Xylem Vessel Size Is Related to Grapevine Susceptibility to Phaeomoniella chlamydospora
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape and Fungal Material
2.2. Assessment of Vessel Features
2.3. Response to P. chlamydospora Artificial Inoculation
2.4. Data Analysis
3. Results
3.1. Xylem Vessel Features
3.2. Isolation of P. chlamydospora on Agar Medium
3.3. Vessel Sizes and Response to P. chlamydospora
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- I.Stat. Available online: http://dati.istat.it/ (accessed on 2 September 2023).
- Roselli, L.; Casieri, A.; De Gennaro, B.C.; Sardaro, R.; Russo, G. Environmental and economic sustainability of table grape production in Italy. Sustainability 2020, 12, 3670. [Google Scholar] [CrossRef]
- Ritrovato, E. The Wines of Apulia: The Creation of a Regional Brand. In A History of Wine in Europe, 19th to 20th Centuries, Volume II; Conca Messina, S., Le Bras, S., Tedeschi, P., Vaquero Piñeiro, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 117–135. [Google Scholar]
- Armijo, G.; Schlechter, R.; Agurto, M.; Muñoz, D.; Nuñez, C.; Arce-Johnson, P. Grapevine pathogenic microorganisms: Understanding infection strategies and host response scenarios. Front. Plant Sci. 2016, 7, 382. [Google Scholar] [CrossRef]
- Yadeta, K.; Thomma, B. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef] [PubMed]
- Deyett, E.; Pouzoulet, J.; Yang, J.I.; Ashworth, V.E.; Castro, C.; Roper, M.C.; Rolshausen, P.E. Assessment of Pierce’s disease susceptibility in Vitis vinifera cultivars with different pedigrees. Plant Pathol. 2019, 68, 1079–1087. [Google Scholar] [CrossRef]
- Bertsch, C.; Ramírez-Suero, M.; Magnin-Robert, M.; Larignon, P.; Chong, J.; Abou-Mansour, E.; Spagnolo, A.; Clément, C.; Fontaine, F. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathol. 2013, 62, 243–265. [Google Scholar] [CrossRef]
- Mugnai, L.; Graniti, A.; Surico, G. Esca (black measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Dis. 1999, 83, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Graniti, A.; Mugnai, L.; Surico, G. Esca of Grapevine: A Disease Complex or a Complex of Diseases? Phytopathol. Mediterr. 2000, 39, 16–20. [Google Scholar]
- Valtaud, C.; Larignon, P.; Roblin, G.; Fleurat-Lessard, P. Developmental and ultrastructural features of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum in relation to xylem degradation in esca disease of the grapevine. J. Plant Pathol. 2009, 91, 37–51. [Google Scholar]
- Fischer, J.; Thines, E. Secondary metabolites of fungal vine pathogens. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, G., Fröhlich, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 165–185. [Google Scholar]
- Feliciano, A.J.; Gubler, W.D.; Eskalen, A. Differential Susceptibility of Three Grapevine Cultivars to Phaeoacremonium aleophilum and Phaeomoniella chlamydospora in California. Phytopathol. Mediterr. 2004, 43, 66–69. [Google Scholar]
- Sofia, J.; Mota, M.; Goncalves, M.T.; Rego, C. Response of four Portuguese grapevine cultivars to infection by Phaeomoniella chlamydospora. Phytopathol. Mediterr. 2018, 57, 506–518. [Google Scholar]
- Eskalen, A.; Khan, A.; Gubler, W.D. Rootstock Susceptibility to Phaeomoniella chlamydospora and Phaeoacremonium spp. Phytopathol. Mediterr. 2001, 40, S433–S438. [Google Scholar]
- Pouzoulet, J.; Pivovaroff, A.L.; Santiago, L.S.; Rolshause, P.E. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Front. Plant Sci. 2014, 5, 253. [Google Scholar] [CrossRef] [PubMed]
- Pouzoulet, J.; Scudiero, E.; Schiavon, M.; Rolshausen, P.E. Xylem vessel diameter affects the compartmentalization of the vascular pathogen Phaeomoniella chlamydospora in grapevine. Front. Plant Sci. 2017, 8, 1442. [Google Scholar] [CrossRef] [PubMed]
- Chiaromonte, E.; Bottalico, G.; Lanotte, P.; Campanale, A.; Montilon, V.; Morano, M.; Saponari, A.; Pirolo, C.S.; Gerin, D.; Faretra, F.; et al. A Large-Scale Validation of an Improved Embryo-Rescue Protocol for the Obtainment of New Table-Grape Seedless Genotypes. Plants 2023, 12, 3469. [Google Scholar] [CrossRef]
- Cabanillas-Bojórquez, L.A.; Elizalde-Romero, C.A.; Gutiérrez-Grijalva, E.P.; Heredia, J.B. Plants’ Fungal Diseases and Phenolics Response. In Plant Phenolics in Biotic Stress Management; Springer Nature: Singapore, 2024; pp. 325–337. [Google Scholar]
- Khanday, A.H.; Badroo, I.A.; Wagay, N.A.; Rafiq, S. Role of Phenolic Compounds in Disease Resistance to Plants. In Plant Phenolics in Biotic Stress Management; Springer Nature: Singapore, 2024; pp. 455–479. [Google Scholar]
- Foglia, R.; Landi, L.; Romanazzi, G. Analyses of Xylem Vessel Size on Grapevine Cultivars and Relationship with Incidence of Esca Disease, a Threat to Grape Quality. Appl. Sci. 2022, 12, 1177. [Google Scholar] [CrossRef]
- Roduit, N. JMicroVision: Image Analysis Toolbox for Measuring and Quantifying Components of High-Definition Images. Version 1.3.1. Available online: https://jmicrovision.github.io (accessed on 27 April 2021).
