From Biosynthesis to Regulation: Recent Advances in the Study of Fruit-Bound Aroma Compounds
Abstract
1. Introduction
2. Structure and Composition of Bound Aroma Compounds
2.1. Glycosidic Ligands
2.2. Sugar Ligands
3. Extraction and Detection Techniques for Bound Aroma Compounds
3.1. Adsorbents
3.2. Extraction and Purification Techniques
3.3. Detection Techniques
4. Biosynthesis of Bound Aroma Compounds in Fruits
4.1. Fatty Acid Metabolic Pathway
4.2. Phenylpropanoid Pathway
4.3. Terpenoid Metabolic Pathway
Species | UGT Members | Sugar Donor | Substrate | Function | References |
---|---|---|---|---|---|
Wild tomato Solanum pennellii | UGT91R1 | UDP-arabinose UDP-xylose | (Z)-3-hexenyl-β-D-glucopyranoside | Conversion of exogenous (Z)-3-hexenol into its diglycoside for defense against herbivores | [71] |
UGT91R4 | UDP-arabinose | (Z)-3-hexenyl-β-D-glucopyranoside | [71] | ||
Strawberry Fragaria × ananassa | UGT73B23 | UDP-glucose | 4-Hydroxy-2,5-dimethyl-3(2H)-furanone | Enhance strawberry flavor | [73] |
UGT73B24 | UDP-glucose | 4-Hydroxy-2,5-dimethyl-3(2H)-furanone | [73] | ||
UGT71W2 | UDP-glucose | 1-Naphthol, Vanillin, Quercetin, Abscisic acid | [73] | ||
GT2 | UDP-glucose | Cinnamic acid, O-aminobenzoic acid, Trans-2-hexenoic acid, Niacin, 2,5-Dimethyl-4-hydroxy-3(2H)-furanone, Gallic acid | Induction of oxidative stress | [75] | |
UGT85K16 | UDP-glucose | 4-Hydroxy-2,5-dimethyl-3(2H)-furanone | Catalyzes the glycosylation of furaneol | [74] | |
Kiwifruit Actinidia chinensis | GT4 | UDP-glucose | Phenylethanol, 2-Methylbutanol, Nerol, N-hexanol, Linalool, Benzyl alcohol, α-Terpineol, (Z)-2-hexenol, Furfural, 2-Butanol, 3-Methylbutanol, 2-Pentanol, (Z)-3-hexenol, Geraniol | Influence floral and fruity aromas | [72] |
GT4 | UDP-glucose UDP-galactose | Linalool, 3-Hexanol | [72] | ||
Peach Prunus persica | UGT85A2 | UDP-glucose | Linalool, Citral, α-Terpineol | Conversion of linalool into its glucoside. | [87] |
Grapes Vitis labrusca × Vitis vinifera | UGT85A26 | UDP-glucose | Geraniol, Citronellol, S-linalool, α-Terpineol, Benzyl alcohol, Phenethyl alcohol | Elevate glycosylated volatiles; enhance the defensive response Participates in the biosynthesis of aroma compounds | [88] |
UGT85A27 | UDP-glucose | Geraniol, Citronellol, R-linalool, α-Terpineol, Benzyl alcohol, Phenethyl alcohol | [88] | ||
GT7 | UDP-glucose | Linalool, Benzyl alcohol, Geraniol, Phenylethyl alcohol, Citronellol, Eugenol | Synthesis of geraniol and pinene glycosides during ripening | [89] | |
Apple Malus domestica | UGT83L3 | UDP-glucose | Cyanidin, Quercetin, Kaempferol | Promote flavonoid glycoside accumulation and regulate stress tolerance | [90] |
Grapefruit Citrus maxima | 2RhaT | UDP-rhamnose | Flavanone-7-O-neohesperidosides | Catalyze the biosynthesis of neohesperidin, create the distinctive bitterness | [91] |
Orange Citrus sinensis | 6RhaT | UDP-rhamnose | Anthocyanins, Flavonols, Flavones, Flavanones | Maintaining species in a selectively bred state | [92] |
Tomato Solanum lycopersicum | NSGT1 | UDP-glucose | Eugenol-GX, Guaiacol-GX, Methyl-GX | Response to wounding stress | [79] |
UGT5 | UDP-glucose | Methyl salicylate, Cinnamaldehyde, Benzyl alcohol, Thymol | Involve in the production of phenolic volatiles and enhance antioxidant capacity | [81] | |
UGT75C1 | UDP-glucose | Abscisic acid | Accelerate fruit ripening and enhanced resistance to drought stress | [93] | |
UGT73C1 | UDP-glucose | Stevioside | Response salt tolerance and drought resistance | [94] |
5. UGT Regulatory Network
5.1. UGT Gene Family Identification
5.2. UGT Functional Analysis and Signal Transduction
6. Key Factors Influencing the Formation of Bound Aroma Compounds in Fruits
6.1. Fruit Cultivar Variability
6.2. Cultivation and Harvesting
6.2.1. Cultivation
6.2.2. Fruit Ripening
6.3. Postharvest Storage Strategies
6.3.1. Low-Temperature Storage
6.3.2. Phytohormone Treatment
6.4. Processing Procedure
7. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baviera-Puig, A.; López-Cortés, I.; Ortolá, M.D.; Buitrago-Vera, J. Attributes of sensory and instrumental analysis that determine overall liking of fresh orange varieties with different maturity index. Food Sci. Nutr. 2024, 12, 4865–4878. [Google Scholar] [CrossRef]
- Cao, X.; Wei, C.; Duan, W.; Gao, Y.; Kuang, J.; Liu, M.; Chen, K.; Klee, H.; Zhang, B. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis. Plant J. 2021, 106, 785–800. [Google Scholar] [CrossRef]
