Effects of Elevated Temperature on the Phenology and Fruit Shape of the Early-Maturing Peach Cultivar ‘Mihong’
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Treatments
2.2. Meteorological Data Collection
2.3. Phenology Observations
2.4. Fruit Shape Observations
2.5. Statistical Analysis
3. Results
3.1. Average Temperature and Phenological Changes in Response to Treatment
3.2. Changes in Fruit Shape
3.3. Environmental Factors Affecting Fruit Shape
3.3.1. Correlations Between the LD Ratio and Monthly Average Temperatures
3.3.2. Correlation and PCA of Factors Influencing LD Ratio
4. Discussion
4.1. Changes in Phenology Due to Elevated Temperature
4.2. Changes in Fruit Shape Due to Elevated Temperature
4.3. Impact of Growth Stage and Temperature on Fruit Shape
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WMO. WMO Confirms 2024 as Warmest Year on Record at About 1.55 °C Above Pre-Industrial Level. Available online: https://wmo.int/news/media-centre/wmo-confirms-2024-warmest-year-record-about-155degc-above-pre-industrial-level (accessed on 25 September 2025).
- Roca, J.; Arellano, B.; Zhang, X. Global Warming in Spanish Cities (1971–2022). In Proceedings of the 25th EGU General Assembly 2023 (EGU23), Vienna, Austria, 23–28 April 2023. EGU23-16349. [Google Scholar] [CrossRef]
- Dong, Z.; Chen, M.; Srivastava, A.K.; Mahmud, H.I.; Ishfaq, M.; Shi, X.; Zhang, Y.; Moussa, M.G.; Li, X.; Hu, C.; et al. Climate changes altered the citrus fruit quality: A 9-year case study in China. Sci. Total Environ. 2024, 907, 171406. [Google Scholar] [CrossRef]
- Souza, F.; Alves, E.; Pio, R.; Castro, E.; Reighard, G.; Freire, A.; Mayer, N.; Pimentel, R. Influence of temperature on the development of peach fruit in a subtropical climate region. Agronomy 2019, 9, 20. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Climate Change Report; Korea Meteorological Administration: Seoul, Republic of Korea, 2021; p. 18.
- Jeong, J.H. Analysis of Physiological Responses to Temperature Treatments in Fruit Trees During Dormancy Period and Evaluation of Chilling Requirement Based on Climate Change Scenarios. Ph.D. Thesis, Chungbuk National University, Cheongju, Republic of Korea, 2024. [Google Scholar]
- Drogoudi, P.; Cantín, C.M.; Brandi, F.; Butcaru, A.; Cos-Terrer, J.; Cutuli, M.; Foschi, S.; Galindo, A.; García-Brunton, J.; Luedeling, E.; et al. Impact of chill and heat exposures under diverse climatic conditions on peach and nectarine flowering phenology. Plants 2023, 12, 584. [Google Scholar] [CrossRef] [PubMed]
- Minas, I.S.; Tanou, G.; Molassiotis, A. Environmental and orchard bases of peach fruit quality. Sci. Hortic. 2018, 235, 307–322. [Google Scholar] [CrossRef]
- Jayasooriya, L.S.H.; Kwack, Y.B.; Shin, M.H.; Wijethunga, W.M.U.D.; Kim, G.H.; Moon, Y.J.; Kim, S.H.; Cho, J.G.; Kim, J.K. Assessing the impact of elevated day and night temperatures on flesh red coloration and diminished quality in peaches. Hortic. Sci. Technol. 2025, 43, 165–181. [Google Scholar] [CrossRef]
- Korean Statistical Information Service (KOSIS). 2023. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0296&conn_path=I2 (accessed on 4 August 2025).
