Evaluating the Susceptibility of Different Crops to Smoke Taint
Abstract
:1. Introduction
2. Materials and Methods
2.1. Application of Smoke to Different Crops
2.2. Volatile Phenol Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Sample Preparation and Method Validation
3.2. Susceptibility of Different Crops to Smoke Taint
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennison, K.R.; Wilkinson, K.L.; Williams, H.G.; Smith, J.H.; Gibberd, M.R. Smoke-derived taint in wine: Effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. J. Agric. Food Chem. 2007, 55, 10897–10901. [Google Scholar] [CrossRef]
- Kennison, K.R.; Wilkinson, K.L.; Pollnitz, A.P.; Williams, H.G.; Gibberd, M.R. Effect of timing and duration of grapevine exposure to smoke on the composition and sensory properties of wine. Aust. J. Grape Wine Res. 2009, 15, 228–237. [Google Scholar] [CrossRef]
- Sheppard, S.I.; Dhesi, M.K.; Eggers, N.J. Effect of pre-veraison and postveraison smoke exposure on guaiacol and 4-methylguaiacol concentration in mature grapes. Am. J. Enol. Vitic. 2009, 60, 98–103. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Dungey, K.A.; Baldock, G.A.; Kennison, K.R.; Wilkinson, K.L. Identification of a β-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Anal. Chim. Acta 2010, 660, 143–148. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Baldock, G.A.; Parker, M.; Pardon, K.H.; Black, C.A.; Herderich, M.J.; Jeffery, D.W. Glycosylation of smoke derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke. J. Agric. Food Chem. 2010, 58, 10989–10998. [Google Scholar] [CrossRef] [PubMed]
- Kennison, K.R.; Wilkinson, K.L.; Pollnitz, A.P.; Williams, H.G.; Gibberd, M.R. Effect of smoke application to field-grown Merlot grapevines at key phenological growth stages on wine sensory and chemical properties. Aust. J. Grape Wine Res. 2011, 17, S5–S12. [Google Scholar] [CrossRef]
- Ristic, R.; Osidacz, P.; Pinchbeck, K.A.; Hayasaka, Y.; Fudge, A.L.; Wilkinson, K.L. The effect of winemaking techniques on the intensity of smoke taint in wine. Aust. J. Grape Wine Res. 2011, 17, S29–S40. [Google Scholar] [CrossRef]
- Singh, D.P.; Chong, H.H.; Pitt, K.M.; Cleary, M.; Dokoozlian, N.; Downey, M.O. Guaiacol and 4-methylguaiacol accumulate in wines made from smoke-affected fruit because of hydrolysis of their conjugates. Aust. J. Grape Wine Res. 2011, 17, S13–S21. [Google Scholar] [CrossRef]
- Wilkinson, K.L.; Ristic, R.; Pinchbeck, K.A.; Fudge, A.L.; Singh, D.P.; Pitt, K.M.; Downey, M.O.; Baldock, G.A.; Hayasaka, Y.; Parker, M.; et al. Comparison of methods for the analysis of smoke related phenols and their conjugates in grapes and wine. Aust. J. Grape Wine Res. 2011, 17, S22–S28. [Google Scholar] [CrossRef]
- Fudge, A.L.; Ristic, R.; Wollan, D.; Wilkinson, K.L. Amelioration of smoke taint in wine by reverse osmosis and solid phase adsorption. Aust. J. Grape Wine Res. 2011, 17, S41–S48. [Google Scholar] [CrossRef]
- Kelly, D.; Zerihun, A.; Singh, D.P.; Vitzthum von Eckstaedt, C.; Gibberd, M.; Grice, K.; Downey, M. Exposure of grapes to smoke of vegetation with varying lignin composition and accretion of lignin derived putative smoke taint compounds in wine. Food Chem. 2012, 135, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.; Osidacz, P.; Baldock, G.A.; Hayasaka, Y.; Black, C.A.; Pardon, K.H.; Jeffery, D.W.; Geue, J.P.; Herderich, M.J.; Francis, I.L. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem. 2012, 60, 2629–2637. [Google Scholar] [CrossRef]
- Fudge, A.L.; Schiettecatte, M.; Ristic, R.; Hayasaka, Y.; Wilkinson, K.L. Amelioration of smoke taint in wine by treatment with commercial fining agents. Aust. J. Grape Wine Res. 2012, 18, 302–307. [Google Scholar] [CrossRef]
- Bell, T.L.; Stephens, S.L.; Moritz, M.A. Short-term physiological effects of smoke on grapevine leaves. Int. J. Wildland Fire 2013, 22, 933–946. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Parker, M.; Baldock, G.A.; Pardon, K.H.; Black, C.A.; Jeffery, D.W.; Herderich, M.J. Assessing the impact of smoke exposure in grapes: Development and validation of an HPLC-MS/MS method for the quantitative analysis of smoke-derived phenolic glycosides in grapes and wine. J. Agric. Food Chem. 2013, 61, 25–33. [Google Scholar] [CrossRef]
