Salinity Impact on Yield, Quality and Sensory Profile of ‘Pisanello’ Tuscan Local Tomato (Solanum lycopersicum L.) in Closed Soilless Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Plant Growth Conditions
- (1)
- Vegetative stage (ground water) with concentrations (mol m−3) of 11.0 N-NO3, 1.20 P-PO4, 8.0 K, 5.0 Ca, 2.5 Mg, 6.8 Na, 6.0 S-SO4, 5.3 Cl, and (µmol m−3) 40.0 Fe, 1.0 Cu, 8.0 Zn, 10.0 Mn, 30.0 B, and 1.0 Mo.
- (2)
- Flowering and green fruit stage (tap water) with concentrations (mol m−3) of 11.0 N-NO3, 1.20 P-PO4, 5.0 K, 5.0 Ca, 1.0 Mg, 1.0 Na, 2.0 S-SO4, 1.5 Cl, and (µmol m−3) 30.0 Fe, 1.0 Cu, 5.0 Zn, 10.0 Mn, 30.0 B, and 1.0 Mo.
- (3)
- Fruit production stage (tap water) with concentrations (mol m−3) of 10.0 N-NO3, 1.20 P-PO4, 5.7 K, 4.5 Ca, 0.6 Mg, 1.0 Na, 2.0 S-SO4, 1.5 Cl, and (µmol m−3) 30.0 Fe, 1.0 Cu, 5.0 Zn, 10.0 Mn, 30.0 B, and 1.0 Mo.
2.2. Biomass Production, Fruit Yield and Organoleptic Quality
2.3. Mineral Composition Analysis
2.4. Total Phenolic Content
2.5. 2,2-Diphenyl-1-Picrylhydrazyl Hydrate (DPPH) Free Radical Scavenging Assay
2.6. Lycopene and β-Carotene Analysis
2.7. Sensory Profile
2.8. Statistical Analysis
3. Results and Discussion
3.1. Crop Water Consumption, Biomass Production and Fruit Yield
3.2. Organoleptic Quality and Mineral Content of Tomato Fruits
3.3. Nutraceutical Quality of Tomato Fruits
3.4. Sensory Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. The Future of Food and Agriculture—Alternative Pathways to 2050|Global Perspectives Studies|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/global-perspectives-studies/resources/detail/en/c/1157074/ (accessed on 18 May 2024).
- Paolo, D.; Bianchi, G.; Scalzo, R.L.; Morelli, C.F.; Rabuffetti, M.; Speranza, G. The Chemistry behind Tomato Quality. Nat. Prod. Commun. 2018, 13, 1225–1232. [Google Scholar] [CrossRef]
- Balestrini, R.; Brunetti, C.; Cammareri, M.; Caretto, S.; Cavallaro, V.; Cominelli, E.; De Palma, M.; Docimo, T.; Giovinazzo, G.; Grandillo, S.; et al. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int. J. Mol. Sci. 2021, 22, 2887. [Google Scholar] [CrossRef] [PubMed]
- Bartels, D.; Sunkar, R. Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci. 2007, 24, 23–58. [Google Scholar] [CrossRef]
- Nuruddin, M.M.; Madramootoo, C.A.; Dodds, G.T. Effects of Water Stress at Different Growth Stages on Greenhouse Tomato Yield and Quality. HortScience 2003, 38, 1389–1393. [Google Scholar] [CrossRef]
- Moles, T.M.; de Brito Francisco, R.; Mariotti, L.; Pompeiano, A.; Lupini, A.; Incrocci, L.; Carmassi, G.; Scartazza, A.; Pistelli, L.; Guglielminetti, L.; et al. Salinity in Autumn-Winter Season and Fruit Quality of Tomato Landraces. Front. Plant Sci. 2019, 10, 1078. [Google Scholar] [CrossRef] [PubMed]