- Martínez-Gómez, P.; Rahimi Devin, S.; Salazar, J.A.; López-Alcolea, J.; Rubio, M.; Martínez-García, P.J. Principles and prospects of prunus cultivation in greenhouse. Agronomy 2021, 11, 474. [Google Scholar] [CrossRef]
- Li, Y.; Fang, W.; Zhu, G.; Cao, K.; Chen, C.; Wang, X.; Wang, L. Accumulated chilling hours during endodormancy impact blooming and fruit shape development in peach (Prunus persica L.). J. Integr. Agric. 2016, 15, 1267–1274. [Google Scholar] [CrossRef]
- Lopez, G.; Dejong, T.M. Spring temperatures have a major effect on early stages of peach fruit growth. J. Hortic. Sci. Biotechnol. 2007, 82, 507–512. [Google Scholar] [CrossRef]
- Olmstead, M.A.; Gilbert, J.L.; Colquhoun, T.A.; Clark, D.G.; Kluson, R.; Moskowitz, H.R. In pursuit of the perfect peach: Consumer-assisted selection of peach fruit traits. Hortic. Sci. 2015, 50, 1202–1212. [Google Scholar] [CrossRef]
- Salvador, M.E.; Lizana, L.A.; Luchsinger, L.E.; Alonso, E.; Loyola, E. Locality effect on some fruit quality parameters in peaches and nectarines. Acta Hortic. 1998, 465, 447–454. [Google Scholar] [CrossRef]
- Wert, T.W.; Williamson, J.G.; Chaparro, J.X.; Miller, E.P.; Rouse, R.E. The influence of climate on fruit shape of four low-chill peach cultivars. Hortscience 2007, 42, 1589–1591. [Google Scholar] [CrossRef]
- Yamane, H.; Ooka, T.; Jotatsu, H.; Sasaki, R.; Tao, R. Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Sci. Hortic. 2011, 129, 844–848. [Google Scholar] [CrossRef]
- López-Girona, E.; Zhang, Y.; Eduardo, I.; Mora, J.R.H.; Alexiou, K.G.; Arús, P.; Aranzana, M.J. A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach. Sci. Rep. 2017, 7, 6714. [Google Scholar] [CrossRef] [PubMed]
- Arlo Richardson, E.A.; Seeley, S.D.; Walker, D.R. A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. Hortic. Sci. 1974, 9, 331–332. [Google Scholar] [CrossRef]
- Kwon, J.H.; Nam, E.Y.; Yun, S.K.; Kim, S.J.; Song, S.Y.; Lee, J.H.; Hwang, K.D. Chilling and heat requirement of peach cultivars and changes in chilling accumulation spectrums based on 100-year records in Republic of Korea. Agric. For. Meteorol. 2020, 288–289, 108009. [Google Scholar] [CrossRef]
- Salama, A.M.; Ezzat, A.; El-Ramady, H.; Alam-Eldein, S.M.; Okba, S.K.; Elmenofy, H.M.; Hassan, I.F.; Illés, A.; Holb, I.J. Temperate fruit trees under climate change: Challenges for dormancy and chilling requirements in warm winter regions. Horticulturae 2021, 7, 86. [Google Scholar] [CrossRef]
- Alonso, J.M.; Ansón, J.M.; Espiau, M.T.; Socias & Company. Determination of endodormancy break in almond flower buds by a correlation model using the average temperature of different day intervals and its application to the estimation of chill and heat requirements and blooming date. J. Am. Soc. Hortic. Sci. 2005, 130, 308–318. [Google Scholar] [CrossRef]