- Ayres, M.R.; Wicks, T.J.; Scott, E.S.; Sosnowski, M.R. Developing pruning wound protection strategies for managing Eutypa dieback. Aust. J. Grape Wine Res. 2017, 23, 103–111. [Google Scholar] [CrossRef]
- Pouzoulet, J.; Rolshausen, P.E.; Charbois, R.; Chen, J.; Guillaumie, S.; Ollat, N.; Gambetta, G.A.; Delmas, C.E. Behind the curtain of the compartmentalization process: Exploring how xylem vessel diameter impacts vascular pathogen resistance. Plant Cell Environ. 2020, 43, 2782–2796. [Google Scholar] [CrossRef] [PubMed]
- Scoffoni, C.; Chatelet, D.S.; Pasquet-Kok, J.; Rawls, M.; Donoghue, M.J.; Edwards, E.J.; Sack, L. Hydraulic basis for the evolution of photosynthetic productivity. Nat. Plants 2016, 2, 16072. [Google Scholar] [CrossRef] [PubMed]
- Beckman, C.H.; Roberts, E.M. On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. In Advances in Botanical Research; Callow, J.A., Andrews, J.H., Tommerup, I.C., Eds.; Academic Press Harcourt Brace & Company Publishers: San Diego, CA, USA, 1995; Volume 21, pp. 35–77. [Google Scholar]
- Morris, H.; Brodersen, C.; Schwarze, F.W.; Jansen, S. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci. 2016, 7, 1665. [Google Scholar] [CrossRef]
- Pouzoulet, J.; Scudiero, E.; Schiavon, M.; Santiago, L.S.; Rolshausen, P.E. Modeling of xylem vessel occlusion in grapevine. Tree Physiol. 2019, 39, 1438–1445. [Google Scholar] [CrossRef]
- Lovisolo, C.; Schubert, A. Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J. Exp. Bot. 1998, 49, 693–700. [Google Scholar]
- Palliotti, A.; Tombesi, S.; Frioni, T.; Famiani, F.; Silvestroni, O.; Zamboni, M.; Poni, S. Morpho-structural and physiological response of container-grown Sangiovese and Montepulciano cvv. (Vitis vinifera) to re-watering after a pre-veraison limiting water deficit. Funct. Plant Biol. 2014, 41, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Bortolami, G.; Farolfi, E.; Badel, E.; Burlett, R.; Cochard, H.; Ferrer, N.; King, A.; Lamarque, L.J.; Lecomte, P.; Marchesseau-Marchal, M.; et al. Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity. J. Exp. Bot. 2021, 72, 3914–3928. [Google Scholar] [CrossRef] [PubMed]
- Eskalen, A.; Feliciano, A.J.; Gubler, W.D. Susceptibility of grapevine pruning wounds and symptom development in response to infection by Phaeoacremonium aleophilum and Phaeomoniella chlamydospora. Plant Dis. 2007, 91, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- Van Niekerk, J.M.; Halleen, F.; Fourie, P.H. Temporal susceptibility of grapevine pruning wounds to trunk pathogen infection in South African grapevines. Phytopathol. Mediterr. 2011, 50, S139–S150. [Google Scholar]
- Díaz, G.A.; Latorre, B.A. Efficacy of paste and liquid fungicide formulations to protect pruning wounds against pathogens associated with grapevine trunk diseases in Chile. Crop. Prot. 2013, 46, 106–112. [Google Scholar] [CrossRef]