- Mayr, C.M.; Parker, M.; Baldock, G.A.; Black, C.A.; Pardon, K.H.; Williamson, P.O.; Herderich, M.J.; Francis, I.L. Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wine. J. Agric. Food Chem. 2014, 62, 2327–2336. [Google Scholar] [CrossRef]
- Ristic, R.; Fudge, A.L.; Pinchbeck, K.A.; De Bei, R.; Fuentes, S.; Hayasaka, Y.; Tyerman, S.D.; Wilkinson, K.L. Impact of grapevine exposure to smoke on vine physiology and the composition and sensory properties of wine. Theor. Exp. Plant Physiol. 2016, 28, 67–83. [Google Scholar] [CrossRef]
- Culbert, J.A.; Jiang, W.; Bilogrevic, E.; Likos, D.; Francis, I.L.; Krstic, M.P.; Herderich, M.J. Compositional changes in smoke-affected grape juice as a consequence of activated carbon treatment and the impact on phenolic compounds and smoke flavor in wine. J. Agric. Food Chem. 2021, 69, 10246–10259. [Google Scholar] [CrossRef]
- Krstic, M.P.; Johnson, D.L.; Herderich, M.J. Review of smoke taint in wine: Smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 2015, 21, 537–553. [Google Scholar] [CrossRef]
- De Vries, C.J.; Buica, A.; Brand, J.; Mckay, M. The impact of smoke from vegetation fires on sensory characteristics of Cabernet Sauvignon wines made from affected grapes. S. Afr. J. Enol. Vitic. 2016, 37, 22–31. [Google Scholar] [CrossRef]
- Ristic, R.; van der Hulst, L.; Capone, D.L.; Wilkinson, K.L. Impact of bottle aging on smoke-tainted wines from different grape cultivars. J. Agric. Food Chem. 2017, 65, 4146–4152. [Google Scholar] [CrossRef] [PubMed]
- Noestheden, M.; Thiessen, K.; Dennis, E.G.; Zandberg, W.F. Quantitating organoleptic volatile phenols in smoke-exposed Vitis vinifera berries. J. Agric. Food Chem. 2017, 65, 8418–8425. [Google Scholar] [CrossRef] [PubMed]
- Noestheden, M.; Dennis, E.G.; Romero-Montalvo, E.; DiLabio, G.A.; Zandberg, W.F. Detailed characterization of glycosylated sensory-active volatile phenols in smoke-exposed grapes and wine. Food Chem. 2018, 259, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, A.; Lerno, L.; Rumbaugh, A.; Girardello, R.; Zweigenbaum, J.; Oberholster, A.; Ebeler, S.E. Changes in smoke-taint volatile-phenol glycosides in wildfire smoke-exposed Cabernet Sauvignon grapes throughout winemaking. Am. J. Enol. Vitic. 2019, 70, 373–381. [Google Scholar] [CrossRef]
- McKay, M.; Bauer, F.F.; Panzeri, V.; Mokwena, L.; Buica, A. Profiling potentially smoke tainted red wines: Volatile phenols and aroma attributes. S. Afr. J. Enol. Vitic. 2019, 40, 1–16. [Google Scholar]
- Szeto, C.; Ristic, R.; Capone, D.; Puglisi, C.; Pagay, V.; Culbert, J.; Jiang, W.; Herderich, M.; Tuke, J.; Wilkinson, K. Uptake and glycosylation of smoke-derived volatile phenols by Cabernet Sauvignon grapes and their subsequent fate during winemaking. Molecules 2020, 25, 3720. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Summerson, V.; Gonzalez Viejo, C.; Tongson, E.; Lipovetzky, N.; Wilkinson, K.L.; Szeto, C.; Unnithan, R.R. Assessment of smoke contamination in grapevine berries and taint in wines due to bushfires using a low-cost e-nose and an artificial intelligence approach. Sensors 2020, 20, 5108. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Alcazar-Magana, A.; Qian, Y.L.; Qian, M.C. Smoke-derived volatile phenol analysis in wine by stir bar sorptive extraction-gas chromatography-mass spectrometry. Molecules 2021, 26, 5613. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli-Montan, Y.A.; Marangon, M.; Graça, A.; Mayr Marangon, C.M.; Wilkinson, K.L. Techniques for mitigating the effects of smoke taint while maintaining quality in wine production: A review. Molecules 2021, 26, 1672. [Google Scholar] [CrossRef]
- Wilkinson, K.; Ristic, R.; McNamara, I.; Loveys, B.; Jiang, W.W.; Krstic, M. Evaluating the potential for smoke from stubble burning to taint grapes and wine. Molecules 2021, 26, 7540. [Google Scholar] [CrossRef]
- Modesti, M.; Szeto, C.; Ristic, R.; Jiang, W.W.; Culbert, J.; Bindon, K.; Catelli, C.; Mencarelli, F.; Tonutti, P.; Wilkinson, K. Potential mitigation of smoke taint in wines by post-harvest ozone treatment of grapes. Molecules 2021, 26, 1798. [Google Scholar] [CrossRef]