- Beil, I.; Kreyling, J.; Meyer, C.; Lemcke, N.; Malyshev, A.V. Late to bed, late to rise—Warmer autumn temperatures delay spring phenology by delaying dormancy. Glob. Change Biol. 2021, 27, 5806–5817. [Google Scholar] [CrossRef]
- Delgado, A.; Dapena, E.; Fernández, E.; Luedeling, E. Climatic requirements during dormancy in apple trees from northwestern Spain—Global warming may threaten the cultivation of high-chill cultivars. Eur. J. Agron. 2021, 130, 126374. [Google Scholar] [CrossRef]
- Honjo, H.; Kurita, K.; Kataoka, I. Estimation of dormancy breaking in Japanese pear ‘Kosui’ using the experimental warming method. Environ. Control Biol. 2007, 45, 241–248. [Google Scholar] [CrossRef]
- Lawrence, B.T.; Melgar, J.C. Variable fall climate influences nutrient resorption and reserve storage in young peach trees. Front. Plant Sci. 2018, 9, 1819. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-L.; Li, Y.; Cao, K.; Yao, J.-L.; Bie, H.-L.; Khan, I.A.; Fang, W.-C.; Chen, C.-W.; Wang, X.-W.; Wu, J.-L.; et al. MADS-box protein PpDAM6 regulates chilling requirement-mediated dormancy and bud break in peach. Plant Physiol. 2023, 193, 448–465. [Google Scholar] [CrossRef]
- Pavel, E.W.; Dejong, T.M. Relative growth rate and its relationship to compositional changes of nonstructural carbohydrates in the mesocarp of developing peach fruits. J. Am. Soc. Hortic. Sci. 1993, 118, 503–508. [Google Scholar] [CrossRef]
- Sikhandakasmita, P.; Kataoka, I.; Mochioka, R.; Beppu, K. Impact of temperatures during fruit development on fruit growth rate and qualities of ‘KU-PP2’ peach. Hortic. J. 2022, 91, 152–156. [Google Scholar] [CrossRef]
- Lee, S.K.; Han, J.H.; Cho, J.G.; Jeong, J.H.; Lee, K.S.; Ryu, S.; Choi, D.G. Effect of temperature on photosynthesis and fruit quality of ‘Mihong’ peach under high CO2 concentration. Horticulturae 2022, 8, 1047. [Google Scholar] [CrossRef]
- Westwood, M.N.; Blaney, L.T. Non-climatic factors affecting the shape of apple fruits. Nature 1963, 200, 802–803. [Google Scholar] [CrossRef]
- Tomana, T.; Yamada, H. Relationship between temperature and fruit quality of apple cultivars grown at different locations. J. Jpn. Soc. Sci. 1988, 56, 391–397. [Google Scholar]
- Guo, J.; Cao, K.; Li, Y.; Yao, J.L.; Deng, C.; Wang, Q.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; et al. Comparative transcriptome and microscopy analyses provide insights into flat shape formation in peach (Prunus persica). Front. Plant Sci. 2017, 8, 2215. [Google Scholar] [CrossRef]
- Choi, D.W.; Lee, H.A.; Lim, C.R. A study on quality attributes on peach consumer satisfaction. J. Korea Acad. Ind. Coop. Soc. 2021, 22, 428–435. [Google Scholar] [CrossRef]
- Rural Development Administration, National Institute of Horticultural and Herbal Science. Study on Changes of Phenology and Fruit Quality for Major Fruit Crops (2019–2023); National Institute of Horticultural and Herbal Science: Wanju, Republic of Korea, 2023; pp. 40–41.
