Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propagating In Vitro Shoot Cultures
2.2. Root Induction under Fluorescent Light
2.3. Light Spectrum Experiment
2.4. Combining t-CA and RFR Light
2.5. Statistical Analysis
3. Results
3.1. Root Induction of Trans-Cinnamic Acid under Fluorescent Light
3.2. Light Spectrum Experiment
3.3. Combining Trans-Cinnamic Acid and RFR Light
t-CA (µM) under RFR | Adventitious Root Number | Lateral Root Number | Average Adventitious Root Length (cm) | Shoot Number | Average Shoot Length (cm) | Callus Weight (mg) |
---|---|---|---|---|---|---|
0 | 12.6 ± 0.48 c | 7.36 ± 0.52 a | 2.58 ± 0.14 b | 4.27 ± 0.29 b | 2.63 ± 0.27 b | 0 |
1.25 | 9.1 ± 0.3 b | 31.87 ± 1.16 ab | 3.82 ± 0.17 c | 5.1 ± 0.23 c | 3.33 ± 0.21 c | 0 |
2.5 | 5.27 ± 0.23 a | 24.13 ± 0.94 ab | 2.89 ± 0.14 b | 4.13 ± 0.23 b | 3.05 ± 0.16 c | 0 |
5 | 5.53 ± 0.27 a | 5.02 ± 0.5 b | 1.29 ± 0.12 a | 3.33 ± 0.25 a | 1.51 ± 0.14 a | 0 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Upson, T.; Andrews, S.; Harriott, G. The Genus Lavandula; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
- Babanina, S.S.; Yegorova, N.A.; Stavtseva, I.V.; Abdurashitov, S.F. Genetic Stability of Lavender (Lavandula angustifolia Mill.) Plants Obtained During Long-Term Clonal Micropropagation. Russ. Agric. Sci. 2023, 49, 132–139. [Google Scholar] [CrossRef]
- Şimşek, Ö.; Dalda Şekerci, A.; Isak, M.A.; Bulut, F.; İzgü, T.; Tütüncü, M.; Dönmez, D. Optimizing Micropropagation and Rooting Protocols for Diverse Lavender Genotypes: A Synergistic Approach Integrating Machine Learning Techniques. Horticulturae 2024, 10, 52. [Google Scholar] [CrossRef]
- Okamoto, K.; Yanagi, T.; Takita, S. Light quality and photomorphogenesis in tissue culture. In Vitro Cell. Dev. Biol. Plant 1997, 33, 155–160. [Google Scholar]
- Lin, Y.; Li, J.; Li, B.; He, T.; Chun, Z. Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 105, 329–335. [Google Scholar] [CrossRef]
- Shin, S.K.; Murthy, N.H.; Heo, W.J.; Hahn, J.E.; Paek, Y.K. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol. Plantae 2008, 30, 339–343. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Sakr, S. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Yun, F.; Liu, H.; Deng, Y.; Hou, X.; Liao, W. The role of light-regulated auxin signaling in root development. Int. J. Mol. Sci. 2023, 24, 5253. [Google Scholar] [CrossRef]
- Alabadí, D.; Blázquez, M.A. Molecular interactions between light and hormone signaling to control plant growth. Plant Mol. Biol. 2009, 69, 409–417. [Google Scholar] [CrossRef]
- Christiaens, A.; Gobin, B.; Van Labeke, M.C. Light quality and adventitious rooting: A mini-review. In Proceedings of the VIII Int. Symp. on Light in Horticulture, East Lansing, MI, USA, 22–26 May 2016; Currey, C.J., Lopez, R.G., Runkle, E.S., Eds.; Acta Horticulturae 1134; International Society for Horticultural Science: Leuven, Belgium, 2016. [Google Scholar] [CrossRef]
- Alallaq, S.; Ranjan, A.; Brunoni, F.; Novák, O.; Lakehal, A.; Bellini, C. Red Light Controls Adventitious Root Regeneration by Modulating Hormone Homeostasis in Picea abies Seedlings. Front. Plant Sci. 2020, 11, 586140. [Google Scholar] [CrossRef]
- Welander, M.; Geier, T.; Smolka, A.; Ahlman, A.; Fan, J.; Zhu, L.H. Origin, Timing, and Gene Expression Profile of Adventitious Rooting in Arabidopsis Hypocotyls and Stems. Am. J. Bot. 2014, 101, 255–266. [Google Scholar] [CrossRef]
