Mitochondrial Genome Assembly and Comparative Analysis of Three Closely Related Oaks
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sequencing
2.2. Genome Assembly and Annotation
2.3. Analysis of RSCU and RNA Editing Prediction
2.4. Repeated Sequences
2.5. Chloroplast to Mitochondrion DNA Transfer
2.6. Genome Collinearity and Visualization
2.7. Phylogenetic Tree Construction
3. Results
3.1. Mitogenomic Genome Features
3.2. PCG Condon Usage Analysis
3.3. Mitogenome Repeat Analysis
3.4. Prediction of RNA Editing
3.5. Chloroplast-to-Mitochondrion DNA Transfer
3.6. Collinearity Analysis
3.7. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuchs, P.; Bohle, F.; Lichtenauer, S.; Ugalde, J.M.; Feitosa Araujo, E.; Mansuroglu, B.; Ruberti, C.; Wagner, S.; Müller-Schüssele, S.J.; Meyer, A.J. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. Plant Cell 2022, 34, 1375–1395. [Google Scholar] [CrossRef] [PubMed]
- Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 2010, 11, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.D.; Herbon, L.A. Unicircular structure of the Brassica hirta mitochondrial genome. Curr. Genet. 1987, 11, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Fields, P.D.; Weber, M.M.; Waneka, G.; Broz, A.K.; Sloan, D.B. Chromosome-level genome assembly for the angiosperm Silene conica. Genome Biol. Evol. 2023, 15, evad192. [Google Scholar] [CrossRef]
- Wang, J.; Kan, S.L.; Liao, X.Z.; Zhou, J.W.; Tembrock, L.R.; Daniell, H.; Jin, S.X.; Wu, Z.Q. Plant organellar genomes: Much done, much more to do. Trends Plant Sci. 2024, 29, 754–769. [Google Scholar] [CrossRef]
- Alverson, A.J.; Rice, D.W.; Dickinson, S.; Barry, K.; Palmer, J.D. Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell 2011, 23, 2499–2513. [Google Scholar] [CrossRef]
- Kim, C.; Pongpanich, M.; Porntaveetus, T. Unraveling metagenomics through long-read sequencing: A comprehensive review. J. Transl. Med. 2024, 22, 111. [Google Scholar] [CrossRef]
- Wang, B.; Jia, P.; Gao, S.H.; Zhao, H.H.; Zheng, G.Y.; Xu, L.F.; Ye, K. Long and accurate: How HiFi sequencing is transforming genomics. Genom. Proteom. Bioinform. 2025, 23, qzaf003. [Google Scholar] [CrossRef]
- Zeng, Z.F.; Zhang, Z.Y.; Norbu, N.; Bonjor, N.; Tan, X.; Zhang, S.T.; Tso, N.; Wang, J.W.; Qiong, L. Comprehensive Analysis of the Complete Mitochondrial Genome of Paeonia ludlowii Reveals a Dual-Circular Structure and Extensive Inter-Organellar Gene Transfer. Biology 2025, 14, 854. [Google Scholar] [CrossRef]
- Xi, Z.; Wang, Y.; Bradley, R.K.; Sugumaran, M.; Marx, C.J.; Rest, J.S.; Davis, C.C. Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genet. 2013, 9, e1003265. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Cannon, C.H.; Brendel, O.; Deng, M.; Hipp, A.L.; Kremer, A.; Kua, C.-S.; Plomion, C.; Romero-Severson, J.; Sork, V.L. Gaining a global perspective on Fagaceae genomic diversification and adaptation. New Phytol. 2018, 218, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Miranda, I.; Sousa, V.; Ferreira, J.; Pereira, H. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PLoS ONE 2017, 12, e0179268. [Google Scholar] [CrossRef]
