Effect of Non-Fumigant Nematicides on Reproduction of Recently Detected Meloidogyne Species in Georgia Under Greenhouse Conditions in Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nematode Inoculum
2.2. Nematicides
2.3. Establishment of the Experiment
2.4. Data Collection
2.5. Data Analysis
3. Results
3.1. Effect of Nematicides on Reproduction and Pathogenicity of RKN Species
3.1.1. Meloidogyne enterolobii
3.1.2. Meloidogyne floridensis
3.1.3. Meloidogyne haplanaria
3.1.4. Meloidogyne incognita
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture. Vegetables 2023 Summary. National Agriculture Statistics Service. 2024. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/02870v86p/qz20vd735/ht24z584t/vegean24.pdf (accessed on 6 February 2024).
- Seid, A.; Fininsa, C.; Mekete, T.; Decraemer, W.; Wesemael, W.M. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.)—A century-old battle. Nematology 2015, 17, 995–1009. [Google Scholar] [CrossRef]
- Escobar, C.; Barcala, M.; Cabrera, J.; Fenoll, C. Overview of root-knot nematodes and giant cells. In Advances in Botanical Research; Escobar, C., Fenoll, C., Eds.; Elsevier: Oxford, UK, 2015; Volume 73, pp. 1–32. [Google Scholar] [CrossRef]
- Bernard, G.C.; Egnin, M.; Bonsi, C. The impact of plant-parasitic nematodes on agriculture and methods of control. Nematol.-Concepts Diagn. Control. 2017, 10, 121–151. [Google Scholar]
- Brito, J.A.; Dickson, D.W.; Kaur, R.; Vau, S.; Stanley, J.D. The Peach Root-Knot Nematode: Meloidogyne floridensis, and Its Potential Impact for the Peach Industry in Florida; Florida Department of Agriculture and Consumer Services, Division of Plant Industry: Gainesville, FL, USA, 2015.
- Joseph, S.; Mekete, T.; Danquah, W.B.; Noling, J. First report of Meloidogyne haplanaria infecting Mi-resistant tomato plants in Florida and its molecular diagnosis based on mitochondrial haplotype. Plant Dis. 2016, 100, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Hajihassani, A.; Nugraha, G.T.; Tyson, C. First report of the root-knot nematode Meloidogyne enterolobii on sweet potato in Georgia, United States. Plant Dis. 2023, 107, 2890. [Google Scholar] [CrossRef]
- Marquez, J.; Hajihassani, A. Occurrence of the root-knot nematode Meloidogyne haplanaria in vegetable fields of South Georgia, USA. Plant Health Prog. 2022, 23, 378–380. [Google Scholar] [CrossRef]
- Marquez, J.; Hajihassani, A. Identification and virulence of five isolates of root-knot nematode Meloidogyne floridensis on vegetables. Plant Dis. 2023, 107, 1522–1528. [Google Scholar] [CrossRef]
- Desaeger, J.; Wram, C.; Zasada, I. New reduced-risk agricultural nematicides-rationale and review. J. Nematol. 2020, 52, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Oka, Y. From old-generation to next-generation nematicides. Agronomy 2020, 10, 1387. [Google Scholar] [CrossRef]
- Keinath, A.P.; Hajihassani, A. Grafting tomato to manage southern blight, prevent yield loss, and increase crop value. Plant Dis. 2023, 107, 3064–3070. [Google Scholar] [CrossRef]
- Magnavita, N. A cluster of neurological signs and symptoms in soil fumigators. J. Occup. Health 2009, 51, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Desaeger, J.A.; Watson, T.T. Evaluation of new chemical and biological nematicides for managing Meloidogyne javanica in tomato production and associated double-crops in Florida. Pest Manag. Sci. 2019, 75, 3363–3370. [Google Scholar] [CrossRef]
- Desaeger, J.A.; Bui, H.X. Root-knot nematode damage to a cucurbit double crop is increased by chloropicrin fumigation on the previous tomato crop. Pest Manag. Sci. 2022, 78, 4072–4082. [Google Scholar] [CrossRef]
- Grabau, Z.J.; Liu, C.; Sandoval-Ruiz, R. Meloidogyne incognita management by nematicides in tomato production. J. Nematol. 2021, 53, 1–12. [Google Scholar] [CrossRef]
- Hajihassani, A. Chemical Nematicides for Control of Plant-Parasitic Nematodes in Georgia Vegetable Crops. Bulletin 1502. UGA Cooperative Extension, GA. 2018. Available online: https://extension.uga.edu/publications/detail.html?number=B1502&title=chemical-nematicides-for-control-of-plant-parasitic-nematodes-in-georgia-vegetable-crops (accessed on 14 November 2018).