- Williamson, J.G.; Wert, T.W.; Chaparro, J.X.; Miller, P.; Rouse, R.E. Climate affects fruit shape of four low-chill peach cultivars in Florida. Proc. Fla. State Hortic. Soc. 2008, 121, 49–51. [Google Scholar]
- Topp, B.L.; Sherman, W.B.; Raseira, M.C.B. Low-chill cultivar development. In Peach: Botany, Production and Uses; Layne, D., Bassi, D., Eds.; CABI: Wallingford, UK, 2008; pp. 106–138. [Google Scholar] [CrossRef]
- Yan, J.; Cai, Z.; Chen, Z.; Zhang, B.; Li, J.; Xu, J.; Ma, R.; Yu, M.; Shen, Z. Relationship between chilling accumulation and heat requirement for flowering in peach varieties of different chilling requirements. Agronomy 2024, 14, 1637. [Google Scholar] [CrossRef]
- Kozai, N.; Beppu, K.; Mochioka, R.; Boonprakob, U.; Subhadrabandhu, S.; Kataoka, I. Adverse effects of high temperature on the development of reproductive organs in ‘Hakuho’ peach trees. J. Hortic. Sci. Biotechnol. 2004, 79, 533–537. [Google Scholar] [CrossRef]
- Arbeloa, A.; Herrero, M. Development of the ovular structures in peach [Prunus persica (L.) Batsch]. New Phytol. 1991, 118, 527–533. [Google Scholar] [CrossRef]
- Meza, F.; Darbyshire, R.; Farrell, A.; Lakso, A.; Lawson, J.; Meinke, H.; Nelson, G.; Stockle, C. Assessing temperature-based adaptation limits to climate change of temperate perennial fruit crops. Glob. Change Biol. 2023, 29, 1232–1245. [Google Scholar] [CrossRef]
Temperature (°) | CU | CU Calculation |
---|---|---|
T < 1.4 | 0 | ∑CU |
1.5 ≤ T ≤ 2.4 | 0.5 | |
2.5 ≤ T ≤ 9.1 | 1 | |
9.2 ≤ T ≤ 12.4 | 0.5 | |
12.5 ≤ T ≤ 15.9 | 0 | |
16.0 ≤ T ≤ 18.0 | −0.5 | |
18.0 < T | −1.0 |
Treatment | Date (Day/Month) | |||
---|---|---|---|---|
Onset of Endodormancy | Endodormancy Release | Full Bloom | Harvest | |
Control | Oct 22 ± 10 c | Jan 23 ± 14 | Apr 6 ± 4 a | Jun 22 ± 4 a |
T1 | Oct 30 ± 10 bc | Jan 30 ± 11 | Mar 27 ± 3 b | Jun 13 ± 5 ab |
T2 | Nov 9 ± 2 ab | Feb 1 ± 9 | Mar 24 ± 3 bc | Jun 8 ± 5 bc |
T3 | Nov 16 ± 4 a | Feb 4 ± 7 | Mar 21 ± 3 bc | Jun 5 ± 5 bc |
T4 | Nov 19 ± 5 a | Feb 8 ± 7 | Mar 20 ± 4 c | Jun 3 ± 4 c |
Treatment | Duration (Days) | ||
---|---|---|---|
Endodormancy | From Endodormancy Release to Full Bloom | From Full Bloom to Harvest | |
Control | 93 ± 19 | 75 ± 15 a | 76 ± 5 |
T1 | 92 ± 15 | 57 ± 11 ab | 78 ± 6 |
T2 | 85 ± 8 | 52 ± 11 b | 76 ± 5 |
T3 | 81 ± 8 | 46 ± 7 b | 76 ± 6 |
T4 | 82 ± 11 | 41 ± 7 b | 75 ± 5 |
Treatment | 2021 | 2022 | 2023 | 2024 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Length (mm) | Width (mm) | LD Ratio | Length (mm) | Width (mm) | LD Ratio | Length (mm) | Width (mm) | LD Ratio | Length (mm) | Width (mm) | LD Ratio | |
Control | 75.2 c | 86.3 a | 0.87 b | 73.2 b | 82.7 a | 0.89 bc | 73.7 c | 82.8 a | 0.89 b | 73.4 c | 79.9 d | 0.92 a |
T1 | 77.4 bc | 87.7 a | 0.88 b | 71.0 c | 82.6 a | 0.86 c | 74.0 bc | 82.7 a | 0.90 b | 74.5 c | 84.5 bc | 0.88 b |
