Resistances and Physiological Responses of Impatiens uliginosa to Copper Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Cu2+ Treatments
2.2. Biomass Determination
2.3. Plant Height, Root Length, and Stem Diameter
2.4. Determination of Oxidative Stress Indicators and Antioxidant Responses
2.5. Determination of the Concentration of Metals
2.6. Transfer Coefficient, Enrichment Coefficient, and the Rate of Distribution of Cu2+ in Plants
2.7. Statistical Analysis
3. Results
3.1. Effects of Cu2+ Stress on the Growth and Development of I. uliginosa
3.2. Effects of Cu2+ Stress on the Biomass of I. uliginosa
3.3. Effects of Cu2+ Stress on the Activities of Antioxidant Enzymes and Content of Malondialdehyde in I. uliginosa
3.4. Effect of Cu2+ Stress on the Mineral Contents in Different Parts of I. uliginosa
3.5. Effect of Cu2+ Stress on the Enrichment and Transport of Cu2+ in I. uliginosa
3.6. Effects of Cu2+ Stress on the Allocation of Cu2+ Elements in I. uliginosa
4. Discussion
4.1. Effects of Cu2+ Stress on the Morphological Characteristics of I. uliginosa
4.2. Effects of Cu2+ Stress on the Physiology and Biochemistry of I. uliginosa
4.3. Effects of Cu2+ Stress on the Uptake of Mineral Elements in I. uliginosa
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Farid, M.; Ali, S.; Zubair, M.; Saeed, R.; Rizwan, M.; Sallah-Ud-Din, R.; Azam, A.; Ashraf, R.; Ashraf, W. Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response. Environ. Sci. Pollut. Res. Int. 2018, 25, 25390–25400. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Lai, L.; Kumar, P.; Feliciano, Y.M.V.; Battaglia, M.L.; Hong, C.O.; Owens, V.N.; Fike, J.; Farris, R.; Galbraith, J. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 2019, 111, 1046–1059. [Google Scholar] [CrossRef]
- Parveen, A.; Saleem, M.H.; Kamran, M.; Haider, M.Z.; Chen, J.T.; Malik, Z.; Rana, M.S.; Hassan, A.; Hur, G.; Javed, M.T.; et al. Effect of Citric Acid on Growth, Ecophysiology, Chloroplast Ultrastructure, and Phytoremediation Potential of Jute (Corchorus capsularis L.) Seedlings Exposed to Copper Stress. Biomolecules 2020, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Guo, W.; Dang, Z.; Hu, Q.; Wu, F.; Feng, C.; Zhao, X.; Meng, W.; Xing, B.; Giesy, J.P. Refocusing on Nonpriority Toxic Metals in the Aquatic Environment in China. Environ. Sci. Technol. 2017, 51, 3117–3118. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.V.; Labana, S.; Pandey, G.; Budhiraja, R.; Jain, R.K. Phytoremediation: An overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol. 2003, 61, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Covre, W.P.; Ramos, S.J.; Pereira, W.V.D.S.; Souza, E.S.; Martins, G.C.; Teixeira, O.M.M.; Amarante, C.B.D.; Dias, Y.N.; Fernandes, A.R. Impact of copper mining wastes in the Amazon: Properties and risks to environment and human health. J. Hazard. Mater. 2022, 421, 126688. [Google Scholar] [CrossRef] [PubMed]