- Pan, X.; Bi, S.; Lao, F.; Wu, J. Factors affecting aroma compounds in orange juice and their sensory perception: A review. Food Res. Int. 2023, 169, 112835. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, H.; Zhong, T.; Chen, D.; Wu, Y.; Xie, Z. Molecular regulatory mechanisms affecting fruit aroma. Foods 2024, 13, 1870. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, K.; Liu, C.; Ma, L.; Li, J. Effects of glycosidase on glycoside-bound aroma compounds in grape and cherry juice. J. Food Sci. Technol. 2023, 60, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.-X.; Li, X.-R.; Zhu, X.-M.; Zhu, H.; Yu, J.-Q. Determination of the appropriate extraction method for bound aroma compounds from strawberry and analysis of aroma substances in strawberry fruits of different varieties and developmental stages. Food Chem. 2025, 471, 142768. [Google Scholar] [CrossRef]
- Alises, M.O.; Sánchez-Palomo, E.; Viñas, M.G. Aroma enhancement of dealcoholized wines using enzyme treatment and glycosidic aroma precursors. LWT 2024, 210, 116824. [Google Scholar] [CrossRef]
- Francis, M.; Allcock, C. Geraniol β-D-glucoside; occurrence and synthesis in rose flowers. Phytochemistry 1969, 8, 1339–1347. [Google Scholar] [CrossRef]
- Cordonnier, R.; Bayonove, C. Mise en évidence dans la baie de raisin, variété Muscat d’Alexandrie, de monoterpènes liés révélables par une ou plusieurs enzymes du fruit. CR Acad. Sci. Paris 1974, 278, 3387–3390. [Google Scholar]
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically bound aroma precursors in fruits: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 62, 215–243. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.X.; Jin, X.Q.; Yao, H.; Zhu, T.Y.; Guo, S.H.; Li, S.; Lei, Y.L.; Xing, Z.G.; Zhao, X.H.; Xu, T.F. Evolution of volatile profile and aroma potential of ‘Gold Finger’ table grapes during berry ripening. J. Sci. Food Agric. 2022, 102, 291–298. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, Y.; Liu, D.; Zhang, J.; Qi, Y.; Xu, J.; Wei, X.; Fan, M. Free and bound volatile compounds in ‘Hayward’ and ‘Hort16A’ kiwifruit and their wines. Eur. Food Res. Technol. 2020, 246, 875–890. [Google Scholar] [CrossRef]
- Asikin, Y.; Shimoda, K.; Takeuchi, M.; Maekawa, R.; Kamiyoshihara, Y.; Takara, K.; Wada, K. Free and glycosidically bound volatile compounds in Okinawan pineapple (Ananas comosus). Appl. Sci. 2022, 12, 9522. [Google Scholar] [CrossRef]
- Gou, M.; Chen, Q.; Qiao, Y.; Li, J.; Long, J.; Wu, X.; Zhang, J.; Fauconnier, M.-L.; Jin, X.; Lyu, J. Comprehensive investigation on free and glycosidically bound volatile compounds in Ziziphus jujube cv. Huizao. J. Food Compos. Anal. 2022, 112, 104665. [Google Scholar] [CrossRef]
- Ren, J.-N.; Tai, Y.-N.; Dong, M.; Shao, J.-H.; Yang, S.-Z.; Pan, S.-Y.; Fan, G. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chem. 2015, 185, 25–32. [Google Scholar] [CrossRef]
- Zhong, S.; Ren, J.; Chen, D.; Pan, S.; Wang, K.; Yang, S.; Fan, G. Free and bound volatile compounds in juice and peel of Eureka lemon. Food Sci. Technol. Res. 2014, 20, 167–174. [Google Scholar] [CrossRef]
- Chen, X.; Quek, S.Y. Free and glycosidically bound aroma compounds in fruit: Biosynthesis, transformation, and practical control. Crit. Rev. Food Sci. Nutr. 2023, 63, 9052–9073. [Google Scholar] [CrossRef]
- He, J.; Halitschke, R.; Baldwin, I.T.; Schuman, M.C. Natural variation in linalool metabolites: One genetic locus, many functions? J. Integr. Plant Biol. 2021, 63, 1416–1421. [Google Scholar] [CrossRef]
- Yu, A.-N.; Yang, Y.-N.; Yang, Y.; Liang, M.; Zheng, F.-P.; Sun, B.-G. Free and bound aroma compounds of turnjujube (Hovenia acerba lindl.) during low temperature storage. Foods 2020, 9, 488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qiao, D.; He, L.; Pan, Q.; Wang, S. Effects of vine top shading on the accumulation of C6/C9 compounds in ‘Cabernet Sauvignon’ (Vitis vinifera L.) grape berries in northwestern China. J. Sci. Food Agric. 2022, 102, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Jatana, B.S.; Kitchens, C.; Ray, C.; Gerard, P.; Tharayil, N. Chemical Forms of Nitrogen Fertilizers Differentially Influence the Content and Composition of Aroma Volatiles and Phytonutrients in Strawberry Fruits. J. Agric. Food Chem. 2025, 73, 6241–6252. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, Q.; Zhu, T.; Li, T.; Fan, G.; Li, X.; Wu, C. Effects of ultraviolet C on the quality and aroma volatile in peach fruit during postharvest storage. Food Chem. 2024, 456, 139906. [Google Scholar] [CrossRef]