- Pang, X.B.; Liu, H.S.; Wu, S.R.; Yuan, Y.C.; Li, H.J.; Dong, J.S.; Liu, Z.H.; An, C.Z.; Su, Z.H.; Li, B. Species identification of oaks (Quercus L., Fagaceae) from gene to genome. Int. J. Mol. Sci. 2019, 20, 5940. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.J.; Fu, J.; Fang, Y.; Xiang, J.P.; Dong, H.J. Complete chloroplast genomes of Rubus species (Rosaceae) and comparative analysis within the genus. BMC Genom. 2022, 23, 32. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Chang, Y.T.; Bartholomew, B. Fagaceae. In Flora of China; Wu, C.Y., Raven, P.H., Eds.; Science Press: Beijing, China; MissouriBotanical Garden Press: St. Louis, MO, USA, 1999; Volume 4. [Google Scholar]
- Yang, Y.C.; Zhou, T.; Qian, Z.Q.; Zhao, G.F. Phylogenetic relationships in Chinese oaks (Fagaceae, Quercus): Evidence from plastid genome using low-coverage whole genome sequencing. Genomics 2021, 113, 1438–1447. [Google Scholar] [CrossRef]
- Denk, T.; Grimm, G.W.; Manos, P.S.; Deng, M.; Hipp, A.L. An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.; Springer: Cham, Switzerland, 2017; Volume 7, pp. 13–38. [Google Scholar]
- Song, Y.; Pan, S.-J.; Chen, B.; Xiao, Z.-T.; Huang, K.-R.; Li, H.; Jiang, X.-L. Structural variations and phylogenetic implications of mitochondrial genomes in oaks. Ind. Crops Prod. 2025, 235, 121817. [Google Scholar] [CrossRef]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Report. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Schwartz, D.C.; Cantor, C.R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 1984, 37, 67–75. [Google Scholar] [CrossRef]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.C.; Hunkapiller, M.W. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 2019, 37, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Wu, S.G.; Li, A.L.; Ruan, J. SMARTdenovo: A de novo assembler using long noisy reads. Gigabyte 2021, 2021, gigabyte15. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Farrell, C.M.; Feldgarden, M.; Fine, A.M.; Funk, K.; et al. Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 2023, 51, D29–D38. [Google Scholar] [CrossRef] [PubMed]
- Alverson, A.J.; Wei, X.; Rice, D.W.; Stern, D.B.; Barry, K.; Palmer, J.D. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol. Biol. Evol. 2010, 27, 1436–1448. [Google Scholar] [CrossRef]
- Piñeiro, C.; Pichel, J.C. BigSeqKit: A parallel Big Data toolkit to process FASTA and FASTQ files at scale. GigaScience 2023, 12, giad062. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Senol Cali, D.; Kim, J.S.; Ghose, S.; Alkan, C.; Mutlu, O. Nanopore sequencing technology and tools for genome assembly: Computational analysis of the current state, bottlenecks and future directions. Brief. Bioinform. 2019, 20, 1542–1559. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Schelkunov, M.I. Mabs, a suite of tools for gene-informed genome assembly. BMC Bioinform. 2023, 24, 377. [Google Scholar] [CrossRef]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [PubMed]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [PubMed]
- Xiang, C.Y.; Gao, F.; Jakovlić, I.; Lei, H.P.; Hu, Y.; Zhang, H.; Zou, H.; Wang, G.T.; Zhang, D. Using PhyloSuite for molecular phylogeny and tree-based analyses. Imeta 2023, 2, e87. [Google Scholar] [CrossRef]