- Nazir, F.; Hussain, A.; Fariduddin, Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 2019, 230, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.; Welchen, E.; Gonzalez, D.H. Mitochondria and copper homeostasis in plants. Mitochondrion 2014, 19 Pt B, 269–274. [Google Scholar] [CrossRef]
- Ravet, K.; Pilon, M. Copper and iron homeostasis in plants: The challenges of oxidative stress. Antioxid. Redox Signal 2013, 19, 919–932. [Google Scholar] [CrossRef]
- Kohli, S.K.; Handa, N.; Bali, S.; Arora, S.; Sharma, A.; Kaur, R.; Bhardwaj, R. Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicol. Environ. Saf. 2018, 147, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Luo, D.; Lai, A.; Liu, G.; Liu, L.; Long, J.; Zhang, H.; Chen, Y. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain. Environ. Sci. Pollut. Res. Int. 2017, 24, 1845–1853. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. Int. 2019, 26, 18003–18016. [Google Scholar] [CrossRef] [PubMed]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C.; Ware, M.A.; Gleason, S.M.; Pilon-Smits, E.; Pilon, M. Recovery after deficiency: Systemic copper prioritization and partitioning in the leaves and stems of hybrid poplar. Tree Physiol. 2022, 42, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- Burkhead, J.L.; Gogolin-Reynolds, K.A.; Abdel-Ghany, S.E.; Cohu, C.M.; Pilon, M. Copper homeostasis. New Phytol. 2009, 182, 799–816. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Sampedro, R.; Vélez, D.; Romero, P. Deficient copper availability on organoleptic and nutritional quality of tomato fruit. Plant Sci. 2023, 326, 111537. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Ali, S.; Seleiman, M.F.; Rizwan, M.; Rehman, M.; Akram, N.A.; Liu, L.; Alotaibi, M.; Al-Ashkar, I.; Mubushar, M. Assessing the Correlations between Different Traits in Copper-Sensitive and Copper-Resistant Varieties of Jute (Corchorus capsularis L.). Plants 2019, 8, 545. [Google Scholar] [CrossRef] [PubMed]
- Kadri, O.; Karmous, I.; Kharbech, O.; Arfaoui, H.; Chaoui, A. Cu and CuO Nanoparticles Affected the Germination and the Growth of Barley (Hordeum vulgare L.) Seedling. Bull. Environ. Contam. Toxicol. 2022, 108, 585–593. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, L.; Dai, T.; Zhou, J.; Kang, Q.; Chen, H.; Li, K.; Li, Z. Effects of copper on the growth, antioxidant enzymes and photosynthesis of spinach seedlings. Ecotoxicol. Environ. Saf. 2019, 171, 771–780. [Google Scholar] [CrossRef]
- Li, B.; Dao, J.R.; Zhu, R.Y.; He, H.; Meng, X.Q.; Han, F.X. Distribution, accumulation and risk assessment of heavy metal pollution in Dianchi Lake. Environ. Chem. 2021, 40, 1808–1818. (In Chinese) [Google Scholar]
- Zhu, J.P.; Wen, Y.H.; Ji, W.L.; Wang, Q. Exudates of Impatiens uliginosa Franch. on Its own seed germination. Seed 2020, 39, 41–46. (In Chinese) [Google Scholar]
- Zhu, J.P.; Luo, C.; Li, Y.; Li, Q.M.; Zhao, Q.Y.; Wang, Q.; Huang, M.J.; Huang, H.Q. Effects of copper stress on seed germination and seedling growth of Impatiens uliginosa. J. Biol. 2023, 40, 64–68. (In Chinese) [Google Scholar]