- Conti, V.; Romi, M.; Guarnieri, M.; Cantini, C.; Cai, G. Italian Tomato Cultivars under Drought Stress Show Different Content of Bioactives in Pulp and Peel of Fruits. Foods 2022, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Conti, V.; Parrotta, L.; Romi, M.; Del Duca, S.; Cai, G. Tomato Biodiversity and Drought Tolerance: A Multilevel Review. Int. J. Mol. Sci. 2023, 24, 10044. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.J.; García-Martínez, S.; Picó, B.; Gao, M.; Quiros, C.F. Genetic Variability and Relationship of Closely Related Spanish Traditional Cultivars of Tomato as Detected by SRAP and SSR Markers. J. Am. Soc. Hortic. Sci. 2005, 130, 88–94. [Google Scholar] [CrossRef]
- Conti, V.; Mareri, L.; Faleri, C.; Nepi, M.; Romi, M.; Cai, G.; Cantini, C. Drought Stress Affects the Response of Italian Local Tomato (Solanum Lycopersicum L.) Varieties in a Genotype-Dependent Manner. Plants 2019, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Romi, M.; Parrotta, L.; Cai, G.; Cantini, C. Ancient Tomato (Solanum Lycopersicum L.) Varieties of Tuscany Have High Contents of Bioactive Compounds. Horticulturae 2018, 4, 51. [Google Scholar] [CrossRef]
- Berni, R.; Romi, M.; Cantini, C.; Hausman, J.F.; Guerriero, G.; Cai, G. Functional Molecules in Locally-Adapted Crops: The Case Study of Tomatoes, Onions, and Sweet Cherry Fruits from Tuscany in Italy. Front. Plant Sci. 2019, 9, 1983. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Cantini, C.; Romi, M.; Hausman, J.F.; Guerriero, G.; Cai, G. Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives. Int. J. Mol. Sci. 2018, 19, 2248. [Google Scholar] [CrossRef] [PubMed]
- Egea, I.; Estrada, Y.; Faura, C.; Egea-Fernández, J.M.; Bolarin, M.C.; Flores, F.B. Salt-Tolerant Alternative Crops as Sources of Quality Food to Mitigate the Negative Impact of Salinity on Agricultural Production. Front. Plant Sci. 2023, 14, 304. [Google Scholar] [CrossRef] [PubMed]
- Meza, S.L.R.; Egea, I.; Massaretto, I.L.; Morales, B.; Purgatto, E.; Egea-Fernández, J.M.; Bolarin, M.C.; Flores, F.B. Traditional Tomato Varieties Improve Fruit Quality Without Affecting Fruit Yield Under Moderate Salt Stress. Front. Plant Sci. 2020, 11, 1717. [Google Scholar] [CrossRef]
- Zushi, K.; Higashijima, M. Correlation Network Analysis Identified the Key Interactions of Texture Profiles with the Sensory, Physical, and Organoleptic Properties of Cherry Tomato Cultivars Grown under Salt Stress. Sci. Hortic. 2022, 293, 110754. [Google Scholar] [CrossRef]
- Santa-Cruz, A.; Martinez-Rodriguez, M.M.; Perez-Alfocea, F.; Romero-Aranda, R.; Bolarin, M.C. The Rootstock Effect on the Tomato Salinity Response Depends on the Shoot Genotype. Plant Sci. 2002, 162, 825–831. [Google Scholar] [CrossRef]
- Botella, M.Á.; Hernández, V.; Mestre, T.; Hellín, P.; García-Legaz, M.F.; Rivero, R.M.; Martínez, V.; Fenoll, J.; Flores, P. Bioactive Compounds of Tomato Fruit in Response to Salinity, Heat and Their Combination. Agriculture 2021, 11, 534. [Google Scholar] [CrossRef]
- Krauss, S.; Schnitzler, W.H.; Grassmann, J.; Woitke, M. The Influence of Different Electrical Conductivity Values in a Simplified Recirculating Soilless System on Inner and Outer Fruit Quality Characteristics of Tomato. J. Agric. Food Chem. 2006, 54, 441–448. [Google Scholar] [CrossRef]