- Koichiro, T.; Glen, S.; Sudhir, K. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 7, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Myint, L.; Hadavand, A.; Jager, L.; Leek, J. Comparison of beginning R students’ perceptions of peer-made plots created in two plotting systems: A randomized experiment. J. Stat. Educ. 2020, 28, 98–108. [Google Scholar]
- Xu, S.B.; Wang, Q.W.; Wen, S.D.; Li, J.R.; He, N.; Li, M.; Hackl, T.; Wang, R.; Zeng, D.Q.; Wang, S.X. aplot: Simplifying the creation of complex graphs to visualize associations across diverse data types. Innovation 2025, 6, 100958. [Google Scholar]
- Mower, J.P. The PREP suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009, 37, W253–W259. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Xia, R. A painless way to customize Circos plot: From data preparation to visualization using TBtools. Imeta 2022, 1, e35. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.L.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Vendramin, R.; Marine, J.C.; Leucci, E. Non-coding RNA s: The dark side of nuclear–mitochondrial communication. EMBO J. 2017, 36, 1123–1133. [Google Scholar] [CrossRef]
- Møller, I.M.; Rasmusson, A.G.; Van Aken, O. Plant mitochondria–past, present and future. Plant J. 2021, 108, 912–959. [Google Scholar] [CrossRef]
- Barreto, P.; Koltun, A.; Nonato, J.; Yassitepe, J.; Maia, I.D.G.; Arruda, P. Metabolism and signaling of plant mitochondria in adaptation to environmental stresses. Int. J. Mol. Sci. 2022, 23, 11176. [Google Scholar] [CrossRef] [PubMed]
- Picard, M.; Shirihai, O.S. Mitochondrial signal transduction. Cell Metab. 2022, 34, 1620–1653. [Google Scholar] [CrossRef] [PubMed]
- Kozik, A.; Rowan, B.A.; Lavelle, D.; Berke, L.; Schranz, M.E.; Michelmore, R.W.; Christensen, A.C. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet. 2019, 15, e1008373. [Google Scholar] [CrossRef]
- Yang, J.-X.; Dierckxsens, N.; Bai, M.-Z.; Guo, Y.-Y. Multichromosomal mitochondrial genome of Paphiopedilum micranthum: Compact and fragmented genome, and rampant intracellular gene transfer. Int. J. Mol. Sci. 2023, 24, 3976. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Ni, Y.; Lin, Z.B.; Yang, L.B.; Chen, G.T.; Nijiati, N.; Hu, Y.Z.; Chen, X.Y. De novo assembly of the complete mitochondrial genome of sweet potato (Ipomoea batatas [L.] Lam) revealed the existence of homologous conformations generated by the repeat-mediated recombination. BMC Plant Biol. 2022, 22, 285. [Google Scholar] [CrossRef]
- Mader, M.; Schroeder, H.; Schott, T.; Schöning-Stierand, K.; Leite Montalvao, A.P.; Liesebach, H.; Liesebach, M.; Fussi, B.; Kersten, B. Mitochondrial genome of Fagus sylvatica L. as a source for taxonomic marker development in the fagales. Plants 2020, 9, 1274. [Google Scholar] [CrossRef]
- Lai, C.J.; Wang, J.; Kan, S.L.; Zhang, S.; Li, P.; Reeve, W.G.; Wu, Z.Q.; Zhang, Y.H. Comparative analysis of mitochondrial genomes of Broussonetia spp. (Moraceae) reveals heterogeneity in structure, synteny, intercellular gene transfer, and RNA editing. Front. Plant Sci. 2022, 13, 1052151. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.S.; Zhou, P.Y.; Tong, C.F.; Bi, C.W.; Xu, L.A. Assembly and analysis of the Populus deltoides mitochondrial genome:the first report of a multicircular mitochondrial conformation for the genus Populus. J. For. Res. 2023, 34, 717–733. [Google Scholar] [CrossRef]