- Wu, Y.; Li, B.; Li, X.; Wang, L.; Zhang, W.; Duan, S.; Wang, S. Regulatory effect of root restriction on aroma quality of Red Alexandria grape. Food Chem. 2022, 372, 131118. [Google Scholar] [CrossRef]
- Ni, H.; Jiang, Q.-X.; Zhang, T.; Huang, G.-L.; Li, L.-J.; Chen, F. Characterization of the aroma of an instant white tea dried by freeze drying. Molecules 2020, 25, 3628. [Google Scholar] [CrossRef]
- Mei, J.; Li, X.; You, Y.; Fan, X.; Sun, C.; Guo, F.; Shan, M.; Zhang, J. Methyl salicylate affects fruit quality and aroma compounds of cherry during cold storage. Sci. Hortic. 2024, 333, 113291. [Google Scholar] [CrossRef]
- Phukan, A.; Baruah, D.; Koirala, S.; Kar, P.; Boni, T.; Tamuly, C. ‘Bhim Kol (Musa Balbisiana)’ Wine: Chemical Profiling and Antidiabetic Properties with MD Simulation Insights. Chem. Biodivers. 2025, 22, e202401855. [Google Scholar] [CrossRef] [PubMed]
- Szudera-Kończal, K.; Myszka, K.; Kubiak, P.; Drabińska, N.; Majcher, M.A. The combined effect of lactic acid bacteria and Galactomyces geotrichum fermentation on the aroma composition of sour whey. Molecules 2023, 28, 4308. [Google Scholar] [CrossRef]
- Li, X.; Wei, T.; Wu, M.; Chen, F.; Zhang, P.; Deng, Z.y.; Luo, T. Potential metabolic activities of raspberry ketone. J. Food Biochem. 2022, 46, e14018. [Google Scholar] [CrossRef] [PubMed]
- Martina, M.; Tikunov, Y.; Portis, E.; Bovy, A.G. The genetic basis of tomato aroma. Genes 2021, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Gao, Y.; Chen, Y.; Xu, M.; Wang, H.; Cheng, J.; Zhang, B. Comprehensive metabolomic profiling of aroma-related volatiles in table grape cultivars across developmental stages. Food Qual. Saf. 2025, 9, fyaf013. [Google Scholar] [CrossRef]
- Song, C.; Härtl, K.; McGraphery, K.; Hoffmann, T.; Schwab, W. Attractive but toxic: Emerging roles of glycosidically bound volatiles and glycosyltransferases involved in their formation. Mol. Plant 2018, 11, 1225–1236. [Google Scholar] [CrossRef]
- Sarry, J.-E.; Günata, Z. Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chem. 2004, 87, 509–521. [Google Scholar] [CrossRef]
- Li, F.; Foucat, L.; Bonnin, E. Effect of solid loading on the behaviour of pectin-degrading enzymes. Biotechnol. Biofuels 2021, 14, 107. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, W.; Zeng, L.; Xue, Y.; Lin, W.; Ye, X.; Guan, R.; Sun, P. Using power ultrasound to release glycosidically bound volatiles from orange juice: A new method. Food Chem. 2021, 344, 128580. [Google Scholar] [CrossRef]
- Peng, C.; Li, R.; Ni, H.; Li, L.J.; Li, Q.B. The effects of α-L-rhamnosidase, β-D-glucosidase, and their combination on the quality of orange juice. J. Food Process. Preserv. 2021, 45, e15604. [Google Scholar] [CrossRef]
- Hjelmeland, A.K.; Zweigenbaum, J.; Ebeler, S.E. Profiling monoterpenol glycoconjugation in Vitis vinifera L. cv. Muscat of Alexandria using a novel putative compound database approach, high resolution mass spectrometry and collision induced dissociation fragmentation analysis. Anal. Chim. Acta 2015, 887, 138–147. [Google Scholar] [CrossRef]
- Winterhalter, P.; Skouroumounis, G.K. Glycoconjugated aroma compounds: Occurrence, role and biotechnological transformation. In Biotechnology of Aroma Compounds; Springer: Berlin/Heidelberg, Germany, 2006; pp. 73–105. [Google Scholar]
- Hjelmeland, A.K.; Ebeler, S.E. Glycosidically bound volatile aroma compounds in grapes and wine: A review. Am. J. Enol. Vitic. 2015, 66, 1–11. [Google Scholar] [CrossRef]
- Williams, P.J.; Strauss, C.R.; Wilson, B.; Massy-Westropp, R.A. Studies on the Hydrolysis of Vitis vinifera Monoterpene Precursor Compounds and Model Monoterpene β-D-Glucosides Rationalizing the Monoterpene Composition of Grapes. J. Agric. Food Chem. 1982, 30, 1219–1223. [Google Scholar] [CrossRef]
- Voirin, S.G.; Baumes, R.L.; Bitteur, S.M.; Gunata, Z.Y.; Bayonove, C.L. Novel monoterpene disaccharide glycosides of Vitis vinifera grapes. J. Agric. Food Chem. 1990, 38, 1373–1378. [Google Scholar] [CrossRef]
- Chassagne, D.; Crouzet, J.; Bayonove, C.L.; Brillouet, J.M.; Baumes, R.L. 6-O-alpha-L-Arabinopyranosyl-beta-D-glucopyranosides as aroma precursors from passion fruit. Phytochemistry 1996, 41, 1497–1500. [Google Scholar] [CrossRef]
