Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender
Abstract
1. Introduction
2. Materials and Methods
2.1. Propagating In Vitro Shoot Cultures
2.2. Root Induction under Fluorescent Light
2.3. Light Spectrum Experiment
2.4. Combining t-CA and RFR Light
2.5. Statistical Analysis
3. Results
3.1. Root Induction of Trans-Cinnamic Acid under Fluorescent Light
3.2. Light Spectrum Experiment
3.3. Combining Trans-Cinnamic Acid and RFR Light
t-CA (µM) under RFR | Adventitious Root Number | Lateral Root Number | Average Adventitious Root Length (cm) | Shoot Number | Average Shoot Length (cm) | Callus Weight (mg) |
---|---|---|---|---|---|---|
0 | 12.6 ± 0.48 c | 7.36 ± 0.52 a | 2.58 ± 0.14 b | 4.27 ± 0.29 b | 2.63 ± 0.27 b | 0 |
1.25 | 9.1 ± 0.3 b | 31.87 ± 1.16 ab | 3.82 ± 0.17 c | 5.1 ± 0.23 c | 3.33 ± 0.21 c | 0 |
2.5 | 5.27 ± 0.23 a | 24.13 ± 0.94 ab | 2.89 ± 0.14 b | 4.13 ± 0.23 b | 3.05 ± 0.16 c | 0 |
5 | 5.53 ± 0.27 a | 5.02 ± 0.5 b | 1.29 ± 0.12 a | 3.33 ± 0.25 a | 1.51 ± 0.14 a | 0 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Upson, T.; Andrews, S.; Harriott, G. The Genus Lavandula; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
- Babanina, S.S.; Yegorova, N.A.; Stavtseva, I.V.; Abdurashitov, S.F. Genetic Stability of Lavender (Lavandula angustifolia Mill.) Plants Obtained During Long-Term Clonal Micropropagation. Russ. Agric. Sci. 2023, 49, 132–139. [Google Scholar] [CrossRef]
- Şimşek, Ö.; Dalda Şekerci, A.; Isak, M.A.; Bulut, F.; İzgü, T.; Tütüncü, M.; Dönmez, D. Optimizing Micropropagation and Rooting Protocols for Diverse Lavender Genotypes: A Synergistic Approach Integrating Machine Learning Techniques. Horticulturae 2024, 10, 52. [Google Scholar] [CrossRef]
- Okamoto, K.; Yanagi, T.; Takita, S. Light quality and photomorphogenesis in tissue culture. In Vitro Cell. Dev. Biol. Plant 1997, 33, 155–160. [Google Scholar]
- Lin, Y.; Li, J.; Li, B.; He, T.; Chun, Z. Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 105, 329–335. [Google Scholar] [CrossRef]
- Shin, S.K.; Murthy, N.H.; Heo, W.J.; Hahn, J.E.; Paek, Y.K. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol. Plantae 2008, 30, 339–343. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Sakr, S. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Yun, F.; Liu, H.; Deng, Y.; Hou, X.; Liao, W. The role of light-regulated auxin signaling in root development. Int. J. Mol. Sci. 2023, 24, 5253. [Google Scholar] [CrossRef]
- Alabadí, D.; Blázquez, M.A. Molecular interactions between light and hormone signaling to control plant growth. Plant Mol. Biol. 2009, 69, 409–417. [Google Scholar] [CrossRef]
- Christiaens, A.; Gobin, B.; Van Labeke, M.C. Light quality and adventitious rooting: A mini-review. In Proceedings of the VIII Int. Symp. on Light in Horticulture, East Lansing, MI, USA, 22–26 May 2016; Currey, C.J., Lopez, R.G., Runkle, E.S., Eds.; Acta Horticulturae 1134; International Society for Horticultural Science: Leuven, Belgium, 2016. [Google Scholar] [CrossRef]
- Alallaq, S.; Ranjan, A.; Brunoni, F.; Novák, O.; Lakehal, A.; Bellini, C. Red Light Controls Adventitious Root Regeneration by Modulating Hormone Homeostasis in Picea abies Seedlings. Front. Plant Sci. 2020, 11, 586140. [Google Scholar] [CrossRef]
- Welander, M.; Geier, T.; Smolka, A.; Ahlman, A.; Fan, J.; Zhu, L.H. Origin, Timing, and Gene Expression Profile of Adventitious Rooting in Arabidopsis Hypocotyls and Stems. Am. J. Bot. 2014, 101, 255–266. [Google Scholar] [CrossRef]