- Li, Y.; Wei, C.M.; Li, X.Y.; Meng, D.C.; Gu, Z.J.; Qu, S.P.; Huang, M.J.; Huang, H.Q. De novo transcriptome sequencing of Impatiens uliginosa and the analysis of candidate genes related to spur development. BMC Plant Biol. 2022, 22, 553. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.M.; Li, Y.; Meng, D.C.; Li, Z.F.; Li, Y.; Huang, M.J.; Huang, H.Q. Cloning and expression analysis of TIP genes related to spur development in Impatiens uliginosa Franch. Plant Physiol. J. 2022, 58, 1757–1765. (In Chinese) [Google Scholar]
- Tan, Y.; Zhang, X.; Li, Q.M.; Li, X.Y.; Luo, L.; He, H.H.; Liang, G.R.; Huang, H.Q.; Huang, M.J. Transcriptomic Analysis of Flower Color Changes in Impatiens uliginosa in Response to Copper Stress. Horticulturae 2024, 10, 412. [Google Scholar] [CrossRef]
- Huang, Q.; Guo, J.W.; Wang, Q.; Wen, Y.H.; Huang, M.J.; Huang, H.Q. Determination and analysis of metal elements content in four different colors of Impatiens uliginosas. Heilongjiang Agric. Sci. 2019, 295, 86–89. (In Chinese) [Google Scholar]
- Shao, L.Y.; Guo, J.W.; Wang, Q. Determination of total nitrogen and total phosphorus in Impatiens uliginosa in the Dianchi Lake Watershed. Environ. Sci. Surv. 2021, 40, 36–37. (In Chinese) [Google Scholar]
- Li, Q.M.; Li, W.X.; Cao, M.H.; Liu, S.; Zhang, T.Y.; Wang, Q.; Huang, M.J.; Huang, H.Q. Physiological and biochemical correlations between color of Impatiens uliginosa flower and nutrient supply on copper. Fujian J. Agric. Sci. 2021, 36, 1323–1329. (In Chinese) [Google Scholar]
- Li, Q.M.; Li, W.X.; Li, X.Y.; Li, Y.; Qu, S.P.; Huang, M.J.; Huang, H.Q. Effects of copper stress on flower development and physiological and biochemical characteristics of Impatiens uliginosa. Shandong Agric. Sci. 2022, 54, 74–79. (In Chinese) [Google Scholar]
- Dhindsa, R.S.; Plumb-dhindsa, P.; Thorpe, T.A. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, I.Y.; Ardila, G.B. Variations of peroxidase activity in cocoa (Theobroma cacao L.) beans during their ripening, fermentation and drying. Food Chem. 1999, 65, 51–54. [Google Scholar] [CrossRef]
- Chaoui, A.; Mazhoudi, S.; Ghorbal, M.H.; Ferjani, E.E. Cadmium and Zinc Induction of Lipid Peroxidation and Effects on Antioxidant Enzyme Activities in Bean (Phaseolus vulgaris L.). Plant Sci. 1997, 127, 139–147. [Google Scholar] [CrossRef]
- Tewari, R.K.; Kumar, P.; Sharma, P.N.; Bisht, S.S. Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci. 2002, 162, 381–388. [Google Scholar] [CrossRef]
- Majid, N.M.; Islam, M.M.; Justin, V.; Abdu, A.; Ahmadpour, P. Evaluation of heavy metal uptake and translocation by Acacia mangium as a phytoremediator of copper contaminated soil. Afr. J. Biotechnol. 2011, 10, 8373–8379. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, X.; Song, W.; Du, J.; Yin, X. Integrative Omics Analyses Reveal the Effects of Copper Ions on Salvianolic Acid Biosynthesis. Front. Plant Sci. 2021, 12, 746117. [Google Scholar] [CrossRef]