- Wilkinson, K.L.; Ristic, R.; Szeto, C.; Capone, D.L.; Yu, L.; Losic, D. Novel use of activated carbon fabric to mitigate smoke taint in grapes and wine. Aust. J. Grape Wine Res. 2022, 28, 500–507. [Google Scholar] [CrossRef]
- Coulter, A.; Baldock, G.; Parker, M.; Hayasaka, Y.; Francis, I.L.; Herderich, M. Concentration of smoke marker compounds in non-smoke-exposed grapes and wine in Australia. Aust. J Grape Wine Res. 2022, 28, 459–474. [Google Scholar] [CrossRef]
- Jiang, W.W.; Bilogrevic, E.; Parker, M.; Francis, I.L.; Leske, P.; Hayasaka, Y.; Barter, S.; Herderich, M. The effect of pre-veraison smoke exposure of grapes on phenolic compounds and smoky flavour in wine. Aust. J. Grape Wine Res. 2022, 2022, 9820204. [Google Scholar] [CrossRef]
- Szeto, C.; Ristic, R.; Wilkinson, K. Thinking inside the box: A novel approach to smoke taint mitigation trials. Molecules 2022, 27, 1667. [Google Scholar] [CrossRef] [PubMed]
- Crews, P.; Dorenbach, P.; Amberchan, G. Appraising California Zinfandel exposure to wildfire smoke using natural product phenolic diglycosides biomarkers. J. Agric. Food Chem. 2022, 70, 11738–11748. [Google Scholar] [CrossRef]
- Favell, J.W.; Wilkinson, K.L.; Zigg, I.; Lyons, S.M.; Ristic, R.; Puglisi, C.J.; Wilkes, E.; Taylor, R.; Kelly, D.; Howell, G.; et al. Correlating sensory assessment of smoke-tainted wines with inter-laboratory study consensus values for volatile phenols. Molecules 2022, 27, 4892. [Google Scholar] [CrossRef]
- Tomasino, E.; Cerrato, D.C.; Aragon, M.; Fryer, J.; Garcia, L.; Ashmore, P.L.; Collins, T.S. A combination of thiophenols and volatile phenols cause the ashy flavor of smoke taint in wine. Food Chem. Adv. 2023, 2, 100256. [Google Scholar] [CrossRef]
- Szeto, C.; Lloyd, N.; Nicolotti, L.; Herderich, M.J.; Wilkinson, K.L. Beyond volatile phenols: An untargeted metabolomic approach to revealing additional markers of smoke taint in grapevines (Vitis vinifera L.) cv. Merlot. J. Agric. Food Chem. 2024, 72, 2018–2033. [Google Scholar] [CrossRef]
- Szeto, C.; Feng, H.; Aui, Q.; Blair, B.; Mayfield, S.; Pan, B.; Wilkinson, K. Exploring variation in grape and wine volatile phenol glycoconjugates to improve evaluation of smoke taint risk. Am. J. Enol. Vitic. 2024, 75, 0750013. [Google Scholar] [CrossRef]
- Farmer, A. Effects of Particulates. In Air Pollution and Plant Life, 2nd ed.; Bell, J.N.B., Treshow, M., Eds.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2002; pp. 187–199. [Google Scholar]
- Zalud, P.; Szakova, J.; Sysalova, J.; Tlustos, P. Factors influencing uptake of contaminated particulate matter in leafy vegetables. Cent. Eur. J. Biol. 2012, 7, 519–530. [Google Scholar] [CrossRef]
- Anand, P.; Minab, U.; Kharea, M.; Kumarc, P.; Kota, S.H. Air pollution and plant health response-current status and future directions. Atmos. Pollut. Res. 2022, 13, 101508. [Google Scholar] [CrossRef]
- Jouraeva, V.A.; Johnson, D.L.; Hassett, J.P.; Nowak, D.J. Differences in accumulation of PAHs and metals on the leaves of Tilia×euchlora and Pyrus calleryana. Environ. Pollut. 2002, 120, 331–338. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, I.; Pérez-Vázquez, L.; de Pablos-Pons, F.; Fernández-Espinosa, A.J. Toxic metals from atmospheric particulate matter in food species of tomato (Solanum lycopersicum) and strawberry (Fragaria x ananassa) used in urban gardening. A closed chamber study. Chemosphere 2023, 340, 139921. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Alexander, J. A HS-SPME arrow/GC-MS method for determination of smoke taint-related volatile phenols in Humulus lupulus. J. Am. Soc. Brew. Chem. 2022, 80, 128–135. [Google Scholar] [CrossRef]
- Boidron, J.N.; Chatonnet, P.; Pons, M. Effects of wood on aroma compounds of wine. Conn. Vigne Vin. 1988, 22, 275–294. [Google Scholar]
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Dodds, K. Bushfires in Apple Orchards: Observations from the 2019–2020 Season (Department of Regional NSW). 2020; p. 36. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/1285392/Bushfires-in-apple-orchards.pdf (accessed on 2 July 2024).