- Roșca, M.; Mihalache, G.; Stoleru, V. Tomato Responses to Salinity Stress: From Morphological Traits to Genetic Changes. Front. Plant Sci. 2023, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- Costan, A.; Stamatakis, A.; Chrysargyris, A.; Petropoulos, S.A.; Tzortzakis, N. Interactive Effects of Salinity and Silicon Application on Solanum Lycopersicum Growth, Physiology and Shelf-Life of Fruit Produced Hydroponically. J. Sci. Food Agric. 2020, 100, 732–743. [Google Scholar] [CrossRef]
- De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; Barbieri, G.; Maggio, A.; De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; et al. Seasonal and Multiannual Effects of Salinisation on Tomato Yield and Fruit Quality. Funct. Plant Biol. 2012, 39, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Azarmi, R.; Taleshmikail, R.D.; Gikloo, A. Effects of Salinity on Morphological and Physiological Changes and Yield of Tomato in Hydroponics System. J. Food Agric. Environ. 2010, 8, 573–576. [Google Scholar]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as Eustressor for Enhancing Quality of Vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing Water and Nutrient Losses from Soilless Cropping in Southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation Management of European Greenhouse Vegetable Crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving Vegetable Quality in Controlled Environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Carmassi, G.; Cialli, S.; Cela, F.; Incrocci, L. Calibration and Validation of a Model for the Prediction of Biomass and Nutrient Uptake of a Tomato (Cv. Pisanello) Grown in a Greenhouse Soilless Cultivation System. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 842–846. [Google Scholar] [CrossRef]
- Page, A.L. Methods of Soil Analysis—Part 2: Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; p. 9. [Google Scholar]
- Kacar, B. Chemical Analysis of Plant Soil, I.I. Plant Analysis. Available online: https://scholar.google.com/scholar_lookup?title=Chemical%20Analysis%20of%20Plant%20and%20Soil.%20II.%20Plant%20Analysis&publication_year=1972&author=B.%20Kacar (accessed on 26 January 2022).
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Adejo, G.O.; Agbali, F.A.; Otokpa, O.S. Antioxidant, Total Lycopene, Ascorbic Acid and Microbial Load Estimation in Powdered Tomato Varieties Sold in Dutsin-Ma Market. Open Access Libr. J. 2015, 2, e1768. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. Biochim. Et. Biophys. Acta (BBA) Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Billeci, L.; Sanmartin, C.; Tonacci, A.; Taglieri, I.; Bachi, L.; Ferroni, G.; Braceschi, G.P.; Odello, L.; Venturi, F. Wearable Sensors to Evaluate Autonomic Response to Olfactory Stimulation: The Influence of Short, Intensive Sensory Training. Biosensors 2023, 13, 478. [Google Scholar] [CrossRef] [PubMed]