- Steenackers, W.; Klíma, P.; Quareshy, M.; Cesarino, I.; Kumpf, R.P.; Corneillie, S.; Araújo, P.; Viaene, T.; Goeminne, G.; Nowack, M.K.; et al. Cis-cinnamic acid is a novel, natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiol. 2017, 173, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.; Mars, M.; Werbrouck, S. Optimizing pear micropropagation and rooting with light emitting diodes and trans-cinnamic acid. Plant Growth Regul. 2019, 88, 173–180. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–603. [Google Scholar] [CrossRef]
- Lupini, A.; Sorgonà, A.; Princi, M.P.; Sunseri, F.; Abenavoli, M.R. Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types. Plant Growth Regul. 2016, 78, 263–273. [Google Scholar] [CrossRef]
- Salvador, V.H.; Lima, R.B.; dos Santos, W.D.; Soares, A.R.; Böhm, P.A.F.; Marchiosi, R.; Ferrarese-Filho, O. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE 2013, 8, e69105. [Google Scholar] [CrossRef] [PubMed]
- Radmann, E.B.; Fachinello, J.C.; Peters, J.A. Effect of auxin and cultivation conditions in in vitro rooting of rootstock of apple ‘M-9’. Rev. Bras. Frutic. 2002, 24, 624–628. [Google Scholar] [CrossRef]
- Arab, M.M.; Yadollahi, A.; Eftekhari, M.; Ahmadi, H.; Akbari, M.; Khorami, S.S. Modeling and optimizing a new culture medium for in vitro rooting of G×N15 Prunus rootstock using artificial neural network-genetic algorithm. Sci. Rep. 2018, 8, 7930. [Google Scholar] [CrossRef]
- Souza, J.A.; Bettoni, J.C.; Costa, M.D.; Baldissera, T.C.; Passos, J.F.M.D.; Primieri, S. In vitro rooting and acclimatization of ‘Marubakaido’ apple rootstock using indole-3-acetic acid from rhizobacteria. Commun. Plant Sci. 2022, 12, 16–23. [Google Scholar] [CrossRef]
- Srikanth, S.; Choong, T.W.; Yan, A.; He, J.; Chen, Z. An efficient method for adventitious root induction from stem segments of Brassica species. Front. Plant Sci. 2016, 7, 943. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Manivannan, A.; Wei, H. Light Quality-Mediated Influence of Morphogenesis in Micropropagated Horticultural Crops: A Comprehensive Overview. BioMed Res. Int. 2022, 2022, 4615079. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, A.; Gobin, B.; Van Huylenbroeck, J.; Van Labeke, M.C. Adventitious rooting of Chrysanthemum is stimulated by a low red: Far-red ratio. J. Plant Physiol. 2019, 236, 117–123. [Google Scholar] [CrossRef]
- Landi, M.; Zivcak, M.; Sytar, O.; Brestic, M.; Allakhverdiev, S.I. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochim. Biophys. Acta (BBA)-Bioenerg. 2020, 1861, 148131. [Google Scholar] [CrossRef]
- Holalu, S.V.; Finlayson, S.A. The ratio of red light to far-red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes. J. Exp. Bot. 2017, 68, 943–952. [Google Scholar]
- Li, L.; Ljung, K.; Breton, G.; Schmitz, R.J.; Pruneda-Paz, J.; Cowing-Zitron, C.; Chory, J. Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 2012, 26, 785–790. [Google Scholar] [CrossRef]
- Pantazopoulou, C.K.; Bongers, F.J.; Küpers, J.J.; Reinen, E.; Das, D.; Evers, J.B.; Anten, N.P.; Pierik, R. Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics. Proc. Natl. Acad. Sci. USA 2017, 114, 7450–7455. [Google Scholar] [CrossRef]
- Courbier, S.; Grevink, S.; Sluijs, E.; Bonhomme, P.O.; Kajala, K.; Van Wees, S.C.; Pierik, R. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. Plant Cell Environ. 2020, 43, 2769–2781. [Google Scholar] [CrossRef] [PubMed]
- Werbrouck, S.; Buyle, H.; Geelen, D.; Van Labeke, M.C. Effect of red-, far-red-and blue-light-emitting diodes on in vitro growth of Ficus benjamina. Acta Hortic. 2012, 961, 533–538. [Google Scholar] [CrossRef]
- Goodwin, T.W.; Britton, G. Distribution and analysis of carotenoids. In Plant Pigments; Goodwin, T.W., Ed.; Academic Press: London, UK, 1988; pp. 61–132. [Google Scholar]