- Hossain, M.S.; Abdelrahman, M.; Tran, C.D.; Nguyen, K.H.; Chu, H.D.; Watanabe, Y.; Hasanuzzaman, M.; Mohsin, S.M.; Fujita, M.; Tran, L.P. Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environ. Pollut. 2020, 258, 113544. [Google Scholar] [CrossRef] [PubMed]
- Hayat, K.; Khan, A.; Bibi, F.; Salahuddin; Murad, W.; Fu, Y.; Batiha, G.E.; Alqarni, M.; Khan, A.; Al-Harrasi, A. Effect of Cadmium and Copper Exposure on Growth, Physio-Chemicals and Medicinal Properties of Cajanus cajan L. (Pigeon Pea). Metabolites 2021, 11, 769. [Google Scholar] [CrossRef]
- Yue, C.; Wang, Z.; Yang, P. Review: The effect of light on the key pigment compounds of photosensitive etiolated tea plant. Bot. Stud. 2021, 62, 21. [Google Scholar] [CrossRef]
- Zunaidi, A.A.; Lim, L.H.; Metali, F. Comparative assessment of the heavy metal phytoextraction potential of vegetables from agricultural soils: A field experiment. Heliyon 2023, 9, e13547. [Google Scholar] [CrossRef]
- Zhao, H.; Guan, J.; Liang, Q.; Zhang, X.; Hu, H.; Zhang, J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci. Rep. 2021, 11, 9913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, B. Effect of Isosteviol on Wheat Seed Germination and Seedling Growth under Cadmium Stress. Plants 2021, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Priyanka, N.; Geetha, N.; Manish, T.; Sahi, S.V.; Venkatachalam, P. Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. Toxicol. Rep. 2021, 8, 295–302. [Google Scholar] [CrossRef]
- Georgiadou, E.C.; Kowalska, E.; Patla, K.; Kulbat, K.; Smolińska, B.; Leszczyńska, J.; Fotopoulos, V. Influence of Heavy Metals (Ni, Cu, and Zn) on Nitro-Oxidative Stress Responses, Proteome Regulation and Allergen Production in Basil (Ocimum basilicum L.) Plants. Front. Plant Sci. 2018, 9, 862. [Google Scholar] [CrossRef]
- Çelekli, A.; Kapı, E.; Soysal, Ç.; Arslanargun, H.; Bozkurt, H. Evaluating biochemical response of filamentous algae integrated with different water bodies. Ecotoxicol. Environ. Saf. 2017, 142, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Saud, S.; Wang, D.; Fahad, S.; Javed, T.; Jaremko, M.; Abdelsalam, N.R.; Ghareeb, R.Y. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Front. Plant Sci. 2022, 13, 994785. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, L.; Fang, X.; Chen, L.; Cui, L.; Fang, J. Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta 2018, 247, 1449–1463. [Google Scholar] [CrossRef] [PubMed]
- Chen, W. Effects of Heavy Metal Stress on Growth and Physiological Characteristics of Turf Plants. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2014. (In Chinese). [Google Scholar]
- Peláez-Vico, M.Á.; Fichman, Y.; Zandalinas, S.I.; Van Breusegem, F.; Karpiński, S.M.; Mittler, R. ROS and redox regulation of cell-to-cell and systemic signaling in plants during stress. Free Radic. Biol. Med. 2022, 193, 354–362. [Google Scholar] [CrossRef]