- Dodds, K.A.; Holzapfel, B.P.; Wilkinson, K.L. Assessing the potential for bushfire smoke exposure of apples (Malus domestic Borkh) to affect the composition and sensory characteristics of cider. Acta Hortic. 2024, 1387, 57–66. [Google Scholar] [CrossRef]
- Ubeda, C.; San-Juan, F.; Concejero, B.; Callejón, R.M.; Troncoso, A.M.; Lourdes Morales, M.; Ferreira, V.; Hernández-Orte, P. Glycosidically bound aroma compounds and impact odorants of four strawberry varieties. J. Agric. Food Chem. 2012, 60, 6095–6120. [Google Scholar] [CrossRef]
- Mateo, J.; Aguirrezábal, M.; Domínguez, C.; Zumalacárregui, J.M. Volatile compound in Spanish paprika. J. Food Compos. Anal. 1997, 10, 225–232. [Google Scholar] [CrossRef]
- Martín, A.; Hernández, A.; Aranda, E.; Casquete, R.; Velázquez, R.; Bartolomé, T.; Córdoba, M.G. Impact of volatile composition on the sensorial attributes of dried paprikas. Food Res. Int. 2017, 100, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Tikunov, Y.M.; Molthoff, J.; de Vos, R.C.H.; Beekwilder, J.; van Houwelingen, A.; van der Hooft, J.J.J.; Nijenhuis-de Vries, M.; Labrie, C.W.; Verkerke, W.; van de Geest, H.; et al. Non-Smoky Glycosyltransferase prevents the release of smoky aroma from tomato fruit. Plant Cell 2013, 25, 3067–3078. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadkyay, A.K. Flavors, fragrances, and food additives from cresol derivatives. In Industrial Chemical Cresols and Downstream Derivatives, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 151–167. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B. Phenanthrene sorption by fruit cuticles and potato periderm with different compositional characteristics. J. Agric. Food Chem. 2009, 57, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, C.; Ristic, R.; Saint, J.; Wilkinson, K. Evaluation of spinning cone column distillation as a strategy for remediation of smoke taint in juice and wine. Molecules 2022, 27, 8096. [Google Scholar] [CrossRef] [PubMed]
Sample | Guaiacol | 4-Methyl Guaiacol | Phenol | o-Cresol | m-Cresol | p-Cresol | Syringol | 4-Methyl Syringol |
---|---|---|---|---|---|---|---|---|
grapes | 102 | 102 | 99 | 102 | 100 | 197 | 98 | 100 |
apple peel | 103 | 125 | 114 | 114 | 118 | 112 | na | na |
apple pulp | 99 | 117 | 106 | 119 | 119 | 117 | na | na |
banana peel | 96 | 98 | 116 | 113 | 119 | 72 | na | na |
banana pulp | 102 | 118 | 110 | 118 | 120 | 70 | na | na |
broccolini | 103 | 119 | 97 | 106 | 108 | 109 | na | na |
capsicum | 98 | 126 | 118 | 117 | 117 | 119 | na | na |
cherry | 100 | 123 | 119 | 115 | 118 | 104 | na | na |
lavender | 70 | 90 | nq | 48 | 93 | nq | na | na |
lemon peel | 92 | 135 | nq | nq | 69 | nq | na | na |
lemon pulp | 97 | 120 | 112 | 121 | 112 | 118 | na | na |
spinach | 105 | 90 | 84 | 121 | 111 | 17 | na | na |
strawberry | 103 | 123 | 108 | 119 | 116 | 119 | na | na |
tomato | 106 | 111 | 102 | 105 | 105 | 395 | 95 | 111 |