- Kong, J.J.; Wang, J.; Nie, L.Y.; Tembrock, L.R.; Zou, C.S.; Kan, S.L.; Ma, X.F.; Wendel, J.F.; Wu, Z.Q. Evolutionary dynamics of mitochondrial genomes and intracellular transfer among diploid and allopolyploid cotton specie. BMC Biol. 2025, 23, 9. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Liao, X.Z.; Zhang, X.N.; Tembrock, L.; Broz, A. Genomic architectural variation of plant mitochondria—A review of multichromosomal structuring. J. Syst. Evol. 2020, 60, 160–168. [Google Scholar] [CrossRef]
- Liu, D.; Qu, K.; Yuan, Y.C.; Zhao, Z.H.; Chen, Y.; Han, B.; Li, W.; El-Kassaby, Y.A.; Yin, Y.Y.; Xie, X.M. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front. Genet. 2023, 13, 1050040. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Ran, Z.H.; Yan, C.; Gu, W.H.; Li, Z. Mitochondrial genome assembly of the Chinese endemic species of Camellia luteoflora and revealing its repetitive sequence mediated recombination, codon preferences and MTPTs. BMC Plant Biol. 2025, 25, 435. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ran, Z.H.; Xiao, X.; Yan, C.; Xu, J.; Tang, M.T.; An, M. Comparative analysis of the whole mitochondrial genomes of four species in sect. Chrysantha (Camellia L.), endemic taxa in China. BMC Plant Biol. 2024, 24, 955. [Google Scholar]
- Chen, X.L.; Li, B.Y.; Zhang, X.M. Comparison of chloroplast genomes and phylogenetic analysis of four species in Quercus section Cyclobalanopsis. Sci. Rep. 2023, 13, 18731. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, Y.P.; Wang, Q.M.; Li, A.X.; Hou, F.Y.; Zhang, L.M. Evolution Analysis of Simple Sequence Repeats in Plant Genome. PLoS ONE 2015, 10, e0144108. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Hou, S.Y.; Shi, J.; Guo, S. Research progress on mitochondrial genome of higher plant. J. Agric. Sci. Technol. 2011, 13, 23–31. [Google Scholar]
- Gao, Y.; Thiele, W.; Saleh, O.; Scossa, F.; Arabi, F.; Zhang, H.; Sampathkumar, A.; Kühn, K.; Fernie, A.; Bock, R. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. Plant Cell 2022, 34, 2056–2079. [Google Scholar] [CrossRef]
- Schwenkert, S.; Legen, J.; Takami, T.; Shikanai, T.; Herrmann, R.G.; Meurer, J.R. Role of the low-molecular-weight subunits PetL, PetG, and PetN in assembly, stability, and dimerization of the cytochrome b6f complex in tobacco. Plant Physiol. 2007, 144, 1924–1935. [Google Scholar] [PubMed]
- Cusimano, N.; Wicke, S. Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. New Phytol. 2016, 210, 680–693. [Google Scholar] [PubMed]
- Choi, K.-S.; Park, S. Complete plastid and mitochondrial genomes of Aeginetia indica reveal intracellular gene transfer (IGT), horizontal gene transfer (HGT), and cytoplasmic male sterility (CMS). Int. J. Mol. Sci. 2021, 22, 6143. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.W.; Paterson, A.H.; Wang, X.L.; Xu, Y.Q.; Wu, D.Y.; Qu, Y.L.; Jiang, A.N.; Ye, Q.L.; Ye, N. Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches. BioMed Res. Int. 2016, 2016, 5040598. [Google Scholar] [CrossRef]
- Knie, N.; Polsakiewicz, M.; Knoop, V. Horizontal gene transfer of chlamydial-like tRNA genes into early vascular plant mitochondria. Mol. Biol. Evol. 2015, 32, 629–634. [Google Scholar] [CrossRef]
- Liang, H.; Deng, J.B.; Wang, Y.D.; Gao, G.W.; Yang, R. The first complete mitochondrial genome of Curcuma amarissima (Zingiberaceae): Insights into multi-branch structure, codon usage, and phylogenetic evolution. BMC Genom. 2025, 26, 343. [Google Scholar] [CrossRef]
