In Vitro Micropropagation of the Vulnerable Chilean Endemic Alstroemeria pelegrina L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. In vitro Multiplication Stage
2.2. Rhizome and Root Induction Stage
2.3. Ex Vitro Acclimatization
3. Results
3.1. In Vitro Multiplication Stage
3.2. Rhizome and Root Formation Stage
3.3. Ex Vitro Acclimatization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiari, A.; Bridgen, M.P. Rhizome spiliting: A new micropropagation technique to increase in vitro propagula yield in Alstroemeria. Plant Cell Tissue Org. Cult. 2000, 62, 39–46. [Google Scholar] [CrossRef]
- Aagesen, L.; Sanso, M. The phylogeny of Alstroemeriaceae; based on Morphology; rps16 Intron; and rbcL sequence data. Syst. Bot. 2003, 28, 47–69. [Google Scholar]
- Chacón, J.; Sousa, A.; Baeza, C.M.; Renner, S.S. Ribosomal DNA distribution and a genus-wide phylogeny reveal patterns of chromosomal evolution in Alstroemeria (Alstroemeriaceae). Am.J. Bot. 2012, 99, 1501–1512. [Google Scholar] [CrossRef]
- Khaleghi, A.; Khalighi, A.; Sahraroo, M.; Karimi, A.; Rasoulnia, N.; Ghafoori, R. In vitro propagation of Alstroemeria cv. ‘Fuego’. Am.-Eurasian J. Agric. Environ. Sci. 2008, 3, 492–497. [Google Scholar]
- Hoshino, Y. Advances in alstroemeria biotechnology. In Floriculture, Ornamental and Plant Biotechnology; da Silva, J., Ed.; Advances and Topical Issues Vol. 5. Chapter 51; Global Science Books: Ikenobe, Japan, 2008; pp. 540–547. [Google Scholar]
- Cajas, D.; Baeza, C.; Ruíz, E.; Negritto, M. Análisis citogenético en poblaciones de Alstroemeria hookerilodd ssp. Hookeri (Alstroemeriaceae) en la región del Bio-Bio, Chile. Gayana Bot. 2009, 66, 117–126. [Google Scholar] [CrossRef]
- Hassani-Mehraban, A.; Dullemans, A.M.; Verhoeven, J. Alstroemeria yellow spot virus (AYSV): A new orthotospovirus species within a growing Eurasian clade. Arch. Virol. 2019, 164, 117. [Google Scholar] [CrossRef] [PubMed]
- Van Zaayen, A. Alstroemeria. In Virus and Virus-like Diseases of Bulb and Flower Crops; Loebenstein, G., Lawson, R.H., Brunt, A.A., Eds.; Wiley: West Sussex, UK, 1995; pp. 340–343. [Google Scholar]
- Lin, H.S.; De Jeu, M.J.; Jacobsen, E. Direct shoot regeneration from excised leaf explants of in vitro grown seedlings of Alstroemeria L. Plant Cell Rep. 1997, 16, 770–774. [Google Scholar] [CrossRef]
- King, J.; Bridgen, M. Environmental and Genotypic Regulation of Alstroemeria Seed Germination. HortScience 1990, 25, 1607–1609. [Google Scholar] [CrossRef]
- Hartmann, H.; Kester, D.; Davies, T.; Geneve, R. Principios y Prácticas de Propagación de Plantas, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 367–374. [Google Scholar]
- Guerra, F.; Peñaloza, P.; Vidal, A.; Cautín, R.; Castro, M. Seed Maturity and Its In Vitro Initiation of Chilean Endemic Geophyte Alstroemeria pelegrina L. Horticulturae 2022, 8, 464. [Google Scholar] [CrossRef]
- Lu, C.; Bridgen, M.P. Effects of genotype; culture medium and embryo developmental stage on the in vitro responses from ovule cultures of interspecific hybrids of Alstroemeria. Plant Sci. 1996, 116, 205–212. [Google Scholar] [CrossRef]
- Kamstra, S.A.; Ramanna, M.S.; de Jeu, M.J.; Kuipers, A.G.J.; Jacobsen, E. Homoeologous chromosome pairing in the distant hybrid Alstroemeria aurea × A. inodora and the genome composition of its backcross derivatives determined by fluorescence in situ hybridization with species-specific probes. Heredity 1999, 82, 69–78. [Google Scholar] [CrossRef]