- Knaapila, A.; Laaksonen, O.; Virtanen, M.; Yang, B.; Lagström, H.; Sandell, M. Pleasantness, Familiarity, and Identification of Spice Odors Are Interrelated and Enhanced by Consumption of Herbs and Food Neophilia. Appetite 2017, 109, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Sanmartin, C.; Taglieri, I.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Botto, A.; Serra, A.; Conte, G.; Flamini, G.; et al. Flaxseed Cake as a Tool for the Improvement of Nutraceutical and Sensorial Features of Sourdough Bread. Foods 2020, 9, 204. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, I.; Taglieri, I.; Dimita, R.; Ruffoni, B.; Zinnai, A.; Venturi, F.; Sanmartin, C.; Pistelli, L. Postharvest Treatments on Sensorial and Biochemical Characteristics of Begonia Cucullata Willd Edible Flowers. Foods 2022, 11, 1481. [Google Scholar] [CrossRef]
- Magán, J.J.; Gallardo, M.; Thompson, R.B.; Lorenzo, P. Effects of Salinity on Fruit Yield and Quality of Tomato Grown in Soil-Less Culture in Greenhouses in Mediterranean Climatic Conditions. Agric. Water Manag. 2008, 95, 1041–1055. [Google Scholar] [CrossRef]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.P.; Lutts, S. Tomato Fruit Development and Metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef]
- Maggio, A.; Raimondi, G.; Martino, A.; De Pascale, S. Salt Stress Response in Tomato beyond the Salinity Tolerance Threshold. Environ. Exp. Bot. 2007, 59, 276–282. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Feng, X.; Hussain, T.; Guo, K.; Liu, X. Nonuniform Salinity Regulate Leaf Characteristics and Improve Photosynthesis of Cherry Tomatoes under High Salinity. Environ. Exp. Bot. 2024, 217, 105565. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Du, T. Coupled Mechanisms of Water Deficit and Soil Salinity Affecting Tomato Fruit Growth. Agric. Water Manag. 2024, 295, 108747. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.K.; Patil, V.C.; Sigrimis, N. The Impact of Salinity and Nutrient Regimes on the Agro-Morphological Traits and Water Use Efficiency of Tomato under Hydroponic Conditions. Appl. Sci. 2023, 13, 9564. [Google Scholar] [CrossRef]
- Cuartero, J.; Fernández-Muñoz, R. Tomato and Salinity. Sci. Hortic. 1998, 78, 83–125. [Google Scholar] [CrossRef]
- Agius, C.; von Tucher, S.; Rozhon, W. The Effect of Salinity on Fruit Quality and Yield of Cherry Tomatoes. Horticulturae 2022, 8, 59. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, W.M.; Martínez, V.; Nieves, M.; Simón, I.; Lidón, V.; Fernandez-Zapata, J.C.; Martinez-Nicolas, J.J.; Cámara-Zapata, J.M.; García-Sánchez, F. Agricultural and Physiological Responses of Tomato Plants Grown in Different Soilless Culture Systems with Saline Water under Greenhouse Conditions. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Senge, M.; Dai, Y. Effects of Salinity Stress on Growth, Yield, Fruit Quality and Water Use Efficiency of Tomato Under Hydroponics System. Rev. Agric. Sci. 2016, 4, 46–55. [Google Scholar] [CrossRef]
