Continuous Plant-Based and Remote Sensing for Determination of Fruit Tree Water Status
Abstract
:1. Introduction
2. Proximal Sensing
2.1. Leaf-Mounted Sensors
2.1.1. Leaf Patch Clamp Pressure Probe
2.1.2. Leaf Water Meter
2.1.3. Leaf Thickness Sensors
2.1.4. Leaf-Mounted Capacitance Sensor (LMCS)
2.1.5. Continuous Thermal Sensing
2.1.6. Further New Sensors (Microsensors)
2.2. Stem-Mounted Sensors
2.2.1. Stem Dendrometers
2.2.2. Microtensiometers
2.2.3. Sap Flow Sensors
2.2.4. Thermocouple Psychrometer
2.2.5. TreeTalker®
2.3. Fruit-Mounted Sensors
Fruit Gauges
3. Remote Sensing
3.1. Thermal Sensing
3.2. Multispectral Sensing
3.3. Hyperspectral
4. Combined Approaches of Proximal and Remote Sensing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirdashtvan, M.; Najafinejad, A.; Malekian, A.; Sa’doddin, A. Sustainable Water Supply and Demand Management in Semi-Arid Regions: Optimizing Water Resources Allocation Based on RCPs Scenarios. Water Resour. Manag. 2021, 35, 5307–5324. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable Water Use in Agriculture: A Review of Worldwide Research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A Global Assessment of the Impact of Climate Change on Water Scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef]
- Webb, L.; Whiting, J.; Watt, A.; Hill, T.; Wigg, F.; Dunn, G.; Needs, S.; Barlow, E. Managing Grapevines through Severe Heat: A Survey of Growers after the 2009 Summer Heatwave in South-Eastern Australia. J. Wine Res. 2010, 21, 147–165. [Google Scholar] [CrossRef]
- Gautam, D.; Pagay, V. A Review of Current and Potential Applications of Remote Sensing to Study the Water Status of Horticultural Crops. Agronomy 2020, 10, 140. [Google Scholar] [CrossRef]
- Hristov, J.; Barreiro-Hurle, J.; Salputra, G.; Blanco, M.; Witzke, P. Reuse of Treated Water in European Agriculture: Potential to Address Water Scarcity under Climate Change. Agric. Water Manag. 2021, 251, 106872. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Fernández, J.E. Plant-Based Methods for Irrigation Scheduling of Woody Crops. Horticulturae 2017, 3, 35. [Google Scholar] [CrossRef]
- Noun, G.; Lo Cascio, M.; Spano, D.; Marras, S.; Sirca, C. Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review. Agronomy 2022, 12, 2127. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Rallo, G. Evapotranspiration from an Olive Orchard Using Remote Sensing-Based Dual Crop Coefficient Approach. Water Resour. Manag. 2013, 27, 4877–4895. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Estimating Crop Coefficients from Fraction of Ground Cover and Height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- Jones, H.G. Monitoring Plant and Soil Water Status: Established and Novel Methods Revisited and Their Relevance to Studies of Drought Tolerance. J. Exp. Bot. 2007, 58, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Paramasivam, S.; Alva, A.; Fares, A. An Evaluation of Soil Water Status Using Tensiometers in a Sandy Soil Profile under Citrus Production1. Soil Sci. 2000, 165, 343–353. [Google Scholar] [CrossRef]
- Coolong, T.; Snyder, J.; Warner, R.; Strang, J.; Surendran, S. The Relationship between Soil Water Potential, Environmental Factors, and Plant Moisture Status for Poblano Pepper Grown Using Tensiometer-Scheduled Irrigation. Int. J. Veg. Sci. 2012, 18, 137–152. [Google Scholar] [CrossRef]
- So, H. Water Potential Gradients and Resistances of a Soil-Root System Measured with the Root and Soil Psychrometer. In The Soil–Root Interface; Elsevier: Amsterdam, The Netherlands, 1979; pp. 99–113. [Google Scholar]
- Savage, M.J.; Ritchie, J.T.; Bland, W.L.; Dugas, W.A. Lower Limit of Soil Water Availability. Agron. J. 1996, 88, 644–651. [Google Scholar] [CrossRef]