- Burchi, G.; Mercuri, A.; Bianchini, C.; Bregliano, R.; Schiva, T. New interspecific hybrids of alstroemeria obtained through in vitro embryo-rescue. Acta Hortic. 2000, 508, 233–236. [Google Scholar] [CrossRef]
- De Benedetti, L.; Burchi, G.; Mercuri, A.; Pecchioni, N.; Faccioli, P.; Schiva, T. Random amplified polymorphic DNA (RAPD) analysis for the verification of hybridity in interspecific crosses of Alstroemeria. Plant Breed. 2000, 119, 443–445. [Google Scholar] [CrossRef]
- Bridgen, M.; Kollman, E.; Chunsheng, L. Interspecific hybridization of alstroemeria for the development of new; ornamental plants. Acta Hortic. 2009, 836, 73–78. [Google Scholar] [CrossRef]
- Aros, D.; Olate, E.; Valdés, S.; Infante, R. Gamma irradiation on Alstroemeria aurea G. in vitro rhizomes: An approach to the appropriate dosage for breeding purposes. Rev. Fac. Cienc. Agrarias. 2012, 44, 191–197. [Google Scholar]
- Lin, H.; Van Der Toorn, C.; Raemakers, K.J.J.M.; Visser, R.G.F.; De Jeu, M.; Jacobson, E. Genetic transformation of Alstroemeria using particle bombardment. Mol. Breed. 2000, 6, 369–377. [Google Scholar] [CrossRef]
- Kim, J.B.; Raemakers, C.J.; Jacobsen, E.; Visser, R.G.F. Efficient somatic embryogenesis in Alstroemeria. Plant Cell Tissue Organ Cult. 2006, 86, 233–238. [Google Scholar] [CrossRef]
- Pedraza-Santos, M.E.; López-Peralta, M.C.; González-Hernández, V.A.; Engleman-Clark, E.M.; Sánchez-García, P. In vitro regeneration of Alstroemeria cv. ‘Yellow king’ by direct organogenesis. Plant Cell Tissue Organ Cult. 2006, 84, 189–198. [Google Scholar] [CrossRef]
- Pumisutapon, P.; Visser, R.G.F.; De Klerk, G.J. Hormonal control of the outgrowth of axillary buds in Alstroemeria cultured in vitro. Biol. Plant. 2011, 55, 664–668. [Google Scholar] [CrossRef]
- Shahriari, A.G.; Bagheri, A.; Sharifi, A.; Moshtaghi, N. Efficient regeneration of ‘Caralis’ Alstroemeria cultivar from rhizome explants. Not. Sci. Biol. 2012, 4, 86–90. [Google Scholar] [CrossRef]
- Nasri, F.; Mortaza, S.N.; Ghaderi, N.; Javadi, T. Propagation in vitro of Alstroemeria ligtu hybrid through direct organogenesis from leaf base. J. Hortic. Res. 2013, 21, 23–30. [Google Scholar] [CrossRef]
- Pedersen, C.; Brandt, K. A method for disinfection of underground rhizome tips of Alstroemeria and Heliconia. Acta Hortic. 1992, 325, 499–504. [Google Scholar] [CrossRef]
- Ebrahim, M.; Ibrahim, I. Influence of medium solidification and pH value on in vitro propagation of Maranta leuconeura cv. Kerchoviana. Sci. Hortic. 2000, 86, 211–221. [Google Scholar] [CrossRef]
- Hamidoghli, Y.; Bohloli, S.; Abdollah, H. In vitro propagation of Alstroemeria using rhizome explants derived in vitro and in pot plants. Afr. J. Biotechnol. 2007, 6, 2147–2149. [Google Scholar] [CrossRef]
- De Klerk, G.J.; Ter Brugge, J. Micropropagation of Alstroemeria in liquid medium using slow release of medium components. Propag. Ornam. Plants 2010, 10, 246–252. [Google Scholar]
- Kyte, L.; Kleyn, J.; Scoggins, H.; Bridgen, M. Plants from Tubes: An Introduction to Micropropagation, 4th ed.; Timber Press: Portland, OR, USA, 2013; p. 269. [Google Scholar]
- Aros, D.; Vásquez, M.; Rivas, C.; Prat, M.L. An efficient method for in vitro propagation of Alstroemeria pallida Graham rhizomes. Chil. J. Agric. Res. 2017, 77, 95–99. [Google Scholar] [CrossRef]
- Muñoz, M.; Moreira, A. Alstroemerias de Chile: Diversidad; Distribución y Conservación; Taller La Era: Santiago, Chile, 2003; pp. 16–25. [Google Scholar]
- Ministerio del Medio Ambiente (MMA). Inventario Nacional de Especies de Chile. Available online: http://especies.mma.gob.cl/ (accessed on 15 March 2018).