- Schimmel, P. The emerging complexity of the tRNA world: Mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 2018, 19, 45–58. [Google Scholar] [CrossRef]
- Li, F.; Baranwal, A.K.; Maerkl, S.J. Continuous in situ synthesis of a complete set of tRNAs sustains steady-state translation in a recombinant cell-free system. Nat. Commun. 2025, 16, 6212. [Google Scholar]
- Dunning, L.T.; Olofsson, J.K.; Parisod, C.; Choudhury, R.R.; Moreno-Villena, J.J.; Yang, Y.; Dionora, J.; Quick, W.P.; Park, M.; Bennetzen, J.L. Lateral transfers of large DNA fragments spread functional genes among grasses. Proc. Natl. Acad. Sci. USA 2019, 116, 4416–4425. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Xu, Y.J.; Zhang, Z.W.; Wei, Y.S.; Hu, Y.; Zheng, C.B.; Qu, X.Y. Assembly and comparative analysis of the first complete mitochondrial genome of a traditional Chinese medicine Angelica biserrata (Shan et Yuan) Yuan et Shan. Int. J. Biol. Macromol. 2024, 257, 128571. [Google Scholar] [CrossRef] [PubMed]
- Krasovec, M.; Filatov, D.A. Codon usage bias in phytoplankton. J. Mar. Sci. Eng. 2022, 10, 168. [Google Scholar] [CrossRef]
- Shen, Y.F.; Qi, L.P.; Yang, L.J.; Lu, X.X.; Liu, J.Q.; Wang, J.L. Natural Selection as the Primary Driver of Codon Usage Bias in the Mitochondrial Genomes of Three Medicago Species. Genes 2025, 16, 673. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.X.; Li, Y.F.; El-Kassaby, Y.A.; Fang, Y.M. Mitochondrial genome of Quercus chenii: Genomic features and evolutionary implications. BMC Genom. 2025, 26, 701. [Google Scholar] [CrossRef]
- Lee, K.-T.; Liao, H.-S.; Hsieh, M.-H. Glutamine metabolism, sensing and signaling in plants. Plant Cell Physiol. 2023, 64, 1466–1481. [Google Scholar] [CrossRef]
- Matés, J.M.; Segura, J.A.; Campos-Sandoval, J.A.; Lobo, C.; Alonso, L.; Alonso, F.J.; Márquez, J. Glutamine homeostasis and mitochondrial dynamics. Int. J. Biochem. Cell Biol. 2009, 41, 2051–2061. [Google Scholar] [CrossRef]
- Li, J.; Tang, H.; Luo, H.; Tang, J.; Zhong, N.; Xiao, L.Z. Complete mitochondrial genome assembly and comparison of Camellia sinensis var. Assamica cv. Duntsa. Front. Plant Sci. 2023, 14, 1117002. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, A.M.; Snyder, K.E.; Purow-Ruderman, R.; Seiblitz, I.G.; Hoang, J.; Floerke, N.; Ramos, N.I.; Wirshing, H.H.; Rodriguez, E.; McFadden, C.S. Mito-nuclear discordance within Anthozoa, with notes on unique properties of their mitochondrial genomes. Sci. Rep. 2023, 13, 7443. [Google Scholar] [CrossRef]
- Gerasimov, E.; Rudenskaya, Y.A.; Bryushkova, E.; Korzhavina, O.; Kolesnikov, A. Analysis of RNA Editing in Conserved Sequence Blocks of the Trypanosomatid RPS12 Gene. Biophysics 2024, 69, 1003–1009. [Google Scholar] [CrossRef]
- Phreaner, C.G.; Williams, M.A.; Mulligan, R.M. Incomplete editing of rps12 transcripts results in the synthesis of polymorphic polypeptides in plant mitochondria. Plant Cell 1996, 8, 107–117. [Google Scholar] [PubMed]
- Lu, B.; Wilson, R.K.; Phreaner, C.G.; Mulligan, R.M.; Hanson, M.R. Protein polymorphism generated by differential RNA editing of a plant mitochondrial rps12 gene. Mol. Cell. Biol. 1996, 16, 1543–1549. [Google Scholar] [CrossRef]