- Petersen, K.K.; Willumsen, J.; Kaack, K. Composition and Taste of Tomatoes as Affected by Increased Salinity and Different Salinity Sources. J. Hortic. Sci. Biotechnol. 1998, 73, 205–215. [Google Scholar] [CrossRef]
- Pašalić, B.; Todorović, V.; Koleška, I.; Bosančić, B.; Đekić, N. Effects of Salinity on Color Changes, Sugar and Acid Concentration in Tomato Fruit. Agric. Conspec. Sci. 2016, 81, 137–142. [Google Scholar]
- Tang, H.; Zhang, X.; Gong, B.; Yan, Y.; Shi, Q. Proteomics and Metabolomics Analysis of Tomato Fruit at Different Maturity Stages and under Salt Treatment. Food Chem. 2020, 311, 126009. [Google Scholar] [CrossRef] [PubMed]
- El-Mogy, M.M.; Garchery, C.; Stevens, R. Irrigation with Salt Water Affects Growth, Yield, Fruit Quality, Storability and Marker-Gene Expression in Cherry Tomato. Acta Agric. Scand. B Soil. Plant Sci. 2018, 68, 727–737. [Google Scholar] [CrossRef]
- Giuffrida, F.; Martorana, M.; Leonardi, C. How Sodium Chloride Concentration in the Nutrient Solution Influences the Mineral Composition of Tomato Leaves and Fruits. HortScience 2009, 44, 707–711. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Sánchez-Hernández, C.V.; Palmeros-Suárez, P.A.; Ocampo-Alvarez, H.; Santacruz-Ruvalcaba, F.; Meza-Canales, I.D.; Becerril-Espinosa, A. Seaweed Extract Improves Growth and Productivity of Tomato Plants under Salinity Stress. Agronomy 2022, 12, 2495. [Google Scholar] [CrossRef]
- Del Amor, F.M.; Martinez, V.; Cerdá, A. Salt Tolerance of Tomato Plants as Affected by Stage of Plant Development. HortScience 2001, 36, 1260–1263. [Google Scholar] [CrossRef]
- Oliveira, C.E.d.S.; Zoz, T.; Seron, C.d.C.; Boleta, E.H.M.; de Lima, B.H.; Souza, L.R.R.; Pedrinho, D.R.; Matias, R.; Lopes, C.d.S.; de Oliveira Neto, S.S.; et al. Can Saline Irrigation Improve the Quality of Tomato Fruits? Agron. J. 2022, 114, 900–914. [Google Scholar] [CrossRef]
- Kütük, C.; Çayci, G.; Heng, L.K. Effects of Increasing Salinity and 15N-Labelled Urea Levels on Growth, N Uptake, and Water Use Efficiency of Young Tomato Plants. Soil. Res. 2004, 42, 345–351. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and Crop Yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Fukuda, N.; Matsukura, C.; Nishimura, S. Effects of Salinity on Distribution of Photosynthates and Carbohydrate Metabolism in Tomato Grown Using Nutrient Film Technique. J. Jpn. Soc. Hortic. Sci. 2009, 78, 90–96. [Google Scholar] [CrossRef]
- Serio, F.; De Gara, L.; Caretto, S.; Leo, L.; Santamaria, P. Influence of an Increased NaCl Concentration on Yield and Quality of Cherry Tomato Grown in Posidonia (Posidonia Oceanica (L) Delile). J. Sci. Food Agric. 2004, 84, 1885–1890. [Google Scholar] [CrossRef]
- Fernández-García, N.; Martínez, V.; Cerdá, A.; Carvajal, M. Fruit Quality of Grafted Tomato Plants Grown under Saline Conditions. J. Hortic. Sci. Biotechnol. 2004, 79, 995–1001. [Google Scholar] [CrossRef]