- Pollastro, S.; Faretra, F.; Abbatecola, A.; Dongiovanni, C. Observations on the fungi associated with esca and on spatial distribution of esca-symptomatic plants in Apulian (Italy) vineyards. Phytopathol. Mediterr. 2000, 39, 206–210. [Google Scholar]
- Edwards, J.; Pascoe, I.G.; Salib, S.; Laukart, N. Phaeomoniella chlamydospora can spread into grapevine canes from trunks of infected mother vines. In Proceedings of the Eigth International Congress of Plant Pathology, Christchurch, New Zealand, 2–7 February 2003. [Google Scholar]
- Landi, L.; Murolo, S.; Romanazzi, G. Colonization of Vitis spp. wood by sGFP-transformed Phaeomoniella chlamydospora, a tracheomycotic fungus involved in esca disease. Phytopathology 2012, 102, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Pollastro, S.; Gerin, D.; Dongiovanni, C.; Fumarola, G.; Di Carolo, M.; De Miccolis Angelini, R.M.; Rotolo, C.; Faretra, F. Effects of Trichoderma asperellum and Trichoderma gamsii and hot water treatment on Phaeomoniella chlamydospora in grapevine plant propagation material. Phytopathol. Mediterr. 2019, 58, 424–425. [Google Scholar]
- Shigo, A.L. Compartmentalization: A conceptual framework for understanding how trees grow and defend themselves. Annu. Rev. Phytopathol. 1984, 22, 189–214. [Google Scholar] [CrossRef]
- Martín, J.A.; Solla, A.; Coimbra, M.A.; Gil, L. Metabolic distinction of Ulmus minor xylem tissues after inoculation with Ophiostoma novo-ulmi. Phytochemistry 2005, 66, 2458–2467. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.; Khiook, I.L.K.; Lucas, S.; Télef-Micouleau, N.; Mérillon, J.M.; Cluzet, S. A faster and a stronger defense response: One of the key elements in grapevine explaining its lower level of susceptibility to esca? Phytopathology 2013, 103, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, S.A.; Stewart, A.; Ridgway, H.J.; Jaspers, M.V. Infection of rootstock mother-vines by Phaeomoniella chlamydospora results in infected young grapevines. Australas. Plant Pathol. 2007, 36, 198–203. [Google Scholar] [CrossRef]
- Csótó, A.; Nagy, A.; Laurinyecz, N.; Nagy, Z.A.; Németh, C.; Németh, E.K.; Csikász-Krizsics, A.; Rakonczás, N.; Fontaine, F.; Fekete, E.; et al. Hybrid Vitis Cultivars with American or Asian Ancestries Show Higher Tolerance towards Grapevine Trunk Diseases. Plants 2023, 12, 2328. [Google Scholar] [CrossRef] [PubMed]
Variety/Rootstock 1 | Berry Color 2 | Cuttings Features 3 | ||
---|---|---|---|---|
Cross-Section | Internode Length (cm) | |||
Shape | Diameter (mm) | |||
Table grapes (Experiment 1) | ||||
Allison | Red | Slightly flattened | 9.7 ± 0.3 | 8–12 |
Flame | Red | Rounded–elliptical | 8.6 ± 0.1 | 9–12 |
Italia | White | Rounded–elliptical | 8.1 ± 0.4 | 10–12 |
Red Globe | Red | Rounded | 8.3 ± 0.1 | 8–12 |
Regal | White | Elliptical | 9.2 ± 0.2 | 9–11 |
Sable | Black | Rounded–elliptical | 10.0 ± 0.1 | 10–13 |
Sugar Crisp | White | Elliptical | 8.4 ± 0.3 | 9–12 |