- Ravenna, P.; Teillier, S.; Macaya, J.; Rodríguez, R.; Zöllner, O. Categorías de conservación de las plantas bulbosas nativas de Chile. Bol. Mus. Nac. Hist. Nat. 1998, 47, 47–68. [Google Scholar] [CrossRef]
- Finot, V.; Baeza, C.; Muñoz-Schick, M.; Ruiz, E.; Espejo, J.; Alarcón, D.; Carrasco, P.; Novoa, P.; Eyzaguirre, M. Guía de Campo Alstroemerias Chilenas, 1st ed.; Corporación Chilena de la Madera: Concepción, Chile, 2018; pp. 176–179. [Google Scholar]
- Pullman, G.S.; Bai, K.; Hane, M.; Ruland, D.; Cruse-Sanders, J.M.; Boyd, R.S.; Johnson, S. Seed cryopreservation and micropropagation of the federally threatened species; Price’s potato-bean (Apios priceana B.L. Robins.). In Vitro Cell. Dev. Biol. Plant 2019, 55, 558–568. [Google Scholar] [CrossRef]
- Issac, M.; Kuriakose, P.; Leung, S.; Costa, A.B.; Johnson, S.; Bucalo, K.; Stober, J.M.; Determann, R.O.; Rogers, W.L.; Cruse-Sanders, J.M.; et al. Seed Cryopreservation; Germination; and Micropropagation of Eastern Turkeybeard; Xerophyllum asphodeloides (L.) Nutt.: A Threatened Species from the Southeastern United States. Plants 2021, 10, 1462. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Tombion, L.; Soto, M.S.; Mori, M.; Mira, A.; Facciuto, G. PROPAGACIÓN IN VITRO DE Alstroemeria var. TIESTA DE 15 INTA’ A PARTIR DEL CULTIVO DE MERISTEMAS DE RIZOMA. Chil. J. Agric. Anim. Sci. 2020, 36, 110–116. [Google Scholar] [CrossRef]
- Ongaro, V.; Leyser, O. Hormonal control of shoot branching. J. Exp. Bot. 2008, 59, 67–74. [Google Scholar] [CrossRef] [PubMed]
- McCree, K. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. J. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Tanaka, M.; Takamura, T.; Watanabe, H.; Endo, M.; Yanagi, T.; Okamoto, K. In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). J. Hortic. Sci. Biotechnol. 1998, 73, 39–44. [Google Scholar] [CrossRef]
- Marchant, M.J.; Molina, P.; Montecinos, M.; Guzmán, L.; Balada, C.; Fassio, C.; Castro, M. In Vitro Propagation of Easter Island Curcuma longa from Rhizome Explants Using Temporary Immersion System. Agronomy 2021, 11, 2121. [Google Scholar] [CrossRef]
- Hung, C.D.; Hong, C.H.; Kim, S.K.; Park, J.Y.; Nam, M.W.; Lee, H.I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant. 2016, 38, 152. [Google Scholar] [CrossRef]
- Gupta, S.D.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotech. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- De Oliveira Prudente, D.; De Souza, L.B.; Paiva, R. Goji berry (Lycium barbarum L.) in vitro multiplication improved by light-emitting diodes (LEDs) and 6-benzylaminopurine. In Vitro Cell. Dev. Biol.-Plant. 2019, 55, 258–264. [Google Scholar] [CrossRef]
- Da Silva, J.A.T. Photoauto-, Photohetero- and photomixotrophic in vitro propagation of papaya (Carica papaya L.) and response of seed and seedlings to light-emitting diodes. Tham Int. J. Sci. Technol. 2014, 19, 57–71. [Google Scholar]
