.80 | |
Variety × Orientation | 48.90 | <2 × 10−16 *** | 0.42 | |
Year × Orientation | 1683.23 | <2 × 10−16 *** | 0.93 | |
Variety × Year × Orientation | 43.04 | 3.3 × 10−15 *** | 0.39 | |
Caprification | Variety | 115.187 | 1.09 × 10−14 *** | 0.63 |
Year | 1043.214 | <2 × 10−16 *** | 0.88 | |
Orientation | 115.059 | <2 × 10−16 *** | 0.46 | |
Variety × Year | 173.994 | <2 × 10−16 *** | 0.72 | |
Variety × Orientation | 1.308 | 0.273850 | 0.02 | |
Year × Orientation | 15.469 | 0.000133 *** | 0.10 | |
Variety × Year × Orientation | 6.020 | 0.003124 ** | 0.08 | |
Senescence | Variety | 539.560 | <2 × 10−16 *** | 0.89 |
Year | 59.317 | 2.49 × 10−12 *** | 0.30 | |
Orientation | 374.931 | <2 × 10−16 *** | 0.73 | |
Variety × Year | 22.076 | 4.98 × 10−9 *** | 0.25 | |
Variety × Orientation | 7.543 | 0.000782 *** | 0.10 | |
Year × Orientation | 1.380 | 0.242111 | 0.01 | |
Variety × Year × Orientation | 3.698 | 0.027307 * | 0.05 |
Test | Validation | Training | |||||||
---|---|---|---|---|---|---|---|---|---|
MAPE | RMSE | R2 | MAPE | RMSE | R2 | MAPE | RMSE | R2 | |
Foliation of Fig | 4.528 | 3.678 | 0.200 | 7.067 | 3.300 | 0.969 | 4.992 | 2.587 | 0.956 |
Fig flowers | 0.970 | 1.516 | 0.997 | 1.214 | 1.728 | 0.974 | 0.744 | 1.266 | 0.981 |
Fig autumn | 0.677 | 2.147 | 0.755 | 0.822 | 2.114 | 0.938 | 0.310 | 0.749 | 0.989 |
Receptivity | 1.522 | 2.550 | 0.907 | 1.101 | 2.018 | 0.991 | 1.117 | 1.946 | 0.979 |
Senescence | 0.562 | 2.189 | 0.914 | 0.424 | 1.356 | 0.967 | 0.345 | 1.219 | 0.968 |
Foliation of Caprifig | 7.065 | 2.700 | 0.986 | 3.930 | 1.777 | 0.985 | 6.088 | 2.373 | 0.968 |
Caprification | 0.388 | 0.648 | 0.993 | 0.676 | 0.999 | 0.991 | 0.262 | 0.480 | 0.995 |
Mammoni | 0.827 | 1.137 | 0.900 | 0.369 | 0.515 | 0.999 | 0.585 | 0.879 | 0.979 |
Mamme | 0.943 | 2.783 | 0.884 | 1.352 | 4.369 | 0.782 | 0.477 | 1.525 | 0.954 |
Senescence | 1.249 | 3.800 | 0.853 | 0.726 | 2.683 | 0.999 | 0.358 | 1.427 | 0.967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmarkhi, A.; El Fatehi, S.; Mehdi, I.; Benziane, W.; Dihaz, N.; El Khatib, K.; Kapazoglou, A.; Hmimsa, Y. Contribution of Artificial Neural Networks (ANNs) in Analyzing and Modeling Phenological Synchronization of Fig and Caprifig in Northern Morocco. Horticulturae 2025, 11, 1235. https://doi.org/10.3390/horticulturae11101235
Chmarkhi A, El Fatehi S, Mehdi I, Benziane W, Dihaz N, El Khatib K, Kapazoglou A, Hmimsa Y. Contribution of Artificial Neural Networks (ANNs) in Analyzing and Modeling Phenological Synchronization of Fig and Caprifig in Northern Morocco. Horticulturae. 2025; 11(10):1235. https://doi.org/10.3390/horticulturae11101235
Chicago/Turabian StyleChmarkhi, Abdelhalim, Salama El Fatehi, Imane Mehdi, Widad Benziane, Nouhaila Dihaz, Khaoula El Khatib, Aliki Kapazoglou, and Younes Hmimsa. 2025. "Contribution of Artificial Neural Networks (ANNs) in Analyzing and Modeling Phenological Synchronization of Fig and Caprifig in Northern Morocco" Horticulturae 11, no. 10: 1235. https://doi.org/10.3390/horticulturae11101235
APA StyleChmarkhi, A., El Fatehi, S., Mehdi, I., Benziane, W., Dihaz, N., El Khatib, K., Kapazoglou, A., & Hmimsa, Y. (2025). Contribution of Artificial Neural Networks (ANNs) in Analyzing and Modeling Phenological Synchronization of Fig and Caprifig in Northern Morocco. Horticulturae, 11(10), 1235. https://doi.org/10.3390/horticulturae11101235