- Cui, J.; Katsuno, T.; Totsuka, K.; Ohnishi, T.; Takemoto, H.; Mase, N.; Toda, M.; Narumi, T.; Sato, K.; Matsuo, T. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. J. Agric. Food Chem. 2016, 64, 1151–1157. [Google Scholar] [CrossRef]
- Oka, N.; Ikegami, A.; Ohki, M.; Sakata, K.; Yagi, A.; Watanabe, N. Citronellyl disaccharide glycoside as an aroma precursor from rose flowers. Phytochemistry 1998, 47, 1527–1529. [Google Scholar] [CrossRef]
- Herderich, M.; Feser, W.; Schreier, P. Vomifoliol 9-O-β-d-glucopyranosyl-4-O-β-d-xylopyranosyl-6-O-β-d-glucopyranoside: A trisaccharide glycoside from apple fruit. Phytochemistry 1992, 31, 895–897. [Google Scholar]
- Starowicz, M. Analysis of volatiles in food products. Separations 2021, 8, 157. [Google Scholar] [CrossRef]
- Oussou, K.F.; Guclu, G.; Sevindik, O.; Starowicz, M.; Kelebek, H.; Selli, S. Comparative elucidation of aroma, key odorants, and fatty acid profiles of Ivorian shea butter prepared by three different extraction methods. Separations 2022, 9, 245. [Google Scholar] [CrossRef]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation–a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Kumar, S.; Ahmad, R.; Saeed, S.; Azeem, M.; Mozūraitis, R.; Borg-Karlson, A.-K.; Zhu, G. Chemical composition of fresh leaves headspace aroma and essential oils of four Coriander cultivars. Front. Plant Sci. 2022, 13, 820644. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, J.H.; Ricci, A.; Cirlini, M.; Bancalari, E.; Bernini, V.; Galaverna, G.; Neviani, E.; Lazzi, C. Production and recovery of volatile compounds from fermented fruit by-products with Lacticaseibacillus rhamnosus. Food Bioprod. Process. 2021, 128, 215–226. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Liao, X.; Zhou, Y.; Chen, S.; Chen, J.; Xiong, W. Extraction of camphor tree essential oil by steam distillation and supercritical CO2 extraction. Molecules 2022, 27, 5385. [Google Scholar] [CrossRef]
- Das, A.; Basak, S.; Chakraborty, S.; Dhibar, M. Microwave: An ecologically innovative, green extraction technology. Curr. Anal. Chem. 2022, 18, 858–866. [Google Scholar] [CrossRef]
- Moriyama, K.; Kono, A.; Matsuzaki, R.; Azuma, A.; Onoue, N.; Sekozawa, Y.; Sato, A.; Sugaya, S. Diversity of flavour characteristics of table grapes and their contributing volatile compounds analysed by the solvent-assisted flavour evaporation method. Hortic. Res. 2024, 11, uhae048. [Google Scholar] [CrossRef]
- Feng, C.; Ni, Y.; Zhang, Y.; Yang, J.; Xiong, R. Characteristic aroma identification of differentially colored peach fruits based on HS-SPME-GC–MS. Food Chem. 2025, 467, 142280. [Google Scholar] [CrossRef] [PubMed]
- Souza-Silva, É.A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. TrAC Trends Anal. Chem. 2015, 71, 236–248. [Google Scholar] [CrossRef]
- Herrington, J.S.; Gómez-Ríos, G.A.; Myers, C.; Stidsen, G.; Bell, D.S. Hunting molecules in complex matrices with spme arrows: A review. Separations 2020, 7, 12. [Google Scholar] [CrossRef]
- Kim, S.-J.; Lee, J.-Y.; Choi, Y.-S.; Sung, J.-M.; Jang, H.W. Comparison of different types of SPME Arrow sorbents to analyze volatile compounds in Cirsium setidens Nakai. Foods 2020, 9, 785. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Chin, Y.-W.; Lee, J.-Y.; Kim, T.-W.; Jang, H.W. Analysis of volatile compounds in soju, a Korean distilled spirit, by SPME-arrow-GC/MS. Foods 2020, 9, 1422. [Google Scholar] [CrossRef]
- Su, D.; Zheng, Y.; Chen, Z.; Chi, Y. Simultaneous determination of six glycosidic aroma precursors in pomelo by ultra-high performance liquid chromatography-tandem mass spectrometry. Analyst 2021, 146, 1698–1704. [Google Scholar] [CrossRef]
- Bekker, M.Z.; Taraji, M.; Hysenaj, V.; Lloyd, N. Accurate measurement of sulfhydryls and TCEP-releasable sulfhydryls in the liquid phase of wine that contribute to ‘reductive’ aromas using LC-MS/MS. Heliyon 2024, 10, e28929. [Google Scholar] [CrossRef]
- Dziadas, M.; Jeleń, H. Comparison of Dip-it-DART-Orbitrap-MS With Nitrogen Plasma to HPLC/Orbitrap-MS in Profiling Aromatic Glycoconjugation in White Grapes. J. Mass Spectrom. 2025, 60, e5130. [Google Scholar] [CrossRef]
- Mota, J.; Viana, A.; Martins, C.; Pais, A.C.; Santos, S.A.; Silvestre, A.J.; Machado, J.P.; Rocha, S.M. Pairing Red Wine and Closure: New Achievements from Short-to-Medium Storage Time Assays. Foods 2025, 14, 783. [Google Scholar] [CrossRef]