- Zhao, J.; Thi, L.T.; Park, Y.G.; Jeong, B.R. Light quality affects growth and physiology of Carpesium triste Maxim. cultured in vitro. Agriculture 2020, 10, 258. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.N.; Yoshihara, T. Blue Light-Emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth After Transplanting in Red Leaf Lettuce. HortScience 2010, 45, 1809–1814. [Google Scholar] [CrossRef]
- Schagerl, M.; Muller, B. Acclimation of chlorophyll a and carotenoid levels to different irradiance in four freshwater cyanobacteria. J. Plant Physiol. 2006, 163, 709–716. [Google Scholar] [CrossRef]
- Christiaens, A.; Van Labeke, M.C.; Gobin, B.; Van Huylenbroeck, J. Rooting of ornamental cuttings affected by spectral light quality. Acta Hortic. 2015, 1104, 219–224. [Google Scholar] [CrossRef]
- Daud, N.; Faizal, A.; Geelen, D. Adventitious rooting of Jatropha curcas L. is stimulated by phloroglucinol and by red LED light. In Vitro Cell. Dev. Biol. Plant 2013, 49, 183–190. [Google Scholar] [CrossRef]
- Iacona, C.; Muleo, R. Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock Colt. Sci. Hortic. 2010, 125, 630–636. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Tang, C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss. Org. Cult. 2010, 103, 155–163. [Google Scholar] [CrossRef]
Light Treatment | Adventitious Root Number | Lateral Root Number | Average Adventitious Root Length (cm) | Shoot Number | Average Shoot Length (cm) |
---|---|---|---|---|---|
FL | 4.07 ± 0.24 c | 0.71 ± 0.12 c | 0.9 ± 0.11 b | 2.98 ± 0.24 d | 1.12 ± 0.14 a |
B | 4 ± 0.15 c | 0 ± 0 a | 0.59 ± 0.04 b | 1.33 ± 0.84 b | 2.46 ± 0.13 d |
R | 5.07 ± 0.23 d | 4.09 ± 0.36 d | 1.35 ± 0.14 c | 6.1 ± 0.21 e | 1.36 ± 0.05 b |
FR | 1.07 ± 0.86 b | 0 ± 0 a | 0.66 ± 0.06 b | 1.2 ± 0.07 b | 3.44 ± 0.13 e |
RFR | 6.67 ± 0.16 e | 6.91 ± 0.56 e | 2.72 ± 0.13 d | 5.4 ± 0.23 e | 1.63 ± 0.14 bc |
BFR | 0.13 ± 0.05 a | 0 ± 0 a | 0.03 ± 0.02 a | 1 ± 0 a | 6.03 ± 0.17 f |
BR | 4.16 ± 0.17 c | 0.11 ± 0.05 b | 0.72 ± 0.04 b | 2.27 ± 0.19 c | 1.85 ± 0.1 c |
Light Treatment | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Total Chlorophyll (mg g−1 FW) | Carotenoids (mg g −1 FW) |
---|---|---|---|---|
FL | 0.7 ± 0.01 c | 0.25 ± 0.01 d | 0.95 ± 0.03 c | 0.04 ± 0.007 bc |
B | 1.31 ± 0.03 e | 0.34 ± 0.01 e | 1.65± 0.04 e | 0.05 ± 0.008 bc |
R | 0.8 ± 0.04 d | 0.18 ± 0.007 c | 0.98 ± 0.04 c | 0.25 ± 0.024 d |
FR | 0.06 ± 0.002 a | 0.03 ± 0.004 a | 0.09 ± 0.01 a | 0.01 ± 0.002 a |
RFR | 0.9 ± 0.02 d | 0.27 ± 0.003 d | 1.18 ± 0.03 d | 0.28 ± 0.02 d |
BFR | 0.17 ± 0.002 b | 0.06 ± 0.001 b | 0.22 ± 0.003 b | 0.06 ± 0.004 c |
BR | 2.04 ± 0.02 f | 0.65 ± 0.006 f | 2.69 ± 0.02 f | 0.03 ± 0.006 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darouez, H.; Werbrouck, S.P.O. Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender. Horticulturae 2024, 10, 954. https://doi.org/10.3390/horticulturae10090954
Darouez H, Werbrouck SPO. Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender. Horticulturae. 2024; 10(9):954. https://doi.org/10.3390/horticulturae10090954
Chicago/Turabian StyleDarouez, Hajer, and Stefaan P. O. Werbrouck. 2024. "Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender" Horticulturae 10, no. 9: 954. https://doi.org/10.3390/horticulturae10090954
APA StyleDarouez, H., & Werbrouck, S. P. O. (2024). Red and Far-Red Light Combined with Trans-Cinnamic Acid Enhances In Vitro Rooting and Reduces Callus Formation in Lavender. Horticulturae, 10(9), 954. https://doi.org/10.3390/horticulturae10090954