- Payero, J.O.; Qiao, X.; Khalilian, A.; Mirzakhani-Nafchi, A.; Davis, R. Evaluating the Effect of Soil Texture on the Response of Three Types of Sensors Used to Monitor Soil Water Status. J. Water Resour. Prot. 2017, 9, 566. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Continuous Measurement of Plant and Soil Water Status for Irrigation Scheduling in Plum. Irrig. Sci. 2004, 23, 93–102. [Google Scholar] [CrossRef]
- Ines, A.V.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize Yield Prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Schmitz, M.; Sourell, H. Variability in Soil Moisture Measurements. Irrig. Sci. 2000, 19, 147–151. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K. Stem-Water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. Cv. French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation Scheduling: Advantages and Pitfalls of Plant-Based Methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Scalisi, A.; Bresilla, K.; Simões Grilo, F. Continuous Determination of Fruit Tree Water-Status by Plant-Based Sensors. Italus Hortus 2017, 24, 39–50. [Google Scholar] [CrossRef]
- Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Gurusinghe, S.; Hasey, J.; Kester, D.; Krueger, B.; Lampinen, B. Plant Water Status as an Index of Irrigation Need in Deciduous Fruit Trees. HortTechnology 1997, 7, 23–29. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Ortega-Farías, S.; Lobos, G.; Romero, S.; Ahumada, L.; Escobar, A.; Fuentes, S. Non-Invasive Method to Monitor Plant Water Potential of an Olive Orchard Using Visible and near Infrared Spectroscopy Analysis. Acta Hortic. 2014, 1057, 363–368. [Google Scholar] [CrossRef]
- Zimmermann, D.; Reuss, R.; Westhoff, M.; Gessner, P.; Bauer, W.; Bamberg, E.; Bentrup, F.-W.; Zimmermann, U. A Novel, Non-Invasive, Online-Monitoring, Versatile and Easy Plant-Based Probe for Measuring Leaf Water Status. J. Exp. Bot. 2008, 59, 3157–3167. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Boote, K.; Hammond, L. Alterations in the Components of Peanut Leaf Water Potential during Desiccation. J. Exp. Bot. 1981, 32, 1035–1043. [Google Scholar] [CrossRef]
- Lo Bianco, R.; Scalisi, A. Water Relations and Carbohydrate Partitioning of Four Greenhouse-Grown Olive Genotypes under Long-Term Drought. Trees 2017, 31, 717–727. [Google Scholar] [CrossRef]
- Barrs, H.; Weatherley, P. A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef]
- Dichio, B.; Xiloyannis, C.; Sofo, A.; Montanaro, G. Osmotic Regulation in Leaves and Roots of Olive Trees during a Water Deficit and Rewatering. Tree Physiol. 2006, 26, 179–185. [Google Scholar] [CrossRef]
- Mullan, D.; Pietragalla, J. Leaf Relative Water Content. Physiol. Breed. II Field Guide Wheat Phenotyping 2012, 25, 25–27. [Google Scholar]
- Tardieu, F.; Davies, W. Integration of Hydraulic and Chemical Signalling in the Control of Stomatal Conductance and Water Status of Droughted Plants. Plant Cell Environ. 1993, 16, 341–349. [Google Scholar] [CrossRef]
- Whitehead, D. Assessment of Water Status in Trees from Measurements of Stomatal Conductance and Water Potential. NZJ Sci. 1980, 10, 159–165. [Google Scholar]
- McBurney, T. The Relationship between Leaf Thickness and Plant Water Potential. J. Exp. Bot. 1992, 43, 327–335. [Google Scholar] [CrossRef]
- Sakuratani, T. A Heat Balance Method for Measuring Water Flux in the Stem of Intact Plants. J. Agric. Meteorol. 1981, 37, 9–17. [Google Scholar] [CrossRef]
- Escalona, J.; Flexas, J.; Medrano, H. Drought Effects on Water Flow, Photosynthesis and Growth of Potted Grapevines. VITIS-GEILWEILERHOF 2002, 41, 57–62. [Google Scholar]
- Huck, M.G.; Klepper, B. Water Relations of Cotton. II. Continuous Estimates of Plant Water Potential from Stem Diameter Measurements. Agron. J. 1977, 69, 593–597. [Google Scholar] [CrossRef]
- Intrigliolo, D.; Castel, J. Evaluation of Grapevine Water Status from Trunk Diameter Variations. Irrig. Sci. 2007, 26, 49–59. [Google Scholar] [CrossRef]
- Doltra, J.; Oncins, J.A.; Bonany, J.; Cohen, M. Evaluation of Plant-Based Water Status Indicators in Mature Apple Trees under Field Conditions. Irrig. Sci. 2007, 25, 351–359. [Google Scholar] [CrossRef]