- Yan, H.; Lin, Z.; Li, W.; Gao, J.; Li, P.; Chen, Q.; Lv, H.; Zhang, Y.; Dai, W.; Lin, Z. Unraveling the enantiomeric distribution of glycosidically bound linalool in teas (Camellia sinensis) and their acidolysis characteristics and pyrolysis mechanism. J. Agric. Food Chem. 2024, 72, 9337–9350. [Google Scholar] [CrossRef]
- Le, T.T.; Trang, N.T.; Pham, V.T.T.; Quang, D.N.; Phuong Hoa, L.T. Bioactivities of β-mangostin and its new glycoside derivatives synthesized by enzymatic reactions. R. Soc. Open Sci. 2023, 10, 230676. [Google Scholar] [CrossRef]
- Li, Y.; Baldauf, S.; Lim, E.-K.; Bowles, D.J. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J. Biol. Chem. 2001, 276, 4338–4343. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.M.; Nawaz, M.A.; Bao, L.; Shah, Z.H.; Lee, J.-M.; Ahmad, M.Q.; Chung, G.; Yang, S.H. Genome-wide analysis of Family-1 UDP-glycosyltransferases in soybean confirms their abundance and varied expression during seed development. J. Plant Physiol. 2016, 206, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Liu, X.; Xu, K.; Zhang, B. Genome-wide characterization, evolution and expression profiling of UDP-glycosyltransferase family in pomelo (Citrus grandis) fruit. BMC Plant Biol. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wen, J.; Xu, Y.; Wu, J.; Yu, Y.; Yang, J.; Liu, H.; Fu, M. Evaluation of dynamic changes and formation regularity in volatile flavor compounds in Citrus reticulata ‘chachi’ peel at different collection periods using gas chromatography-ion mobility spectrometry. LWT 2022, 171, 114126. [Google Scholar] [CrossRef]
- Shen, J.; Tieman, D.; Jones, J.B.; Taylor, M.G.; Schmelz, E.; Huffaker, A.; Bies, D.; Chen, K.; Klee, H.J. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J. Exp. Bot. 2014, 65, 419–428. [Google Scholar] [CrossRef]
- Contreras, C.; Schwab, W.; Mayershofer, M.; González-Agüero, M.; Defilippi, B.G. Volatile compound and gene expression analyses reveal temporal and spatial production of LOX-derived volatiles in pepino (Solanum muricatum Aiton) fruit and LOX specificity. J. Agric. Food Chem. 2017, 65, 6049–6057. [Google Scholar] [CrossRef]
- Farmaki, T.; Sanmartín, M.; Jiménez, P.; Paneque, M.; Sanz, C.; Vancanneyt, G.; Leon, J.; Sánchez-Serrano, J.J. Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. J. Exp. Bot. 2007, 58, 555–568. [Google Scholar] [CrossRef]
- Sugimoto, K.; Ono, E.; Inaba, T.; Tsukahara, T.; Matsui, K.; Horikawa, M.; Toyonaga, H.; Fujikawa, K.; Osawa, T.; Homma, S. Identification of a tomato UDP-arabinosyltransferase for airborne volatile reception. Nat. Commun. 2023, 14, 677. [Google Scholar] [CrossRef]
- Yauk, Y.K.; Ged, C.; Wang, M.Y.; Matich, A.J.; Tessarotto, L.; Cooney, J.M.; Chervin, C.; Atkinson, R.G. Manipulation of flavour and aroma compound sequestration and release using a glycosyltransferase with specificity for terpene alcohols. Plant J. 2014, 80, 317–330. [Google Scholar] [CrossRef]
- Song, C.; Hong, X.; Zhao, S.; Liu, J.; Schulenburg, K.; Huang, F.-C.; Franz-Oberdorf, K.; Schwab, W. Glucosylation of 4-hydroxy-2, 5-dimethyl-3 (2H)-furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiol. 2016, 171, 139–151. [Google Scholar] [CrossRef]
- Yamada, A.; Ishiuchi, K.; Makino, T.; Mizukami, H.; Terasaka, K. A glucosyltransferase specific for 4-hydroxy-2,5-dimethyl-3(2H)-furanone in strawberry. Biosci. Biotechnol. Biochem. 2019, 83, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Landmann, C.; Fink, B.; Schwab, W. FaGT2: A multifunctional enzyme from strawberry (Fragaria× ananassa) fruits involved in the metabolism of natural and xenobiotic compounds. Planta 2007, 226, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.K.; Fanyuk, M.; Feyngenberg, O.; Maurer, D.; Sela, N.; Ovadia, R.; Oren-Shamir, M.; Alkan, N. Phenylalanine induces mango fruit resistance against chilling injuries during storage at suboptimal temperature. Food Chem. 2023, 405, 134909. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Song, Y.; Li, Y.; Wang, X.; Guo, Q.; Zhou, L.; Zhang, Y.; Zhang, C. Key genes for phenylpropanoid metabolite biosynthesis during half-highbush blueberry (Vaccinium angustifolium × Vaccinium corymbosum) fruit development. J. Berry Res. 2022, 12, 297–311. [Google Scholar] [CrossRef]
- Le Roy, J.; Huss, B.; Creach, A.; Hawkins, S.; Neutelings, G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front. Plant Sci. 2016, 7, 735. [Google Scholar] [CrossRef]