- Borghesi, E.; González-Miret, M.L.; Escudero-Gilete, M.L.; Malorgio, F.; Heredia, F.J.; Meléndez-Martínez, A.J. Effects of Salinity Stress on Carotenoids, Anthocyanins, and Color of Diverse Tomato Genotypes. J. Agric. Food Chem. 2011, 59, 11676–11682. [Google Scholar] [CrossRef] [PubMed]
- Alzahib, R.H.; Migdadi, H.M.; Al Ghamdi, A.A.; Alwahibi, M.S.; Ibrahim, A.A.; Al-Selwey, W.A. Assessment of Morpho-Physiological, Biochemical and Antioxidant Responses of Tomato Landraces to Salinity Stress. Plants 2021, 10, 696. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Liu, W.; Cao, H.; Song, L.; Ji, S.; Tong, L.; Ding, R. Stomatal Conductance of Tomato Leaves Is Regulated by Both Abscisic Acid and Leaf Water Potential under Combined Water and Salt Stress. Physiol. Plant 2021, 172, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; Rouphael, Y. Towards a New Definition of Quality for Fresh Fruits and Vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum Lycopersicum) Health Components: From the Seed to the Consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Reca, J.; Trillo, C.; Sánchez, J.A.; Martínez, J.; Valera, D. Optimization Model for On-Farm Irrigation Management of Mediterranean Greenhouse Crops Using Desalinated and Saline Water from Different Sources. Agric. Syst. 2018, 166, 173–183. [Google Scholar] [CrossRef]
Treatment | Plant DW (g) | Total Yield (kg m−2) | Total Fruit No. m−2 | Marketable Fruit No. Plant m−2 (>70 g) | Fruit Weight (g) | Non-Marketable Fruit No. m−2 (<70 g) | BER Fruit No. m−2 | BER Fruit kg m−2 | Marketable Yield (kg m−2) |
---|---|---|---|---|---|---|---|---|---|
10 mM NaCl | 203.5 ± 3.1 a | 11.2 ± 0.5 a | 94.0 ± 5.5 a | 68.1 ± 4.9 a | 127.4 ± 6.5 a | 19.7 ± 0.7 b | 6.2 ± 1.0 b | 0.5 ± 0.1 b | 8.9 ± 0.4 a |
30 mM NaCl | 179.5 ± 3.5 b | 8.4 ± 0.9 b | 81.8 ± 8.1 a | 55.7 ± 1.3 b | 105.9 ± 4.2 b | 20.4 ± 0.1 ab | 5.7 ± 0.7 b | 0.5 ± 0.1 b | 7.6 ± 0.2 b |
60 mM NaCl | 160.1 ± 3.9 c | 6.6 ± 0.6 c | 84.7 ± 9.1 a | 52.2 ± 2.3 b | 85.6 ± 2.8 c | 24.3 ± 1.4 a | 8.2 ± 0.6 a | 0.6 ± 0.1 a | 5.7 ± 0.3 c |
LSD | 15.78 | 0.76 | 24.27 | 10.46 | 10.31 | 3.44 | 1.80 | 0.08 | 0.38 |
Significance | ** | *** | NS | * | *** | * | * | * | *** |
Treatment | pH Juice | EC Juice (dS m−1) | TA (g Citric Acid 100 g−1 FW) | TSS (°Brix) | DMC (%) | Fruit Firmness (kg cm−2) |
---|---|---|---|---|---|---|
10 mM NaCl | 4.19 ± 0.01 a | 10.01 ± 0.04 c | 0.79 ± 0.01 c | 5.47 ± 0.07 c | 6.08 ± 0.07 c | 1.01 ± 0.05 c |
30 mM NaCl | 4.13 ± 0.01 b | 10.65 ± 0.02 b | 0.86 ± 0.01 b | 6.48 ± 0.05 b | 6.45 ± 0.02 b | 1.32 ± 0.07 b |
60 mM NaCl | 4.10 ± 0.01 c | 12.14 ± 0.08 a | 0.92 ± 0.01 a | 7.18 ± 0.07 a | 7.82 ± 007 a | 1.6 ± 0.09 a |
LSD | 0.02 | 0.19 | 0.02 | 0.22 | 0.22 | 0.25 |
Significance | *** | *** | *** | *** | *** | ** |
Treatment | N g kg−1 DW | P g kg−1 DW | K g kg−1 DW | Ca g kg−1 DW | Mg g kg−1 DW | Na g kg−1 DW |
---|---|---|---|---|---|---|
10 mM NaCl | 41.2 ± 0.1 a | 4.85 ± 0.44 a | 47.5 ± 1.4 a | 7.31 ± 0.37 a | 1.15 ± 0.01 a | 1.34 ± 0.05 c |