- Steenackers, W.; Klíma, P.; Quareshy, M.; Cesarino, I.; Kumpf, R.P.; Corneillie, S.; Araújo, P.; Viaene, T.; Goeminne, G.; Nowack, M.K.; et al. Cis-cinnamic acid is a novel, natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiol. 2017, 173, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.; Mars, M.; Werbrouck, S. Optimizing pear micropropagation and rooting with light emitting diodes and trans-cinnamic acid. Plant Growth Regul. 2019, 88, 173–180. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–603. [Google Scholar] [CrossRef]
- Lupini, A.; Sorgonà, A.; Princi, M.P.; Sunseri, F.; Abenavoli, M.R. Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types. Plant Growth Regul. 2016, 78, 263–273. [Google Scholar] [CrossRef]
- Salvador, V.H.; Lima, R.B.; dos Santos, W.D.; Soares, A.R.; Böhm, P.A.F.; Marchiosi, R.; Ferrarese-Filho, O. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE 2013, 8, e69105. [Google Scholar] [CrossRef] [PubMed]
- Radmann, E.B.; Fachinello, J.C.; Peters, J.A. Effect of auxin and cultivation conditions in in vitro rooting of rootstock of apple ‘M-9’. Rev. Bras. Frutic. 2002, 24, 624–628. [Google Scholar] [CrossRef]
- Arab, M.M.; Yadollahi, A.; Eftekhari, M.; Ahmadi, H.; Akbari, M.; Khorami, S.S. Modeling and optimizing a new culture medium for in vitro rooting of G×N15 Prunus rootstock using artificial neural network-genetic algorithm. Sci. Rep. 2018, 8, 7930. [Google Scholar] [CrossRef]
- Souza, J.A.; Bettoni, J.C.; Costa, M.D.; Baldissera, T.C.; Passos, J.F.M.D.; Primieri, S. In vitro rooting and acclimatization of ‘Marubakaido’ apple rootstock using indole-3-acetic acid from rhizobacteria. Commun. Plant Sci. 2022, 12, 16–23. [Google Scholar] [CrossRef]
- Srikanth, S.; Choong, T.W.; Yan, A.; He, J.; Chen, Z. An efficient method for adventitious root induction from stem segments of Brassica species. Front. Plant Sci. 2016, 7, 943. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Manivannan, A.; Wei, H. Light Quality-Mediated Influence of Morphogenesis in Micropropagated Horticultural Crops: A Comprehensive Overview. BioMed Res. Int. 2022, 2022, 4615079. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, A.; Gobin, B.; Van Huylenbroeck, J.; Van Labeke, M.C. Adventitious rooting of Chrysanthemum is stimulated by a low red: Far-red ratio. J. Plant Physiol. 2019, 236, 117–123. [Google Scholar] [CrossRef]
- Landi, M.; Zivcak, M.; Sytar, O.; Brestic, M.; Allakhverdiev, S.I. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochim. Biophys. Acta (BBA)-Bioenerg. 2020, 1861, 148131. [Google Scholar] [CrossRef]
- Holalu, S.V.; Finlayson, S.A. The ratio of red light to far-red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes. J. Exp. Bot. 2017, 68, 943–952. [Google Scholar]
- Li, L.; Ljung, K.; Breton, G.; Schmitz, R.J.; Pruneda-Paz, J.; Cowing-Zitron, C.; Chory, J. Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 2012, 26, 785–790. [Google Scholar] [CrossRef]
- Pantazopoulou, C.K.; Bongers, F.J.; Küpers, J.J.; Reinen, E.; Das, D.; Evers, J.B.; Anten, N.P.; Pierik, R. Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics. Proc. Natl. Acad. Sci. USA 2017, 114, 7450–7455. [Google Scholar] [CrossRef]
- Courbier, S.; Grevink, S.; Sluijs, E.; Bonhomme, P.O.; Kajala, K.; Van Wees, S.C.; Pierik, R. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. Plant Cell Environ. 2020, 43, 2769–2781. [Google Scholar] [CrossRef] [PubMed]
- Werbrouck, S.; Buyle, H.; Geelen, D.; Van Labeke, M.C. Effect of red-, far-red-and blue-light-emitting diodes on in vitro growth of Ficus benjamina. Acta Hortic. 2012, 961, 533–538. [Google Scholar] [CrossRef]