- Tikunov, Y.M.; Molthoff, J.; de Vos, R.C.; Beekwilder, J.; van Houwelingen, A.; van der Hooft, J.J.; Nijenhuis-de Vries, M.; Labrie, C.W.; Verkerke, W.; van de Geest, H. Non-smoky glycosyltransferase1 prevents the release of smoky aroma from tomato fruit. Plant Cell 2013, 25, 3067–3078. [Google Scholar] [CrossRef]
- Stafford, H.A. Flavonoid evolution: An enzymic approach. Plant Physiol. 1991, 96, 680–685. [Google Scholar] [CrossRef]
- Louveau, T.; Leitao, C.; Green, S.; Hamiaux, C.; van Der Rest, B.; Dechy-Cabaret, O.; Atkinson, R.G.; Chervin, C. Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit. FEBS J. 2011, 278, 390–400. [Google Scholar] [CrossRef]
- Mahanta, B.P.; Bora, P.K.; Kemprai, P.; Borah, G.; Lal, M.; Haldar, S. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Res. Int. 2021, 145, 110404. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Yao, J.-L.; Deng, C.H.; Chen, S.; Chen, J.; Wang, Z.; Yu, Q.; Cheng, Y.; Xu, J. Citrus mangshanensis pollen confers a xenia effect on linalool oxide accumulation in pummelo fruit by enhancing the expression of a cytochrome P450 78A7 gene CitLO 1. J. Agric. Food Chem. 2019, 67, 9468–9476. [Google Scholar] [CrossRef]
- Lange, B.M.; Croteau, R. Genetic engineering of essential oil production in mint. Curr. Opin. Plant Biol. 1999, 2, 139–144. [Google Scholar] [CrossRef]
- Trapp, S.C.; Croteau, R.B. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 2001, 158, 811–832. [Google Scholar] [CrossRef]
- Vranová, E.; Coman, D.; Gruissem, W. Structure and dynamics of the isoprenoid pathway network. Mol. Plant 2012, 5, 318–333. [Google Scholar] [CrossRef]
- Wu, B.; Cao, X.; Liu, H.; Zhu, C.; Klee, H.; Zhang, B.; Chen, K. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach. J. Exp. Bot. 2019, 70, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Jiang, D.; Wang, H.; Wu, B.; Cheng, J.; Zhang, B. Identification of UGT85A glycosyltransferases associated with volatile conjugation in grapevine (Vitis vinifera × Vitis labrusca). Hortic. Plant J. 2023, 9, 1095–1107. [Google Scholar] [CrossRef]
- Bönisch, F.; Frotscher, J.; Stanitzek, S.; Rühl, E.; Wüst, M.; Bitz, O.; Schwab, W. A UDP-glucose: Monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiol. 2014, 165, 561–581. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, P.; Zhang, L.; Shu, J.; Court, M.H.; Sun, Z.; Jiang, L.; Zheng, C.; Shu, H.; Ji, L. Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation. Plant Sci. 2022, 321, 111314. [Google Scholar] [CrossRef] [PubMed]
- Frydman, A.; Weisshaus, O.; Bar-Peled, M.; Huhman, D.V.; Sumner, L.W.; Marin, F.R.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. Citrus fruit bitter flavors: Isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1, 2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J. 2004, 40, 88–100. [Google Scholar] [CrossRef]
- Frydman, A.; Liberman, R.; Huhman, D.V.; Carmeli-Weissberg, M.; Sapir-Mir, M.; Ophir, R.; Sumner, L.W.; Eyal, Y. The molecular and enzymatic basis of bitter/non-bitter flavor of citrus fruit: Evolution of branch-forming rhamnosyltransferases under domestication. Plant J. 2013, 73, 166–178. [Google Scholar] [CrossRef]
- Sun, Y.F.; Ji, K.; Liang, B.; Du, Y.W.; Jiang, L.; Wang, J.; Kai, W.B.; Zhang, Y.S.; Zhai, X.W.; Chen, P.; et al. Suppressing ABA uridine diphosphate glucosyltransferase (SlUGT75C1) alters fruit ripening and the stress response in tomato. Plant J. 2017, 91, 574–589. [Google Scholar] [CrossRef]
- Lu, M.; Guo, J.; Dong, D.; Zhang, M.; Li, Q.; Cao, Y.; Dong, Y.; Chen, C.; Jin, X. UDP-glycosyltransferase gene SlUGT73C1 from Solanum lycopersicum regulates salt and drought tolerance in Arabidopsis thaliana L. Funct. Integr. Genom. 2023, 23, 320. [Google Scholar] [CrossRef] [PubMed]
- Yonekura-Sakakibara, K.; Hanada, K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011, 66, 182–193. [Google Scholar] [CrossRef]
- Ma, Y.; Song, J.; Sheng, S.; Wang, D.; Wang, T.; Wang, N.; Chen, A.; Wang, L.; Peng, Y.; Ma, Y. Genome-wide characterization of Solanum tuberosum UGT gene family and functional analysis of StUGT178 in salt tolerance. BMC Genom. 2024, 25, 1206. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Y.; Qu, X.; Wu, F.; Li, X.; Ren, M.; Tong, Y.; Wu, X.; Yang, A.; Chen, Y. Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in abiotic stress and flavonol biosynthesis in Nicotiana tabacum. BMC Plant Biol. 2023, 23, 204. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zheng, P.; Li, N.; Chen, Q.; Liu, Y.; Huang, B.; Tao, X.; Yu, J.; Xu, S. Evolutionary dynamics and functional divergence of the UGT gene family revealed by a pangenome-wide analysis in tomato. Hortic. Res. 2025, uhaf204. [Google Scholar] [CrossRef]