- Karataş, M.; Aasim, M. Efficient in vitro regeneration of medical aquatic plant water hyssop (Bacopa monnieri L. Pennell). Pak. J. Agric. Sci. 2014, 51, 667–672. [Google Scholar]
- Kasajima, S.-Y.; Inoue, N.; Mahmud, R.; Fujita, K.; Kato, M. Effect of light quality on developmental rate of wheat under continuous light at a constant temperature. Plant Prod. Sci. 2007, 10, 286–291. [Google Scholar] [CrossRef]
- Bourget, C.M. An Introduction to Light-emitting Diodes. HortScience 2008, 43, 1944–1946. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.-H.; Wheeler, R.M.; Mitchell, C.A. Plant Productivity in Response to LED Lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
Light Type | Red | Blue | Red:Blue Ratio |
---|---|---|---|
PPFD, μmol m−2 s−1 | |||
LIGHT1 | 1 | 1 | 1:1 |
LIGHT2 | 11 | 4 | ≈3:1 |
LIGHT3 | 6 | 6 | 1:1 |
Led Lights | BAP Concentration | SL (cm) | SN |
---|---|---|---|
L1 (white light) | BAP1 (0 μM) | 2.4 e | 2.9 bc |
L1 (white light) | BAP2 (2.22 μM) | 5.4 a | 4.8 a |
L1 (white light) | BAP3 (4.44 μM) | 3.7 bc | 3.5 abc |
L2 (3:1 red:blue) | BAP1 (0 μM) | 3.3 cd | 3.1 abc |
L2 (3:1 red:blue) | BAP2 (2.22 μM) | 6.2 a * | 4.6 ab |
L2 (3:1 red:blue) | BAP3 (4.44 μM) | 4.1 bc | 4.1 abc |
L3 (1:1 red:blue) | BAP1 (0 μM) | 2.7 de | 2.6 c |
L3 (1:1 red:blue) | BAP2 (2.22 μM) | 4.5 b | 4.3 abc |
L3 (1:1 red:blue) | BAP3 (4.44 μM) | 3.5 cd | 3.6 abc |
F lights × BAP | p = 0.017 | p = 0.86 |
Treatment | BAP Concentration (μM) | SN |
---|---|---|
BAP1 | 0 | 2.9 c |
BAP2 | 2.22 | 4.6 a * |
BAP3 | 4.44 | 3.7 b |
FBAP | p = 0.00 | |
FLED | p = 0.32 | |
FBAP × LED | p = 0.86 |
Treatments | Auxin Type | Auxin Concentration (μM) | Rooting (%) | Plant Fresh Weight (g) | Rhizome Length (cm) |
---|---|---|---|---|---|
T1 | Control | 0 | 11 ± 1.0 c | 1.3 ± 0.2 c | 0.8 ± 0.2 c |
T2 | NAA | 2.69 | 53 ± 1.5 b | 1.9 ± 0.1 b | 1.4 ± 0.1 b |
T3 | NAA | 5.37 | 100 ± 2.0 a * | 2.9 ± 0.1 a * | 1.9 ± 0.1 a * |
T4 | IBA | 2.69 | 51 ± 1.3 b | 1.7 ± 0.3 b | 1.6 ± 0.2 b |
T5 | IBA | 5.37 | 96 ± 1.7 a | 3.1 ± 0.2 a | 2.1 ± 0.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, F.; Cautín, R.; Castro, M. In Vitro Micropropagation of the Vulnerable Chilean Endemic Alstroemeria pelegrina L. Horticulturae 2024, 10, 674. https://doi.org/10.3390/horticulturae10070674
Guerra F, Cautín R, Castro M. In Vitro Micropropagation of the Vulnerable Chilean Endemic Alstroemeria pelegrina L. Horticulturae. 2024; 10(7):674. https://doi.org/10.3390/horticulturae10070674
Chicago/Turabian StyleGuerra, Francesca, Ricardo Cautín, and Mónica Castro. 2024. "In Vitro Micropropagation of the Vulnerable Chilean Endemic Alstroemeria pelegrina L." Horticulturae 10, no. 7: 674. https://doi.org/10.3390/horticulturae10070674
APA StyleGuerra, F., Cautín, R., & Castro, M. (2024). In Vitro Micropropagation of the Vulnerable Chilean Endemic Alstroemeria pelegrina L. Horticulturae, 10(7), 674. https://doi.org/10.3390/horticulturae10070674