- Handa, H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): Comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res. 2003, 31, 5907–5916. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.J.; Zhang, Q.X.; Yin, P. RNA editing machinery in plant organelles. Sci. China Life Sci. 2018, 61, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Coombes, A.; Li, Q.S. Reinstatement of Quercus tungmaiensis Y.T. Chang (Fagaceae) and supplementation of its anatomic features. Phytotaxa 2015, 239, 201. [Google Scholar] [CrossRef]
- Menitsky, Y.L.; Menitskii, I.L.; Fedorov, A.A. Oaks of Asia; Science Pub Inc.: Albany, NY, USA, 2005. [Google Scholar]
Category | Quercus engleriana | Quercus kongshanensis | Quercus tungmaiensis |
---|---|---|---|
Conserved core genes | 24 | 24 | 24 |
Protein-coding genes | 31 | 33 | 38 |
Non-core genes | 7 | 9 | 14 |
tRNA genes | 21 | 21 | 24 |
rRNA genes | 3 | 3 | 3 |
Group II introns | 10 | 12 | 14 |
Large subunit | rpl2, rpl5, rpl16 | rpl2, rpl5, rpl16 | rpl2, rpl5, rpl16 |
Small subunit | rps3, rps4 | rps3, rps4, rps12 | rps3, rps4, rps12 |
Gene | Quercus engleriana | Quercus kongshanensis | Quercus tungmaiensis |
---|---|---|---|
atp1 | 1 | 1 | 1 |
atp4 | 10 | 10 | 10 |
atp6 | 16 | 16 | 16 |
atp8 | 2 | 2 | 2 |
atp9 | 7 | 8 | 7 |
ccmB | 31 | 31 | 31 |
ccmC | 26 | 26 | 26 |
ccmFC | 27 | 27 | 26 |
ccmFN | 40 | 39 | 39 |
cob | 12 | 12 | 11 |
cox1 | 16 | 16 | 16 |
cox2 | 16 | 15 | 14 |
cox3 | 7 | 7 | 7 |
matR | 16 | 16 | 16 |
mttB | 28 | 10 | 28 |
nad1 | 5 | 17 | 9 |
nad2 | 21 | 21 | 21 |
nad3 | 1 | 9 | 9 |
nad4 | 36 | 36 | 36 |
nad4L | 10 | 10 | 10 |
nad5 | 24 | 25 | 25 |
nad6 | 11 | 11 | 11 |
nad7 | 22 | 22 | 22 |
nad9 | 8 | 8 | 8 |
rpl16 | 6 | 6 | 6 |
rpl2 | 2 | 1 | 1 |
rpl5 | 10 | 10 | 10 |
rps12 | 0 | 5 | 0 |
rps3 | 3 | 3 | 3 |
rps4 | 17 | 17 | 17 |
sum | 431 | 437 | 438 |
Alignment Length (bp) | Identity (%) | Mis-Match (bp) | Gap Openings | CP Start (bp) | CP End (bp) | Mt Start (bp) | Mt End (bp) | MTPT Annotation | |
---|---|---|---|---|---|---|---|---|---|
1 | 1149 | 99.74 | 3 | 0 | 37,530 | 38,678 | 234,504 | 233,356 | Partial (psbD, psbC) |
2 | 1017 | 77.98 | 149 | 46 | 71,704 | 72,708 | 235,757 | 236,710 | Complete (petL, petG, trnW-CCA, trnP-GGG) |
3 | 495 | 83.43 | 71 | 8 | 70,308 | 70,800 | 234,518 | 235,003 | Partial (psbE) |
4 | 242 | 100 | 0 | 0 | 140,982 | 141,223 | 250,961 | 250,720 | Partial (rrn23S) |
5 | 242 | 100 | 0 | 0 | 110,743 | 110,984 | 250,720 | 250,961 | Partial (rrn23S) |
6 | 273 | 95.60 | 12 | 0 | 79,267 | 79,539 | 200,862 | 200,590 | Partial (psbB) |
7 | 190 | 100 | 0 | 0 | 143,185 | 143,374 | 289,584 | 289,395 | Partial (trnI-GAU) |
8 | 190 | 100 | 0 | 0 | 108,592 | 108,781 | 289,395 | 289,584 | Partial (trnI-GAU) |
9 | 889 | 73.90 | 177 | 42 | 107,012 | 107,875 | 187,164 | 186,306 | Partial (rrn16S) |
10 | 889 | 74 | 177 | 42 | 144,091 | 144,954 | 186,306 | 187,164 | Partial (rrn16S) |
11 | 91 | 96.70 | 2 | 1 | 14 | 103 | 282,788 | 282,698 | Complete (trnH-GUG) |
12 | 83 | 97.59 | 2 | 0 | 33,866 | 33,948 | 134,624 | 134,542 | Complete (trnD-GUC) |
13 | 77 | 89.61 | 6 | 2 | 92,655 | 92,729 | 140,762 | 140,686 | Complete (trnI-CAU) |
14 | 77 | 89.61 | 6 | 2 | 159,237 | 159,311 | 140,686 | 140,762 | Complete (trnI-CAU) |
15 | 29 | 100 | 0 | 0 | 85,411 | 85,439 | 18,480 | 18,452 | Partial (rps11) |