- Mohnike, L.; Rekhter, D.; Huang, W.; Feussner, K.; Tian, H.; Herrfurth, C.; Zhang, Y.; Feussner, I. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell 2021, 33, 735–749. [Google Scholar] [CrossRef]
- Wang, H.; Feng, X.; Zhang, Y.; Wei, D.; Zhang, Y.; Jin, Q.; Cai, Y. PbUGT72AJ2-mediated glycosylation plays an important role in lignin formation and stone cell development in pears (Pyrus bretschneideri). Int. J. Mol. Sci. 2022, 23, 7893. [Google Scholar] [CrossRef] [PubMed]
- Katherinatama, A.; Asikin, Y.; Shimoda, K.; Shimomura, M.; Mitsube, F.; Takara, K.; Wada, K. Characterization of Free and Glycosidically Bound Volatile and Non-Volatile Components of Shiikuwasha (Citrus depressa Hayata) Fruit. Foods 2024, 13, 3428. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Jiang, M.; Tu, K. Changes in free and glycosidically bound volatile compounds of nectarine fruit during low-temperature storage. Int. Food Res. J. 2022, 29, 843. [Google Scholar] [CrossRef]
- Rather, S.A.; Mir, N.A.; Hussain, P.R.; Suradkar, P. Free and glycosidically bound volatile compounds in quince (Cydonia oblonga Mill) from Kashmir, India. Food Chem. Adv. 2024, 4, 100608. [Google Scholar] [CrossRef]
- Sheng, L.; Ma, C.; Chen, Y.; Gao, H.; Wang, J. Genome-wide screening of AP2 transcription factors involving in fruit color and aroma regulation of cultivated strawberry. Genes 2021, 12, 530. [Google Scholar] [CrossRef]
- Bureau, S.M.; Razungles, A.J.; Baumes, R.L. The aroma of Muscat of Frontignan grapes: Effect of the light environment of vine or bunch on volatiles and glycoconjugates. J. Sci. Food Agric. 2000, 80, 2012–2020. [Google Scholar] [CrossRef]
- Gerdes, S.M.; Winterhalter, P.; Ebeler, S.E. Effect of Sunlight Exposure on Norisoprenoid Formation in White Riesling Grapes; ACS Publications: Washington, DC, USA, 2002. [Google Scholar]
- Feng, H.; Yuan, F.; Skinkis, P.A.; Qian, M.C. Influence of cluster zone leaf removal on Pinot noir grape chemical and volatile composition. Food Chem. 2015, 173, 414–423. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wei, Y.; Li, X.-Y.; Zhang, H.-M.; Meng, X.; Duan, C.-Q.; Pan, Q.-H. Ethylene-responsive VviERF003 modulates glycosylated monoterpenoid synthesis by upregulating VviGT14 in grapes. Hortic. Res. 2024, 11, uhae065. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Chen, C.; Sam, F.E.; Guan, R.; Wang, K.; Zhang, Y.; Zhao, M.; Chen, C.; Liu, X. Influence of Benzothiadiazole on the Accumulation and Metabolism of C6 Compounds in Cabernet Gernischt Grapes (Vitis vinifera L.). Foods 2023, 12, 3710. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, Y.; Wang, X.; Guo, Y. Evolution of typical aromas and phenolic compounds of a red-fleshed apple throughout different fruit developmental periods in Xinjiang, China. Food Res. Int. 2021, 148, 110635. [Google Scholar] [CrossRef] [PubMed]
- Günther, C.S.; Marsh, K.B.; Winz, R.A.; Harker, R.F.; Wohlers, M.W.; White, A.; Goddard, M.R. The impact of cold storage and ethylene on volatile ester production and aroma perception in ‘Hort16A’ kiwifruit. Food Chem. 2015, 169, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qi, L.; Zang, N.; Yang, Y.; Wang, B.; Liu, X.; Yin, Z.; Wang, A. Jasmonate activated PuCBF5 to increasing ester accumulation in cold-stored ‘Nanguo’ pear fruit. Plant Physiol. Biochem. 2025, 222, 109722. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Ju, Y.; Zhang, T.; Yu, R.; Xu, H.; Zhang, Z. Application of salicylic acid to cv. Muscat Hamburg grapes for quality improvement: Effects on typical volatile aroma compounds and anthocyanin composition of grapes and wines. LWT 2023, 182, 114828. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.; Troncoso, A.; Morales, M.; Garcia-Parrilla, M.d.C. Influence of the production process of strawberry industrial purees on free and glycosidically bound aroma compounds. Innov. Food Sci. Emerg. Technol. 2014, 26, 381–388. [Google Scholar] [CrossRef]