- Lahm, G.P.; Desaeger, J.; Smith, B.K.; Pahutski, T.F.; Rivera, M.A.; Meloro, T.; Kucharczyk, R.; Lett, R.M.; Daly, A.; Smith, B.T.; et al. The discovery of fluazaindolizine: A new product for the control of plant parasitic nematodes. Bioorg. Med. Chem. Lett. 2017, 27, 1572–1575. [Google Scholar] [CrossRef]
- Kearn, J.; Ludlow, E.; Dillon, J.; O’Connor, V.; Holden-Dye, L. Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones. Pestic. Biochem. Physiol. 2014, 109, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Schleker, A.S.S.; Rist, M.; Matera, C.; Damijonaitis, A.; Collienne, U.; Matsuoka, K.; Habash, S.S.; Twelker, K.; Gutbrod, O.; Saalwächter, C.; et al. Mode of action of fluopyram in plant-parasitic nematodes. Sci. Rep. 2022, 12, 11954. [Google Scholar] [CrossRef]
- Thoden, T.; Pardavella, I.V.; Tzortzakakis, E.A. In vitro sensitivity of different populations of Meloidogyne javanica and M. incognita to the nematicides Salibro™ and Vydate®. Nematology 2019, 21, 889–893. [Google Scholar] [CrossRef]
- Watson, T.T. Sensitivity of Meloidogyne enterolobii and M. incognita to fluorinated nematicides. Pest Manag. Sci. 2022, 78, 1398–1406. [Google Scholar] [CrossRef]
- Wram, C.L.; Zasada, I. Differential response of Meloidogyne, Pratylenchus, Globodera, and Xiphinema species to the nematicide fluazaindalizine. Phytopathology 2020, 110, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Liu, H.; Xu, J. Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathol. Sin. 2006, 36, 109–115. [Google Scholar]
- Adam, M.A.M.; Phillips, M.S.; Blok, V.C. Molecular diagnostic key for identification of single juveniles of seven common and economically important species of root-knot nematode (Meloidogyne spp.). Plant Pathol. 2007, 56, 190–197. [Google Scholar] [CrossRef]
- Pagan, C.; Coyne, D.; Carneiro, R.; Kariuki, G.; Luambano, N.; Affokpon, A.; Williamson, V.M. Mitochondrial haplotypebased identification of ethanol-preserved root-knot nematodes from Africa. Phytopathology 2015, 105, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Stanton, J.; Jugall, A.; Moritz, C. Nucleotide polymorphisms and an improved PCR-based mtDNA diagnostic for parthenogenetic root-knot nematodes (Meloidogyne spp.). Fund Appl Nematol. 1997, 20, 261–268. [Google Scholar]
- Bui, H.X.; Gu, M.; Riva, G.; Desaeger, J.A. Meloidogyne spp. infecting Asian vegetables in Central Florida, USA. Nematropica 2022, 52, 56–63. [Google Scholar]
- Hajihassani, A.; Davis, R.F.; Timper, P. Evaluation of selected nonfumigant nematicides on increasing inoculation densities of Meloidogyne incognita on cucumber. Plant Dis. 2009, 103, 3161–3165. [Google Scholar] [CrossRef]
- Jenkins, W. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dise. Rep. 1964, 48, 692. [Google Scholar]
- Eisenback, J.D.; Bernard, E.C.; Starr, J.L.; Lee, T.A., Jr.; Tomaszewski, E.K. Meloidogyne haplanaria n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing peanut in Texas. J. Nematol. 2003, 35, 395. [Google Scholar] [PubMed]