- Goodwin, T.W.; Britton, G. Distribution and analysis of carotenoids. In Plant Pigments; Goodwin, T.W., Ed.; Academic Press: London, UK, 1988; pp. 61–132. [Google Scholar]
- Zhao, J.; Thi, L.T.; Park, Y.G.; Jeong, B.R. Light quality affects growth and physiology of Carpesium triste Maxim. cultured in vitro. Agriculture 2020, 10, 258. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.N.; Yoshihara, T. Blue Light-Emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth After Transplanting in Red Leaf Lettuce. HortScience 2010, 45, 1809–1814. [Google Scholar] [CrossRef]
- Schagerl, M.; Muller, B. Acclimation of chlorophyll a and carotenoid levels to different irradiance in four freshwater cyanobacteria. J. Plant Physiol. 2006, 163, 709–716. [Google Scholar] [CrossRef]
- Christiaens, A.; Van Labeke, M.C.; Gobin, B.; Van Huylenbroeck, J. Rooting of ornamental cuttings affected by spectral light quality. Acta Hortic. 2015, 1104, 219–224. [Google Scholar] [CrossRef]
- Daud, N.; Faizal, A.; Geelen, D. Adventitious rooting of Jatropha curcas L. is stimulated by phloroglucinol and by red LED light. In Vitro Cell. Dev. Biol. Plant 2013, 49, 183–190. [Google Scholar] [CrossRef]
- Iacona, C.; Muleo, R. Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock Colt. Sci. Hortic. 2010, 125, 630–636. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Tang, C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss. Org. Cult. 2010, 103, 155–163. [Google Scholar] [CrossRef]
Light Treatment | Adventitious Root Number | Lateral Root Number | Average Adventitious Root Length (cm) | Shoot Number | Average Shoot Length (cm) |
---|---|---|---|---|---|
FL | 4.07 ± 0.24 c | 0.71 ± 0.12 c | 0.9 ± 0.11 b | 2.98 ± 0.24 d | 1.12 ± 0.14 a |
B | 4 ± 0.15 c | 0 ± 0 a | 0.59 ± 0.04 b | 1.33 ± 0.84 b | 2.46 ± 0.13 d |
R | 5.07 ± 0.23 d | 4.09 ± 0.36 d | 1.35 ± 0.14 c | 6.1 ± 0.21 e | 1.36 ± 0.05 b |
FR | 1.07 ± 0.86 b | 0 ± 0 a | 0.66 ± 0.06 b | 1.2 ± 0.07 b | 3.44 ± 0.13 e |
RFR | 6.67 ± 0.16 e | 6.91 ± 0.56 e | 2.72 ± 0.13 d | 5.4 ± 0.23 e | 1.63 ± 0.14 bc |
BFR | 0.13 ± 0.05 a | 0 ± 0 a | 0.03 ± 0.02 a | 1 ± 0 a | 6.03 ± 0.17 f |
BR | 4.16 ± 0.17 c | 0.11 ± 0.05 b | 0.72 ± 0.04 b | 2.27 ± 0.19 c | 1.85 ± 0.1 c |
Light Treatment | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Total Chlorophyll (mg g−1 FW) | Carotenoids (mg g −1 FW) |
---|---|---|---|---|
FL | 0.7 ± 0.01 c | 0.25 ± 0.01 d | 0.95 ± 0.03 c | 0.04 ± 0.007 bc |
B | 1.31 ± 0.03 e | 0.34 ± 0.01 e | 1.65± 0.04 e | 0.05 ± 0.008 bc |
R | 0.8 ± 0.04 d | 0.18 ± 0.007 c | 0.98 ± 0.04 c | 0.25 ± 0.024 d |
FR | 0.06 ± 0.002 a | 0.03 ± 0.004 a | 0.09 ± 0.01 a | 0.01 ± 0.002 a |
RFR | 0.9 ± 0.02 d | 0.27 ± 0.003 d | 1.18 ± 0.03 d | 0.28 ± 0.02 d |
BFR | 0.17 ± 0.002 b | 0.06 ± 0.001 b | 0.22 ± 0.003 b | 0.06 ± 0.004 c |
BR | 2.04 ± 0.02 f | 0.65 ± 0.006 f | 2.69 ± 0.02 f | 0.03 ± 0.006 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darouez, H.; Werbrouck, S.P.O. Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender. Horticulturae 2024, 10, 954. https://doi.org/10.3390/horticulturae10090954
Darouez H, Werbrouck SPO. Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender. Horticulturae. 2024; 10(9):954. https://doi.org/10.3390/horticulturae10090954
Chicago/Turabian StyleDarouez, Hajer, and Stefaan P. O. Werbrouck. 2024. "Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender" Horticulturae 10, no. 9: 954. https://doi.org/10.3390/horticulturae10090954
APA StyleDarouez, H., & Werbrouck, S. P. O. (2024). Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender. Horticulturae, 10(9), 954. https://doi.org/10.3390/horticulturae10090954