30 mM NaCl | 38.0 ± 1.4 a | 4.00 ± 0.36 a | 43.7 ± 0.4 b | 5.89 ± 0.16 b | 1.04 ± 0.03 b | 1.82 ± 0.02 b |
60 mM NaCl | 39.9 ± 0.1 a | 3.79 ± 0.23 a | 39.7 ± 0.2 c | 4.74 ± 0.16 c | 0.88 ± 0.01 c | 3.07 ± 0.17 a |
LSD | 3.75 | 1.58 | 3.76 | 1.12 | 0.08 | 0.46 |
Significance | NS | NS | * | * | ** | ** |
Treatment | Total Phenolic Content mg GAE 100 g−1 FW | DPPH mg TE 100 g–1 FW | Lycopene mg 100 g−1 FW | β-Carotene mg 100 g−1 FW |
---|---|---|---|---|
10 mM NaCl | 58.1 ± 3.1 b | 41.2 ± 1.2 b | 7.2 ± 0.3 a | 0.94 ± 0.06 a |
30 mM NaCl | 70.8 ± 2.0 a | 55.0 ± 3.9 a | 7.6 ± 0.5 a | 1.02 ± 0.02 a |
60 mM NaCl | 79.4 ± 3.0 a | 55.5 ± 2.5 a | 6.3 ± 0.4 a | 1.07 ± 0.02 a |
LSD | 9.61 | 9.52 | 1.38 | 0.14 |
Significance | ** | * | NS | NS |
Dependent Variable | Equation | R2 Value | Significance |
---|---|---|---|
Plant DW (g) | y = −0.724x + 224.49 | 0.959 | ** |
Total yield (kg m−2) | y = −0.750x + 13.233 | 0.976 | *** |
Marketable yield (kg m−2) | y = −0.535x + 10.613 | 0.985 | *** |
Fruit weight (g) | y = −0.746x + 148.4 | 0.983 | *** |
EC juice (dSm−1) | y = 0.356x + 8.802 | 0.942 | *** |
TA (g citric acid 100 g−1 FW) | y = 0.021x + 0.732 | 0.957 | *** |
TSS (°Brix) | y = 0.286x + 4.661 | 0.974 | *** |
DMC (%) | y = 0.289x + 5.047 | 0.887 | *** |
Fruit firmness (kgcm−2) | y = 0.106x + 0.711 | 0.829 | ** |
Total phenolic content (mg GAE 100 g−1 FW) | y = 3.543x + 4.819 | 0.822 | ** |
DPPH (mg TE 100 g–1 FW) | y = 2.331x + 36.480 | 0.563 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cela, F.; Carmassi, G.; Najar, B.; Taglieri, I.; Sanmartin, C.; Cialli, S.; Ceccanti, C.; Guidi, L.; Venturi, F.; Incrocci, L. Salinity Impact on Yield, Quality and Sensory Profile of ‘Pisanello’ Tuscan Local Tomato (Solanum lycopersicum L.) in Closed Soilless Cultivation. Horticulturae 2024, 10, 570. https://doi.org/10.3390/horticulturae10060570
Cela F, Carmassi G, Najar B, Taglieri I, Sanmartin C, Cialli S, Ceccanti C, Guidi L, Venturi F, Incrocci L. Salinity Impact on Yield, Quality and Sensory Profile of ‘Pisanello’ Tuscan Local Tomato (Solanum lycopersicum L.) in Closed Soilless Cultivation. Horticulturae. 2024; 10(6):570. https://doi.org/10.3390/horticulturae10060570
Chicago/Turabian StyleCela, Fatjon, Giulia Carmassi, Basma Najar, Isabella Taglieri, Chiara Sanmartin, Susanna Cialli, Costanza Ceccanti, Lucia Guidi, Francesca Venturi, and Luca Incrocci. 2024. "Salinity Impact on Yield, Quality and Sensory Profile of ‘Pisanello’ Tuscan Local Tomato (Solanum lycopersicum L.) in Closed Soilless Cultivation" Horticulturae 10, no. 6: 570. https://doi.org/10.3390/horticulturae10060570
APA StyleCela, F., Carmassi, G., Najar, B., Taglieri, I., Sanmartin, C., Cialli, S., Ceccanti, C., Guidi, L., Venturi, F., & Incrocci, L. (2024). Salinity Impact on Yield, Quality and Sensory Profile of ‘Pisanello’ Tuscan Local Tomato (Solanum lycopersicum L.) in Closed Soilless Cultivation. Horticulturae, 10(6), 570. https://doi.org/10.3390/horticulturae10060570