- Salinitro, M.; Hoogerwerf, S.; Casolari, S.; Zappi, A.; Melucci, D.; Tassoni, A. Production of Antioxidant Molecules in Polygonum aviculare (L.) and Senecio vulgaris (L.) under Metal Stress: A Possible Tool in the Evaluation of Plant Metal Tolerance. Int. J. Mol. Sci. 2020, 21, 7317. [Google Scholar] [CrossRef]
- Bellini, E.; Maresca, V.; Betti, C.; Castiglione, M.R.; Fontanini, D.; Capocchi, A.; Sorce, C.; Borsò, M.; Bruno, L.; Sorbo, S.; et al. The Moss Leptodictyum riparium Counteracts Severe Cadmium Stress by Activation of Glutathione Transferase and Phytochelatin Synthase, but Slightly by Phytochelatins. Int. J. Mol. Sci. 2020, 21, 1583. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Fahad, S.; Rehman, M.; Saud, S.; Jamal, Y.; Khan, S.; Liu, L. Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. Peer J. 2020, 8, e8321. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.A.; Pizarro, M.; Köhler, H.; Sáez, C.A.; Zúñiga, G.E. Copper stress induces antioxidant responses and accumulation of sugars and phytochelatins in Antarctic Colobanthus quitensis (Kunth) Bartl. Biol. Res. 2018, 51, 48. [Google Scholar] [CrossRef] [PubMed]
- Mahender, A.; Ali, J.; Prahalada, G.D.; Sevilla, M.A.L.; Balachiranjeevi, C.H.; Md, J.; Maqsood, U.; Li, Z. Genetic dissection of developmental responses of agro-morphological traits under different doses of nutrient fertilizers using high-density SNP markers. PLoS ONE 2019, 14, e0220066. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Fan, L.; Mao, F.; Zhao, Y.; Yan, Y.; Tian, H.; Xu, R.; Peng, Y.; Sui, H. Discrimination of three Ephedra species and their geographical origins based on multi-element fingerprinting by inductively coupled plasma mass spectrometry. Sci. Rep. 2018, 8, 10271. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.M.; Zakeel, M.C.M.; Zavahir, J.S.; Marikar, F.M.M.T.; Jahan, I. Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. Toxics 2021, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bai, Y.; Luo, L.; Wan, J.; Wang, W.; Zhao, G. Effects of high dose copper on plant growth and mineral nutrient (Zn, Fe, Mg, K, Ca) uptake in spinach. Environ. Sci. Pollut. Res. Int. 2021, 28, 37471–37481. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, J.; Li, J.; Zhang, J.; Zhang, X.; Yao, Y.; Wang, C.; Niu, T.; Bakpa, E.P. Trehalose alleviates salt tolerance by improving photosynthetic performance and maintaining mineral ion homeostasis in tomato plants. Front. Plant Sci. 2022, 13, 974507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.S.; Liu, N.X.; Wu, Y.M. Effect of Excessive Cu on the Nutrients Absorption of Sugar Beet. Chin. Agric. Sci. Bull. 2015, 31, 160–165. (In Chinese) [Google Scholar]
- Chen, C.H.; Liu, Z.K.; Chen, G.C.; Zhang, J.F. Effects of copper stress on uptake of mineral elements by Salix jiangsuensis CL J−172 and Salix babylonica Linn. J. Cent. South Univ. For. Technol. 2011, 31, 28–32. (In Chinese) [Google Scholar]