Sample | Guaiacol | 4-Methyl Guaiacol | Phenol | o-Cresol | m-Cresol | p-Cresol | Syringol | 4-Methyl Syringol | |
---|---|---|---|---|---|---|---|---|---|
grapes | C | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
S | 87 ± 7 | 2 ± 0.5 | <1 | 60 ± 7 | 10 ± 2 | 22 ± 4 | 18 ± 3 | 3 ± 0.3 | |
apple peel | C | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
S | 55 ± 14 | <5 | 64 ± 29 | 178 ± 97 | 42 ±13 | 14 ± 6 | <5 | <5 | |
apple pulp | C | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
S | 17 ± 4 | <5 | 20 ± 7 | 11 ± 1 | 7 ± 2 | 7 ± 6 | <5 | <5 | |
banana peel | C | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
S | 7 ± 3 | <5 | 75 ± 45 | 83 ± 11 | 85 ±9 | 15 ± 4 | <5 | <5 | |
banana pulp | C | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
S | <5 | <5 | 6 ± 2 | <5 | <5 | <5 | <5 | <5 | |
broccolini | C | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
S | 6 ± 1 | <5 | 225 ± 37 | 7 ± 1 | 51 ± 13 | 5 ± 0.2 | <5 | <5 | |
capsicum | C | 18 ± 6 b | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
S | 298 ± 25 a | 34 ± 6 | 620 ± 11 | 268 ± 11 | 180 ± 12 | 199 ± 23 | 120 ± 14 | 21 ± 1 | |
cherry | C | 7 ± 5 b | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
S | 361 ± 33 a | 26 ± 7 | 49 ± 29 | 248 ± 19 | 59 ± 12 | 56 ± 19 | <5 | <5 | |
lavender | C | <5 | <5 | nq | 416 ± 43 b | 83 ± 6 b | nq | <5 | 121 ± 9 a |
S | 331 ± 94 | 137 ± 6 | 2913 ± 178 | 1365 ± 117 a | 761 ± 80 a | nq | 8.3 ± 0.2 | 114 ± 1 a | |
lemon peel | C | 17 ± 10 b | <5 | nq | nq | <5 | nq | <5 | 5 ± 2 a |
S | 93 ± 8 a | 12 ± 7 | nq | nq | 110 ± 16 | nq | 43 ± 7 | 20 ± 2 a | |
lemon pulp | C | <5 | <5 | 7 ± 1 a | <5 | <5 | 5 ± 3 a | <5 | <5 |
S | <5 | <5 | 10 ± 3 a | <5 | <5 | 9 ± 7 a | <5 | <5 | |
spinach | C | <5 | <5 | 7 ± 5 b | <5 | <5 | <5 | <5 | <5 |
S | 315 ± 154 | 18 ± 10 | 42 ± 3 a | 957 ± 42 | 206 ± 15 | 89 ± 50 | 8 ± 0.2 | 7 ± 1 | |
strawberry | C | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
S | 1176 ± 143 | 101 ± 25 | 1626 ± 181 | 500 ± 55 | 324 ± 46 | 376 ± 64 | 247 ± 37 | 30 ± 7 | |
tomato | C | 52 ± 4 b | <1 | 4 ± 1 b | <1 | <1 | <1 | 3 ± 1 b | <1 |
S | 219 ± 8 a | 20 ± 0.3 | 271 ± 14 a | 97 ± 1 | 76 ± 2 | 214 ± 9 | 69 ± 5 a | 10 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Culbert, J.; Ristic, R.; Wilkinson, K. Evaluating the Susceptibility of Different Crops to Smoke Taint. Horticulturae 2024, 10, 713. https://doi.org/10.3390/horticulturae10070713
Culbert J, Ristic R, Wilkinson K. Evaluating the Susceptibility of Different Crops to Smoke Taint. Horticulturae. 2024; 10(7):713. https://doi.org/10.3390/horticulturae10070713
Chicago/Turabian StyleCulbert, Julie, Renata Ristic, and Kerry Wilkinson. 2024. "Evaluating the Susceptibility of Different Crops to Smoke Taint" Horticulturae 10, no. 7: 713. https://doi.org/10.3390/horticulturae10070713
APA StyleCulbert, J., Ristic, R., & Wilkinson, K. (2024). Evaluating the Susceptibility of Different Crops to Smoke Taint. Horticulturae, 10(7), 713. https://doi.org/10.3390/horticulturae10070713