16 | 83 | 98.80 | 1 | 0 | 115,018 | 115,100 | 20,411 | 20,329 | Complete (trnN-GUU) |
17 | 83 | 98.80 | 1 | 0 | 136,866 | 136,948 | 20,329 | 20,411 | Complete (trnN-GUU) |
18 | 75 | 94.67 | 4 | 0 | 57,638 | 57,712 | 34,067 | 33,993 | Complete (trnM-CAU, trnT-GGU) |
19 | 38 | 97.37 | 1 | 0 | 13,279 | 13,316 | 92,619 | 92,582 | Partial (atpA) |
Total | 6212 |
Alignment Length (bp) | Identity (%) | Mis-Match (bp) | Gap Openings | CP Start (bp) | CP End (bp) | Mt Start (bp) | Mt End (bp) | MTPT Annotation | |
---|---|---|---|---|---|---|---|---|---|
1 | 711 | 99.86 | 0 | 1 | 19,643 | 20,353 | 145,033 | 145,742 | Partial (rrn23S) |
2 | 711 | 99.86 | 0 | 1 | 50,342 | 51,052 | 145,742 | 145,033 | Partial (rrn23S) |
3 | 711 | 99.86 | 0 | 1 | 50,342 | 51,052 | 231,764 | 232,473 | Partial (rrn23S) |
4 | 711 | 99.86 | 0 | 1 | 19,643 | 20,353 | 232,473 | 231,764 | Partial (rrn23S) |
5 | 1012 | 77.67 | 153 | 44 | 88,558 | 89,558 | 182,323 | 183,272 | Complete (trnP-UGG, trnW-CCA, petG, petL) |
6 | 495 | 83.23 | 72 | 8 | 90,461 | 90,953 | 184,031 | 184,516 | Partial (psbE) |
7 | 891 | 73.96 | 173 | 45 | 53,451 | 54,314 | 134,755 | 135,613 | Partial (rrn16S) |
8 | 891 | 73.96 | 173 | 45 | 16,381 | 17,244 | 135,613 | 134,755 | Partial (rrn16S) |
9 | 891 | 73.96 | 173 | 45 | 16,381 | 17,244 | 241,893 | 242,751 | Partial (rrn16S) |
10 | 891 | 74 | 173 | 45 | 53,451 | 54,314 | 242,751 | 241,893 | Partial (rrn16S) |
11 | 90 | 98.89 | 1 | 0 | 147,348 | 147,437 | 116,336 | 116,425 | Partial (atpF) |
12 | 90 | 98.89 | 1 | 0 | 147,348 | 147,437 | 261,170 | 261,081 | Partial (atpF) |
13 | 83 | 96.39 | 3 | 0 | 127,284 | 127,366 | 92,213 | 92,295 | Complete (trnD-GUC) |
14 | 77 | 98.70 | 1 | 0 | 127,290 | 127,366 | 285,287 | 285,211 | Complete (trnD-GUC) |
15 | 75 | 94.67 | 4 | 0 | 103,521 | 103,595 | 155,601 | 155,675 | Complete (trnM-CAU) |
16 | 75 | 94.67 | 4 | 0 | 103,521 | 103,595 | 221,905 | 221,831 | Complete (trnM-CAU) |
17 | 77 | 89.61 | 6 | 2 | 68,585 | 68,659 | 98,354 | 98,430 | Complete (trnM-CAU) |
18 | 77 | 89.61 | 6 | 2 | 2036 | 2110 | 98,430 | 98,354 | Complete (trnM-CAU) |
19 | 77 | 89.61 | 6 | 2 | 2036 | 2110 | 279,076 | 279,152 | Complete (trnM-CAU) |
20 | 77 | 89.61 | 6 | 2 | 68,585 | 68,659 | 279,152 | 279,076 | Complete (trnM-CAU) |
21 | 70 | 87.14 | 0 | 3 | 13,741 | 13,801 | 179,891 | 179,960 | Partial (rps12) |
22 | 70 | 87.14 | 0 | 3 | 56,894 | 56,954 | 179,960 | 179,891 | Partial (rps12) |
23 | 29 | 100 | 0 | 0 | 75,868 | 75,896 | 52,615 | 52,643 | Partial (rps11) |
24 | 29 | 100 | 0 | 0 | 75,868 | 75,896 | 324,891 | 324,863 | Partial (rps11) |
25 | 437 | 99.77 | 1 | 0 | 116,477 | 116,913 | 164,350 | 163,914 | Partial (psaA, psaB) |
26 | 83 | 100 | 0 | 0 | 46,223 | 46,305 | 79,648 | 79,730 | Complete (trnN-GUU) |
27 | 83 | 100 | 0 | 0 | 24,390 | 24,472 | 79,730 | 79,648 | Complete (trnN-GUU) |
28 | 91 | 96.70 | 2 | 1 | 161,166 | 161,255 | 67,165 | 67,255 | Complete (trnH-GUG) |
29 | 45 | 95.56 | 2 | 0 | 34,785 | 34,829 | 159,004 | 158,960 | Partial (ndhI) |
Total | 9650 |
Alignment Length (bp) | Identity (%) | Mis-Match (bp) | Gap Openings | CP Start (bp) | CP End (bp) | Mt Start (bp) | Mt End (bp) | MTPT Annotation | |
---|---|---|---|---|---|---|---|---|---|
1 | 1149 | 98.78 | 6 | 1 | 37,050 | 38,198 | 181,765 | 182,905 | Partial (psbD, psbC) |