- He, T.T. Study on Physiological Response and Enrichment Ability of Celosia argentea and Celosia cristata to Copper Stress. Master’s Thesis, University of Chinese Academy of sciences, Wuhan, China, 2013. (In Chinese). [Google Scholar]
- Xu, G.D.; Ge, S.F.; Zhang, Y.; Wu, Y.H.; Mei, X.M.; Liu, P. Effect of salicylic acid on growth and nutrient uptake in Hydroponic Tobacco under cu stress. Acta Agron. Sin. 2015, 41, 956–962. (In Chinese) [Google Scholar] [CrossRef]
- Lu, J.L. Plant Nutrition; China Agricultural University Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Dong, C.L. Physiological reaction of Paeonia ostii and Paeonia suffruticosa and the transcriptome analyses of Paeonia ostii in response to copper stress. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2013. (In Chinese). [Google Scholar]
- Pätsikkä, E.; Kairavuo, M.; Sersen, F.; Aro, E.M.; Tyystjärvi, E. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol. 2002, 129, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
Cu2+ Concentration (mg·L−1) | Fresh Weight (g) | Dry Weight (g) | ||||
---|---|---|---|---|---|---|
Root | Stem | Leaf | Root | Stem | Leaf | |
0 (CK) | 12.91 ± 1.91 a | 30.77 ± 1.33 b | 8.77 ± 1.36 a | 1.17 ± 0.15 a | 1.66 ± 0.16 a | 1.05 ± 0.06 a |
5 | 11.13 ± 0.38 a | 40.90 ± 6.93 ab | 11.68 ± 4.45 a | 0.79 ± 0.05 ab | 2.03 ± 0.57 a | 1.32 ± 0.67 a |
10 | 11.20 ± 5.90 a | 45.93 ± 10.42 ab | 12.87 ± 6.22 a | 0.89 ± 0.37 ab | 2.47 ± 1.17 a | 1.48 ± 0.50 a |
15 | 11.93 ± 0.51 a | 39.83 ± 4.55 ab | 12.45 ± 4.34 a | 0.94 ± 0.15 ab | 2.26 ± 0.16 a | 1.20 ± 0.19 a |
20 | 10.32 ± 3.92 a | 58.22 ± 4.96 a | 13.40 ± 2.31 a | 0.83 ± 0.18 ab | 3.16 ± 1.07 a | 2.33 ± 0.78 a |
25 | 9.87 ± 2.26 a | 40.50 ± 7.97 ab | 11.66 ± 5.43 a | 0.66 ± 0.12 b | 2.48 ± 0.93 a | 1.48 ± 0.63 a |
Item | Cu2+ Concentration (mg·L−1) | Element | ||||||
---|---|---|---|---|---|---|---|---|
Cu mg·kg−1 | Fe mg·kg−1 | Zn mg·kg−1 | K g·kg−1 | Ca g·kg−1 | Mg mg·kg−1 | Na mg·kg−1 | ||
Root | 0 (CK) | 61.37 ± 1.46 e | 1634.40 ± 72.93 c | 205.12 ± 66.06 a | 2.00 ± 0.23 a | 8.10 ± 1.14 a | 554.55 ± 13.38 a | 833.62 ± 9.34 c |
5 | 1074.31 ± 220.42 d | 1797.06 ± 41.31 b | 146.99 ± 26.97 ab | 2.11 ± 0.28 a | 6.68 ± 0.89 b | 574.65 ± 29.78 a | 1189.29 ± 74.39 a | |
10 | 1450.28 ± 181.44 c | 2076.75 ± 51.99 a | 158.72 ± 29.72 ab | 2.30 ± 0.18 a | 6.84 ± 0.34 ab | 581.58 ± 15.30 a | 1259.09 ± 5.19 a | |
15 | 1867.17 ± 365.34 b | 1814.89 ± 74.28 b | 103.96 ± 14.17 b | 2.16 ± 0.16 a | 5.48 ± 0.78 bc | 560.34 ± 1.83 a | 945.49 ± 53.20 b | |
20 | 2363.90 ± 135.02 a | 1303.88 ± 104.21 d | 151.42 ± 9.79 ab | 2.06 ± 0.05 a | 5.08 ± 0.70 c | 572.44 ± 16.87 a | 971.24 ± 1.05 b | |
25 | 2403.22 ± 111.52 a | 1167.38 ± 53.84 e | 169.81 ± 12.19 a | 2.18 ± 0.02 a | 6.46 ± 0.40 bc | 551.28 ± 4.49 a | 1258.16 ± 31.19 a | |
Shoot | 0 (CK) | 5.18 ± 1.24 e | 184.38 ± 64.29 b | 142.76 ± 12.56 a | 2.30 ± 0.11 a | 9.93 ± 0.38 a | 611.71 ± 19.71 a | 468.87 ± 41.59 ab |