- Budić-Leto, I.; Humar, I.; Gajdoš Kljusurić, J.; Zdunić, G.; Zlatić, E. Free and bound volatile aroma compounds of Maraštiná grapes as influenced by dehydration techniques. Appl. Sci. 2020, 10, 8928. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Deng, J.; Ouyang, D.; Wang, D.; Liang, Y.; Chen, Y.; Sun, Y. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chem. 2020, 332, 127429. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Feng, C.; Luo, K.; Cui, W.; Xia, Z.; Cheng, A. Effect of steam explosion on phenolics and antioxidant activity in plants: A review. Trends Food Sci. Technol. 2022, 124, 13–24. [Google Scholar] [CrossRef]
- Fan, G.; Lu, W.; Yao, X.; Zhang, Y.; Wang, K.; Pan, S. Effect of fermentation on free and bound volatile compounds of orange juice. Flavour Fragr. J. 2009, 24, 219–225. [Google Scholar] [CrossRef]
- Viacava, F.; Ortega-Hernández, E.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Using high hydrostatic pressure processing come-up time as an innovative tool to induce the biosynthesis of free and bound phenolics in whole carrots. Food Bioprocess Technol. 2020, 13, 1717–1727. [Google Scholar] [CrossRef]
- Pan, X.; Wu, J.; Zhang, W.; Liu, J.; Yang, X.; Liao, X.; Hu, X.; Lao, F. Effects of sugar matrices on the release of key aroma compounds in fresh and high hydrostatic pressure processed Tainong mango juices. Food Chem. 2021, 338, 128117. [Google Scholar] [CrossRef]
Substance | Chemical Structure | Typical Fruits | ||||
---|---|---|---|---|---|---|
Terpenoid acyclic monoterpenes | Grape, Peach | |||||
Monocyclic monoterpenes | Orange, Mango | |||||
Lemon, Grape | ||||||
Isoprene compounds | Papaya, Grape, Raspberry, Passion | |||||
Phenolic compounds | Raspberry, Mango | |||||
Phenyl derivatives | Papaya, Grape |
Common Glycosides | Chemical Structure | Function | References | |
---|---|---|---|---|
Monosaccharides | β-D-Glucopyranoside | Enhanced oxidation stability | [37] | |
Malonyl-β-D-glucopyranoside | Enhanced the solubility of secondary metabolite glycosides | [38] | ||
Disaccharides | α-L-Arabinofuranosyl-β-D-glucopyranoside | Exhibit strong stability | [39] | |
β-D-Apiosyl-β-D-glucopyranoside | Bind to aroma moieties such as geraniol, benzyl alcohol, 2-phenylethanol, and various monoterpenols | [40] | ||
α-L-Arabinopyranosyl-β-D-glucopyranoside | Combinate with linalool, benzyl alcohol, and 3-methyl-2-buten-1-ol | [41] | ||
β-D-Xylopyranosyl-β-D-glucopyranoside | Disaccharides containing 2-phenylethanol, benzyl alcohol, linalool, 3-hexenol, and geraniol | [42] | ||
α-L-Rhamnopyranosyl-β-D-glucopyranoside | Storage forms or aroma precursors | [39] | ||
β-D-Glucopyranosyl-β-D-glucopyranoside | As an aroma precursor for substances such as citronellol | [43] | ||
Trisaccharides | β-D-Glucopyranosyl-β-D-xylopyranosyl-β-D-glucopyranoside | As a derivative or complex of malic acid | [44] |
Fruits | Number of Volatile Aroma Compounds | Characteristic Compounds | References |
---|---|---|---|
Turnjujube | 24 | Camphene alcohol, Eugenol, Isoeugenol | [19] |
Shiikuwasha | 20 | 1-Hexanol, Benzyl alcohol | [101] |
Kiwifruit | 79 | β-Damascenone, Acetyl geranylgeranyl alcohol | [12] |
Jujube | 17 | 3-Hydroxy-2-butanone, 5-Ethyloxolan-2-one, (E)-But-2-enoic acid, 4-Hexanoic acid, 3-Methyl-butanoic acid | [14] |
Quince | 87 | Ethyl acetate, Hexyl pentafluoropropanoate, Ethyl hexanoate, γ-elemene, Cyclocitral, Megastigmatrienone-II, Dihydro-β-ionol | [103] |
Nectarines | 34 | Linalool, Benzaldehyde, Phenylacetaldehyde, Decanal, Nonanal, Methyl benzoate, 2-Ethylhexanol, 3-Octanone. | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Q.; Wang, R.; Zhang, J.; Wang, C.; He, H.; Wang, L.; Li, C.; Qiao, Y.; Liu, H. From Biosynthesis to Regulation: Recent Advances in the Study of Fruit-Bound Aroma Compounds. Horticulturae 2025, 11, 1185. https://doi.org/10.3390/horticulturae11101185
Qin Q, Wang R, Zhang J, Wang C, He H, Wang L, Li C, Qiao Y, Liu H. From Biosynthesis to Regulation: Recent Advances in the Study of Fruit-Bound Aroma Compounds. Horticulturae. 2025; 11(10):1185. https://doi.org/10.3390/horticulturae11101185
Chicago/Turabian StyleQin, Qiaoping, Rongshang Wang, Jinglin Zhang, Chunfang Wang, Hui He, Lili Wang, Chunxi Li, Yongjin Qiao, and Hongru Liu. 2025. "From Biosynthesis to Regulation: Recent Advances in the Study of Fruit-Bound Aroma Compounds" Horticulturae 11, no. 10: 1185. https://doi.org/10.3390/horticulturae11101185
APA StyleQin, Q., Wang, R., Zhang, J., Wang, C., He, H., Wang, L., Li, C., Qiao, Y., & Liu, H. (2025). From Biosynthesis to Regulation: Recent Advances in the Study of Fruit-Bound Aroma Compounds. Horticulturae, 11(10), 1185. https://doi.org/10.3390/horticulturae11101185