2 | 999 | 77.98 | 156 | 47 | 71,263 | 72,254 | 180,508 | 179,567 | Complete (petL, petG, trnW-CCA, trnP-UGG, trnP-GGG) |
3 | 495 | 82.83 | 74 | 8 | 69,860 | 70,352 | 181,751 | 181,266 | Partial (psbE) |
4 | 889 | 73.90 | 177 | 42 | 106,506 | 107,369 | 130,332 | 129,474 | Partial (rrn16S) |
5 | 889 | 73.90 | 177 | 42 | 143,447 | 144,310 | 129,474 | 130,332 | Partial (rrn16S) |
6 | 171 | 94.74 | 9 | 0 | 80,060 | 80,230 | 163,538 | 163,708 | Partial (psbN) |
7 | 75 | 94.67 | 4 | 0 | 57,200 | 57,274 | 88,747 | 88,673 | Complete (trnM-CAU, trnT-GGU) |
8 | 65 | 95.39 | 3 | 0 | 136,233 | 136,297 | 25,351 | 25,287 | Partial (trnN-GUU) |
9 | 65 | 95.39 | 3 | 0 | 114,519 | 114,583 | 25,287 | 25,351 | Partial (trnN-GUU) |
10 | 29 | 100 | 0 | 0 | 84,908 | 84,936 | 8911 | 8939 | Partial (rps11) |
11 | 710 | 100 | 0 | 0 | 140,339 | 141,048 | 1907 | 1198 | Partial (rrn23S, trnA-UGC) |
12 | 710 | 100 | 0 | 0 | 109,768 | 110,477 | 1198 | 1907 | Partial (trnA-UGC, rrn23S) |
13 | 75 | 94.67 | 4 | 0 | 57,200 | 57,274 | 11,847 | 11,773 | Complete (trnM-CAU, trnT-GGU) |
14 | 70 | 87.14 | 0 | 3 | 103,854 | 103,914 | 36,093 | 36,024 | Partial (rps12) |
15 | 70 | 87.14 | 0 | 3 | 146,902 | 146,962 | 36,024 | 36,093 | Partial (rps12) |
16 | 1866 | 98.50 | 12 | 5 | 140,339 | 142,204 | 132,807 | 130,958 | Partial (rrn23S, trnI-GAU), Complete (trnA-UGC) |
17 | 1866 | 98.50 | 12 | 5 | 108,612 | 110,477 | 130958 | 132,807 | Partial (rrn23S, trnI-GAU), Complete (trnA-UGC) |
18 | 91 | 96.70 | 2 | 1 | 14 | 103 | 138,612 | 138,702 | Complete (trnH-GUG) |
19 | 83 | 98.80 | 1 | 0 | 136,224 | 136,306 | 54,678 | 54,596 | Complete (trnN-GUU) |
20 | 83 | 98.80 | 1 | 0 | 114,510 | 114,592 | 54,596 | 54,678 | Complete (trnN-GUU) |
21 | 83 | 96.39 | 3 | 0 | 33,537 | 33,619 | 123,337 | 123,255 | Complete (trnD-GUC) |
22 | 83 | 96.39 | 3 | 0 | 33,537 | 33,619 | 224,559 | 224,477 | Complete (trnD-GUC) |
23 | 77 | 89.61 | 6 | 2 | 92,149 | 92,223 | 129,474 | 129,398 | Complete (trnI-CAU) |
24 | 77 | 89.61 | 6 | 2 | 158,593 | 158,667 | 129,398 | 129,474 | Complete (trnI-CAU) |
Total | 10,770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.-T.; Song, Y.; Liu, L.-T.; Chen, B.; Xu, Y.; Huang, L.-J.; Li, H.; Jiang, X.-L.; Liu, X.-S.; Deng, M. Mitochondrial Genome Assembly and Comparative Analysis of Three Closely Related Oaks. Horticulturae 2025, 11, 1231. https://doi.org/10.3390/horticulturae11101231
Xiao Z-T, Song Y, Liu L-T, Chen B, Xu Y, Huang L-J, Li H, Jiang X-L, Liu X-S, Deng M. Mitochondrial Genome Assembly and Comparative Analysis of Three Closely Related Oaks. Horticulturae. 2025; 11(10):1231. https://doi.org/10.3390/horticulturae11101231
Chicago/Turabian StyleXiao, Zhi-Tong, Ying Song, Lu-Ting Liu, Bo Chen, Yue Xu, Li-Jun Huang, He Li, Xiao-Long Jiang, Xiong-Sheng Liu, and Min Deng. 2025. "Mitochondrial Genome Assembly and Comparative Analysis of Three Closely Related Oaks" Horticulturae 11, no. 10: 1231. https://doi.org/10.3390/horticulturae11101231
APA StyleXiao, Z.-T., Song, Y., Liu, L.-T., Chen, B., Xu, Y., Huang, L.-J., Li, H., Jiang, X.-L., Liu, X.-S., & Deng, M. (2025). Mitochondrial Genome Assembly and Comparative Analysis of Three Closely Related Oaks. Horticulturae, 11(10), 1231. https://doi.org/10.3390/horticulturae11101231