5 | 9.90 ± 0.74 de | 194.12 ± 17.73 b | 116.80 ± 3.07 b | 2.36 ± 0.11 a | 10.41 ± 0.28 a | 613.91 ± 18.59 a | 399.32 ± 14.45 bc | |
10 | 15.22 ± 3.17 cd | 159.13 ± 9.95 b | 139.76 ± 9.22 a | 2.25 ± 0.09 a | 10.57 ± 0.42 a | 619.12 ± 4.31 a | 427.61 ± 53.85 abc | |
15 | 22.61 ± 1.95 c | 157.55 ± 5.46 b | 92.48 ± 5.18 c | 2.17 ± 0.04 a | 10.50 ± 0.19 a | 628.87 ± 1.69 a | 508.01 ± 81.60 a | |
20 | 37.59 ± 5.09 b | 188.49 ± 59.92 b | 69.58 ± 3.72 d | 1.92 ± 0.07 a | 9.90 ± 0.51 a | 617.56 ± 13.74 a | 369.99 ± 22.06 c | |
25 | 54.42 ± 10.92 a | 284.56 ± 37.75 a | 24.53 ± 13.53 e | 1.76 ± 0.05 b | 10.33 ± 0.04 a | 610.94 ± 6.39 a | 429.62 ± 8.13 abc | |
Leaf | 0 (CK) | 15.73 ± 1.03 c | 582.29 ± 105.16 b | 154.83 ± 61.73 a | 1.64 ± 0.14 b | 9.33 ± 0.24 b | 591.93 ± 10.82 bc | 419.22 ± 17.65 a |
5 | 42.50 ± 11.98 c | 430.72 ± 38.95 c | 50.55 ± 15.87 c | 1.98 ± 0.02 a | 8.88 ± 0.47 b | 578.24 ± 0.12 c | 395.68 ± 13.37 ab | |
10 | 110.68 ± 20.55 b | 764.97 ± 8.18 a | 129.08 ± 36.24 ab | 1.77 ± 0.08 b | 10.02 ± 0.42 a | 608.11 ± 9.63 ab | 385.33 ± 39.15 ab | |
15 | 140.24 ± 22.71 a | 544.69 ± 51.38 b | 107.78 ± 21.95 abc | 1.98 ± 0.08 a | 10.63 ± 0.25 a | 624.74 ± 6.88 a | 399.63 ± 18.88 ab | |
20 | 96.19 ± 14.92 b | 297.97 ± 47.42 d | 85.29 ± 7.76 bc | 1.92 ± 0.07 a | 10.02 ± 0.37 a | 594.21 ± 6.85 bc | 359.64 ± 23.37 b | |
25 | 81.72 ± 15.32 b | 325.22 ± 43.20 d | 159.55 ± 28.86 a | 1.76 ± 0.05 b | 10.28 ± 0.22 a | 598.39 ± 3.19 b | 410.32 ± 28.43 a |
Cu2+ Concentration (mg·L−1) | Bioconcentration Factor | Translocation Factor | |||
---|---|---|---|---|---|
Root | Stem | Leaf | Stem/Root | Leaf/Root | |
5 | 190.071 ± 14.107 a | 2.043 ± 0.145 a | 9.868 ± 0.512 a | 0.011 ± 0.002 cd | 0.052 ± 0.001 bc |
10 | 155.476 ± 1.871 b | 1.366 ± 0.237 a | 9.884 ± 0.197 a | 0.009 ± 0.001 d | 0.064 ± 0.002 ab |
15 | 111.212 ± 11.424 c | 1.581 ± 0.036 a | 9.761 ± 1.889 a | 0.014 ± 0.002 bc | 0.089 ± 0.026 a |
20 | 114.324 ± 1.121 c | 1.764 ± 0.224 a | 4.722 ± 1.033 b | 0.015 ± 0.002 b | 0.041 ± 0.009 bc |
25 | 93.872 ± 3.040 c | 2.015 ± 0.474 a | 3.356 ± 0.838 b | 0.025 ± 0.000 a | 0.030 ± 0.001 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Li, X.; Huang, H.; Huang, M. Resistances and Physiological Responses of Impatiens uliginosa to Copper Stress. Horticulturae 2024, 10, 751. https://doi.org/10.3390/horticulturae10070751
Zhu J, Li X, Huang H, Huang M. Resistances and Physiological Responses of Impatiens uliginosa to Copper Stress. Horticulturae. 2024; 10(7):751. https://doi.org/10.3390/horticulturae10070751
Chicago/Turabian StyleZhu, Jiapeng, Xinyi Li, Haiquan Huang, and Meijuan Huang. 2024. "Resistances and Physiological Responses of Impatiens uliginosa to Copper Stress" Horticulturae 10, no. 7: 751. https://doi.org/10.3390/horticulturae10070751
APA StyleZhu, J., Li, X., Huang, H., & Huang, M. (2024). Resistances and Physiological Responses of Impatiens uliginosa to Copper Stress. Horticulturae, 10(7), 751. https://doi.org/10.3390/horticulturae10070751