T2 | 79.2 ab | 87.8 a | 0.90 b | 70.7 c | 76.5 b | 0.93 b | 72.7 c | 76.2 c | 0.96 a | 77.3 b | 86.5 ab | 0.89 b |
T3 | 79.3 ab | 87.6 a | 0.91 b | 75.7 a | 78.6 b | 0.97 a | 75.7 ab | 78.9 b | 0.96 a | 77.4 b | 84.3 c | 0.92 a |
T4 | 80.8 a | 84.8 a | 0.95 a | 76.2 a | 78.5 b | 0.97 a | 76.0 a | 79.0 b | 0.96 a | 80.9 a | 88.0 a | 0.92 a |
Average Daily Temperature | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.64 *** | 0.54 ** | 0.36 * | 0.45 ** | 0.43 * | 0.81 *** | 0.02 | 0.33 | 0.18 | 0.76 *** | 0.33 | 0.68 *** |
Maximum | 0.50 ** | 0.47 ** | 0.21 | 0.55 ** | 0.27 | 0.79 *** | 0.04 | 0.53 ** | 0.33 | 0.81 *** | 0.35 * | 0.57 *** |
Minimum | 0.70 *** | 0.56 ** | 0.42 * | 0.32 | 0.47 ** | 0.79 *** | 0 | 0.18 | 0.08 | 0.61 *** | 0.24 | 0.74 *** |
Variable | Parameter Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
(Intercept) | 1.231 | 0.236 | 5.213 | <0.001 |
MT5 | −0.193 | 0.092 | −2.097 | 0.047 |
LT5 | 0.113 | 0.047 | 2.412 | 0.024 |
Model R2 | 0.885 | |||
Adjusted R2 | 0.842 |
Variable | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Temp1 | 0.365 | 0.188 | 0.135 | 0.318 | −0.319 |
Temp2 | 0.276 | 0.375 | 0.234 | 0.336 | −0.263 |
Temp3 | 0.348 | −0.308 | 0.069 | −0.049 | 0.076 |
Temp4 | 0.289 | −0.002 | 0.153 | −0.812 | −0.197 |
Temp5 | 0.380 | 0.192 | 0.015 | −0.209 | −0.011 |
Temp6 | 0.388 | 0.044 | −0.174 | 0.110 | −0.218 |
P1 | 0.345 | −0.097 | −0.427 | 0.061 | 0.192 |
P2 | −0.122 | −0.140 | 0.755 | 0.012 | −0.119 |
P3 | −0.269 | 0.475 | −0.088 | −0.055 | −0.040 |
P4 | −0.206 | 0.492 | −0.197 | −0.246 | −0.266 |
P5 | −0.207 | −0.440 | −0.265 | 0.029 | −0.783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.K.; Jeong, J.H.; Shin, T.; Jang, S.; Lee, D.; Choi, D.G. Effects of Elevated Temperature on the Phenology and Fruit Shape of the Early-Maturing Peach Cultivar ‘Mihong’. Horticulturae 2025, 11, 1222. https://doi.org/10.3390/horticulturae11101222
Lee SK, Jeong JH, Shin T, Jang S, Lee D, Choi DG. Effects of Elevated Temperature on the Phenology and Fruit Shape of the Early-Maturing Peach Cultivar ‘Mihong’. Horticulturae. 2025; 11(10):1222. https://doi.org/10.3390/horticulturae11101222
Chicago/Turabian StyleLee, Seul Ki, Jae Hoon Jeong, Taehwan Shin, Sihyeong Jang, Dongyong Lee, and Dong Geun Choi. 2025. "Effects of Elevated Temperature on the Phenology and Fruit Shape of the Early-Maturing Peach Cultivar ‘Mihong’" Horticulturae 11, no. 10: 1222. https://doi.org/10.3390/horticulturae11101222
APA StyleLee, S. K., Jeong, J. H., Shin, T., Jang, S., Lee, D., & Choi, D. G. (2025). Effects of Elevated Temperature on the Phenology and Fruit Shape of the Early-Maturing Peach Cultivar ‘Mihong’. Horticulturae, 11(10), 1222. https://doi.org/10.3390/horticulturae11101222