Sugraone | White | Rounded | 8.5 ± 0.3 | 8–12 |
Timco | Red | Rounded | 10.8 ± 0.3 | 9–12 |
Victoria | White | Rounded–elliptical | 8.5 ± 0.2 | 8–10 |
Wine grapes (Experiment 2) | ||||
Aglianico | Black | Elliptical | 9.0 ± 0.2 | 8–12 |
Bombino Bianco | White | Rounded | 9.0 ± 0.1 | 9–12 |
Bombino nero | Black | Rounded | 8.7 ± 0.2 | 12–13 |
Cabernet Sauvignon | Black | Rounded–elliptical | 8.5 ± 0.2 | 8–11 |
Malvasia nera di Brindisi | Black | Rounded–elliptical | 9.3 ± 0.2 | 7–11 |
Merlot | Black | Slightly flattened | 9.5 ± 0.3 | 7–10 |
Minutolo | White | Rounded | 9.4 ± 0.2 | 8–11 |
Montepulciano | Black | Elliptical | 9.3 ± 0.2 | 7–10 |
Moscato bianco | White | Elliptical | 9.5 ± 0.2 | 9–12 |
Negroamaro D15 | Black | Elliptical | 9.1 ± 0.2 | 8–10 |
Negroamaro D18 | Black | Rounded–elliptical | 9.6 ± 0.3 | 8–10 |
Nero di Troia | Black | Elliptical | 8.7 ± 0.2 | 8–12 |
Primitivo CDTA19 | Black | Slightly flattened | 10.0 ± 0.2 | 8–10 |
Primitivo UBA 55/A | Black | Slightly flattened | 9.2 ± 0.2 | 8–10 |
Sangiovese | Black | Elliptical | 9.2 ± 0.2 | 8–11 |
Susumaniello | Black | Elliptical | 8.5 ± 0.2 | 7–10 |
Verdeca | White | Rounded–elliptical | 9.7 ± 0.2 | 7–10 |
Rootstocks (Experiment 2) | ||||
34 E.M. | - | Rounded | 7.3 ± 0.3 | 12–15 |
1103 Paulsen | - | Rounded | 8.2 ± 0.2 | 12–16 |
140 Ruggeri | - | Rounded | 7.5 ± 0.2 | 12–15 |
Variety/Rootstock | Vessel Characteristics 1 | Section Area (mm2) 1 | ||
---|---|---|---|---|
Diameter (µm) | Perimeter (µm) | Density (No./mm2) | ||
Table grapes | ||||
Allison | 58.8 ± 3.9 b | 214.8 ± 16.0 bc | 26.3 ± 2.3 ab | 20.1 ± 2.9 |
Flame | 60.8 ± 3.4 b | 222.8 ± 12.9 abc | 24.8 ± 2.2 b | 29.9 ± 2.7 |
Italia | 64.2 ± 1.7 ab | 220.3 ± 7.2 bc | 26.6 ± 2.5 ab | 29.5 ± 2.6 |
Red Globe | 70.5 ± 2.9 a | 251.0 ± 11.1 a | 28.4 ± 1.5 ab | 27.6 ± 1.1 |
Regal | 60.1 ± 2.2 b | 229.4 ± 7.2 abc | 25.0 ± 1.8 ab | 25.3 ± 2.1 |
Sable | 65.5 ± 3.9 ab | 244.7 ± 14.4 ab | 29.7 ± 2.3 a | 24.3 ± 1.8 |
Sugar Crisp | 61.9 ± 3.6 b | 219.1 ± 12.3 bc | 26.0 ± 1.9 ab | 18.5 ± 1.3 |
Sugarone | 61.4 ± 2.9 b | 224.4 ± 11.5 abc | 28.0 ± 1.5 ab | 30.7 ± 1.5 |
Timco | 63.4 ± 4.5 ab | 241.1 ± 16.9 abc | 27.1 ± 2.0 ab | 27.5 ± 2.1 |
Victoria | 60.2 ± 2.3 b | 212.0 ± 8.5 c | 28.4 ± 1.5 ab | 28.1 ± 1.2 |
Wine grapes | ||||
Aglianico | 54.8 ± 2.5 de | 200.5 ± 10.0 cde | 20.0 ± 2.0 e | 42.2 ± 1.6 |
Bombino bianco | 55.7 ± 1.9 cde | 210.9 ± 7.7 bcd | 20.6 ± 2.1 e | 33.3 ± 1.2 |
Bombino nero | 61.9 ± 3.3 ab | 223.2 ± 11.3 abc | 20.8 ± 1.6 e | 29.1 ± 1.4 |
Cabernet Sauvignon | 55.8 ± 2.0 cde | 224.2 ± 13.8 abc | 19.8 ± 3.0 e | 46.0 ± 3.4 |
Malvasia nera di Brindisi | 55.2 ± 1.9 de | 201.8 ± 7.5 cde | 21.2 ± 2.0 de | 39.5 ± 2.1 |
Merlot | 63.8 ± 1.4 a | 240.9 ± 6.9 a | 20.4 ± 1.4 e | 50.6 ± 2.8 |
Minutolo | 62.4 ± 2.2 ab | 218.4 ± 6.7 abcd | 26.6 ± 1.4 abc | 31.7 ± 1.3 |
Montepulciano | 61.2 ± 2.0 abc | 207.0 ± 24.4 bcde | 24.1 ± 1.9 bcde | 30.7 ± 1.8 |