- Philbrick, A.N.; Adhikari, T.B.; Louws, F.J.; Gorny, A.M. Meloidogyne enterolobii, a major threat to tomato production: Current status and future prospects for its management. Front. Plant Sci. 2020, 11, 606395. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.D.; Brito, J.A.; Kokalis-Burelle, N.; Frank, J.H.; Dickson, D.W. Biological evaluation and comparison of four Florida isolates of Meloidogyne floridensis. Nematropica 2009, 39, 255–271. [Google Scholar]
- Bendezu, I.F.; Morgan, E.; Starr, J.L. Hosts for Meloidogyne haplanaria. Nematropica 2004, 34, 205–210. [Google Scholar]
- Grabau, Z.J.; Mauldin, M.D.; Habteweld, A.; Carter, E.T. Nematicide efficacy at managing and non-target effects on free-living nematodes in peanut production. J. Nematol. 2020, 52, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wram, C.L.; Zasada, I.A. Short-term effects of sublethal doses of nematicides on Meloidogyne incognita. Phytopathology 2009, 109, 1605–1613. [Google Scholar] [CrossRef]
- Giannakou, I.O.; Panopoulou, S. The use of fluensulfone for the control of root-knot nematodes in greenhouse cultivated crops: Efficacy and phytotoxicity effects. Cogent Food Agric. 2019, 5, 1643819. [Google Scholar] [CrossRef]
- Alam, M.S.; Khanal, C.; Roberts, J.; Rutter, W. Impact of non-fumigant nematicides on reproduction and pathogenicity of Meloidogyne enterolobii and disease severity in tobacco. J. Nematol. 2023, 55, 1–8. [Google Scholar] [CrossRef]
- Oka, Y.; Shuker, S.; Tkachi, N. Influence of soil environments on nematicidal activity of fluensulfone against Meloidogyne javanica. Pest Manag. Sci. 2013, 69, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.A.; Li, X.; Langston, D.B.; Davis, R.F.; Timper, P.; Grey, T.L. Fluensulfone sorption and mobility as affected by soil type. Pest Manag. Sci. 2018, 74, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.X.; Desaeger, J.A. Efficacy of nonfumigant nematicides against Meloidogyne javanica as affected by soil temperature under pasteurized and natural soil conditions. Pest Manag. Sci. 2021, 77, 3179–3186. [Google Scholar] [CrossRef] [PubMed]
- Kayani, M.Z.; Mukhtar, T.; Hussain, M.A. Effects of southern root knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop Prot. 2017, 92, 207–212. [Google Scholar] [CrossRef]
Treatments | Number of Eggs/Root System | Number of Eggs/g Root | Root Gall Index 3 | Fresh Root Biomass (g) | Fresh Shoot Biomass (g) |
---|---|---|---|---|---|
Fluazaindolizine | 16,745.4 1 b 2 | 1452.3 b | 4.0 b | 11.6 ab | 18.3 bc |
Fluensulfone | 870.6 c | 93.5 c | 1.2 c | 9.8 b | 15.3 c |
Fluopyram | 21,570.9 ab | 1655.0 b | 4.2 b | 13.9 a | 22.5 a |
Oxamyl | 21,909.0 ab | 1963.8 b | 4.7 b | 11.0 ab | 20.8 ab |
Control | 28,727.2 a | 3364.8 a | 6.6 a | 9.8 b | 18.7 b |
p value | |||||
Treatment | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Trial | 0.09 | 0.95 | 0.70 | 0.69 | 0.59 |
Treatment × Trial | 0.10 | 0.97 | 0.59 | 0.50 | 0.06 |
Treatments | Number of Eggs/Root System | Number of Eggs/g Root | Root Gall Index 3 | Fresh Root Biomass (g) | Fresh Shoot Biomass (g) |
---|---|---|---|---|---|
Fluazaindolizine | 12,409.0 1 b 2 | 1096.3 b | 2.9 b | 11.3 ab | 24.3 ab |
Fluensulfone | 291.5 c | 29.4 c | 0.8 c | 9.8 b | 18.2 c |
Fluopyram | 15,000.0 b | 1171.9 b | 3.7 b | 12.9 a | 27.3 a |
Oxamyl | 11,092.7 b | 964.6 b | 3.3 b | 11.4 ab | 20.7 bc |
Control | 29,490.9 a | 2641.0 a | 6.2 a | 11.8 ab | 25.1 b |
p value | |||||
Treatment | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Trial | 0.06 | 0.07 | 0.08 | 0.77 | 0.26 |
Treatment × Trial | 0.08 | 0.10 | 0.15 | 0.89 | 0.87 |
Treatments | Number of Eggs/Root System | Number of Eggs/g Root | Root Gall Index 3 | Fresh Root Biomass (g) | Fresh Shoot Biomass (g) |
---|---|---|---|---|---|
Fluazaindolizine | 12,290.9 1 b 2 | 1146.5 b | 2.8 b | 11.7 ab | 19.5 ab |
Fluensulfone | 577.1 c | 55.3 c | 1.1 c | 9.6 b | 18.0 ab |
Fluopyram | 12,609.0 b | 1014.0 b | 3.8 b | 14.2 a | 23.9 a |
Oxamyl | 16,327.2 b | 1405.4 b | 3.4 b | 12.0 ab | 19.4 ab |
Control | 26,654.5 a | 2870.8 a | 6.0 a | 10.9 ab | 19.1 b |
p value | |||||
Treatment | <0.001 | <0.001 | <0.001 | 0.003 | 0.005 |
Trial | 0.04 | 0.07 | 0.29 | 0.22 | 0.97 |
Treatment × Trial | 0.07 | 0.34 | 0.30 | 0.22 | 0.15 |
Treatments | Number of Eggs/Root System | Number of Eggs/g Root | Root Gall Index 3 | Fresh Root Biomass (g) | Fresh Shoot Biomass (g) |
---|---|---|---|---|---|
Fluazaindolizine | 10,581.8 1 b 2 | 940.4 b | 2.9 b | 12.9 ab | 24.1 a |
Fluensulfone | 659.0 c | 84.2 c | 0.5 c | 7.8 c | 17.4 b |
Fluopyram | 11,590.0 b | 835.7 b | 2.8 b | 14.5 a | 24.7 a |
Oxamyl | 12,763.6 b | 1122.6 b | 3.5 b | 12.8 ab | 22.4 a |
Control | 30,909.0 a | 2968.4 a | 5.9 a | 11.4 b | 22.3 a |
p value | |||||
Treatment | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Trial | 0.01 | 0.008 | 0.35 | 0.25 | 0.74 |
Treatment × Trial | 0.29 | 0.33 | 0.88 | 0.05 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, N.; Torres, L.; Davis, R.F.; Jagdale, G.B.; McAvoy, T.; Chowdhury, I.A. Effect of Non-Fumigant Nematicides on Reproduction of Recently Detected Meloidogyne Species in Georgia Under Greenhouse Conditions in Tomato. Horticulturae 2025, 11, 36. https://doi.org/10.3390/horticulturae11010036
Poudel N, Torres L, Davis RF, Jagdale GB, McAvoy T, Chowdhury IA. Effect of Non-Fumigant Nematicides on Reproduction of Recently Detected Meloidogyne Species in Georgia Under Greenhouse Conditions in Tomato. Horticulturae. 2025; 11(1):36. https://doi.org/10.3390/horticulturae11010036
Chicago/Turabian StylePoudel, Nabin, Luis Torres, Richard F. Davis, Ganpati B. Jagdale, Theodore McAvoy, and Intiaz A. Chowdhury. 2025. "Effect of Non-Fumigant Nematicides on Reproduction of Recently Detected Meloidogyne Species in Georgia Under Greenhouse Conditions in Tomato" Horticulturae 11, no. 1: 36. https://doi.org/10.3390/horticulturae11010036
APA StylePoudel, N., Torres, L., Davis, R. F., Jagdale, G. B., McAvoy, T., & Chowdhury, I. A. (2025). Effect of Non-Fumigant Nematicides on Reproduction of Recently Detected Meloidogyne Species in Georgia Under Greenhouse Conditions in Tomato. Horticulturae, 11(1), 36. https://doi.org/10.3390/horticulturae11010036