Moscato Bianco | 57.9 ± 2.1 bcd | 209.1 ± 9.0 bcd | 24.1 ± 1.6 bcde | 30.8 ± 1.5 |
Negroamaro D15 | 57.8 ± 3.8 bcd | 220.7 ± 17.9 abcd | 20.8 ± 1.6 e | 33.3 ± 2.7 |
Negroamaro D18 | 61.1 ± 3.4 abc | 225.8 ± 12.9 abc | 20.5 ± 2.0 e | 53.3 ± 3.8 |
Nero di Troia | 45.6 ± 1.4 f | 167.9 ± 5.0 f | 20.3 ± 2.1 e | 30.6 ± 2.0 |
Primitivo CdTa19 | 60.0 ± 4.0 abcd | 221.2 ± 13.7 abcd | 25.1 ± 3.9 abcd | 32.3 ± 1.6 |
Primitivo UBA 55/A | 59.0 ± 3.5 abcd | 214.7 ± 12.2 bcd | 22.0 ± 1.5 cde | 31.5 ± 1.6 |
Sangiovese | 54.7 ± 1.3 de | 197.2 ± 4.8 de | 28.9 ± 2.6 a | 33.5 ± 1.5 |
Susumaniello | 50.5 ± 1.8 ef | 181.6 ± 6.5 ef | 27.2 ± 2.1 ab | 21.6 ± 1.0 |
Verdeca | 63.7 ± 2.1 a | 229.8 ± 6.9 ab | 25.6 ± 2.1 abcd | 38.1 ± 2.2 |
Rootstocks | ||||
34 E.M. | 49.7 ± 4.1 b | 184.6 ± 15.3 b | 25.5 ± 2.5 a | 19.9 ± 2.4 |
1103 Paulsen | 59.9 ± 2.6 a | 228.9 ± 9.3 a | 23.5 ± 1.7 a | 29.6 ± 1.9 |
140 Ruggeri | 54.3 ± 2.6 ab | 209.1 ± 9.8 a | 24.1 ± 2.3 a | 24.7 ± 1.7 |
Variety/Rootstock | Pch Isolation (%) 1 | Proportion of Xylem Area (%) 1 |
---|---|---|
Aglianico | 43:57 | 87:13 |
Bombino bianco | 42:58 | 88:12 |
Bombino nero | 50:50 | 94:6 |
Malvasia nera di brindisi | 40:60 | 83:17 |
Minutolo | 51:49 | 95:5 |
Montepulciano | 47:53 | 91:9 |
Moscato bianco | 39:61 | 86:14 |
Nero di Troia | 47:53 | 83:17 |
Negroamaro D15 | 36:64 | 80:20 |
Negroamaro D18 | 43:57 | 80:20 |
Primitivo CdTa19 | 41:59 | 82:18 |
Primitivo UBA55/A | 38:62 | 79:21 |
Sangiovese | 47:53 | 85:15 |
Verdeca | 48:52 | 90:10 |
Susumaniello | 44:56 | 81:19 |
Merlot | 39:61 | 86:14 |
Cabernet Sauvignon | 48:52 | 88:12 |
34 E.M. | 36:64 | 69:31 |
1103 Paulsen | 47:53 | 88:12 |
140 Ruggeri | 37:63 | 76:24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerin, D.; Chimienti, N.; Agnusdei, A.; Mannerucci, F.; De Miccolis Angelini, R.M.; Faretra, F.; Pollastro, S. Xylem Vessel Size Is Related to Grapevine Susceptibility to Phaeomoniella chlamydospora. Horticulturae 2024, 10, 750. https://doi.org/10.3390/horticulturae10070750
Gerin D, Chimienti N, Agnusdei A, Mannerucci F, De Miccolis Angelini RM, Faretra F, Pollastro S. Xylem Vessel Size Is Related to Grapevine Susceptibility to Phaeomoniella chlamydospora. Horticulturae. 2024; 10(7):750. https://doi.org/10.3390/horticulturae10070750
Chicago/Turabian StyleGerin, Donato, Nicola Chimienti, Angelo Agnusdei, Francesco Mannerucci, Rita Milvia De Miccolis Angelini, Francesco Faretra, and Stefania Pollastro. 2024. "Xylem Vessel Size Is Related to Grapevine Susceptibility to Phaeomoniella chlamydospora" Horticulturae 10, no. 7: 750. https://doi.org/10.3390/horticulturae10070750
APA StyleGerin, D., Chimienti, N., Agnusdei, A., Mannerucci, F., De Miccolis Angelini, R. M., Faretra, F., & Pollastro, S. (2024). Xylem Vessel Size Is Related to Grapevine Susceptibility to Phaeomoniella chlamydospora. Horticulturae, 10(7), 750. https://doi.org/10.3390/horticulturae10070750