- Ji, W.; Li, L.; Zhou, W. Design and Implementation of a RFID Reader/Router in RFID-WSN Hybrid System. Future Internet 2018, 10, 106. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture. J. Electrochem. Soc. 2019, 167, 037522. [Google Scholar] [CrossRef]
- Alexopoulos, A.; Koutras, K.; Ali, S.B.; Puccio, S.; Carella, A.; Ottaviano, R.; Kalogeras, A. Complementary Use of Ground-Based Proximal Sensing and Airborne/Spaceborne Remote Sensing Techniques in Precision Agriculture: A Systematic Review. Agronomy 2023, 13, 1942. [Google Scholar] [CrossRef]
- Roma, E.; Catania, P. Precision Oliviculture: Research Topics, Challenges, and Opportunities—A Review. Remote Sens. 2022, 14, 1668. [Google Scholar] [CrossRef]
- Asgari, N.; Ayoubi, S.; Jafari, A.; Demattê, J.A. Incorporating Environmental Variables, Remote and Proximal Sensing Data for Digital Soil Mapping of USDA Soil Great Groups. Int. J. Remote Sens. 2020, 41, 7624–7648. [Google Scholar] [CrossRef]
- Damásio, M.; Barbosa, M.; Deus, J.; Fernandes, E.; Leitão, A.; Albino, L.; Fonseca, F.; Silvestre, J. Can Grapevine Leaf Water Potential Be Modelled from Physiological and Meteorological Variables? A Machine Learning Approach. Plants 2023, 12, 4142. [Google Scholar] [CrossRef]
- Thoday, D. On the Water Relations of Plant Cells. Ann. Bot. 1950, 14, 1–6. [Google Scholar] [CrossRef]
- Wenkert, W.; Lemon, E.; Sinclair, T. Leaf Elongation and Turgor Pressure in Field-grown Soybean. Agron. J. 1978, 70, 761–764. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, C.M.; Buckley, T.N.; Egea, G.; de Cires, A.; Hernandez-Santana, V.; Martorell, S.; Diaz-Espejo, A. Most Stomatal Closure in Woody Species under Moderate Drought Can Be Explained by Stomatal Responses to Leaf Turgor. Plant Cell Environ. 2016, 39, 2014–2026. [Google Scholar] [CrossRef]
- Zimmermann, U.; Rüger, S.; Shapira, O.; Westhoff, M.; Wegner, L.; Reuss, R.; Gessner, P.; Zimmermann, G.; Israeli, Y.; Zhou, A. Effects of Environmental Parameters and Irrigation on the Turgor Pressure of Banana Plants Measured Using the Non-invasive, Online Monitoring Leaf Patch Clamp Pressure Probe. Plant Biol. 2010, 12, 424–436. [Google Scholar] [CrossRef]
- Green, P.B.; Stanton, F.W. Turgor Pressure: Direct Manometric Measurement in Single Cells of Nitella. Science 1967, 155, 1675–1676. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, U.; Räde, H.; Steudle, E. Kontinuierliche Druckmessung in Pflanzenzellen. Naturwissenschaften 1969, 56, 634. [Google Scholar] [CrossRef]
- Steudle, E.; Zimmermann, U.; Lüttge, U. Effect of Turgor Pressure and Cell Size on the Wall Elasticity of Plant Cells. Plant Physiol. 1977, 59, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Hüsken, D.; Steudle, E.; Zimmermann, U. Pressure Probe Technique for Measuring Water Relations of Cells in Higher Plants. Plant Physiol. 1978, 61, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Howard, R.J.; Ferrari, M.A.; Roach, D.H.; Money, N.P. Penetration of Hard Substrates by a Fungus Employing Enormous Turgor Pressures. Proc. Natl. Acad. Sci. USA 1991, 88, 11281–11284. [Google Scholar] [CrossRef] [PubMed]
- Marino, G.; Scalisi, A.; Guzmán-Delgado, P.; Caruso, T.; Marra, F.P.; Lo Bianco, R. Detecting Mild Water Stress in Olive with Multiple Plant-Based Continuous Sensors. Plants 2021, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Marino, G.; Pernice, F.; Marra, F.P.; Caruso, T. Validation of an Online System for the Continuous Monitoring of Tree Water Status for Sustainable Irrigation Managements in Olive (Olea europaea L.). Agric. Water Manag. 2016, 177, 298–307. [Google Scholar] [CrossRef]
- Padilla-Díaz, C.; Rodriguez-Dominguez, C.; Hernandez-Santana, V.; Perez-Martin, A.; Fernández, J. Scheduling Regulated Deficit Irrigation in a Hedgerow Olive Orchard from Leaf Turgor Pressure Related Measurements. Agric. Water Manag. 2016, 164, 28–37. [Google Scholar] [CrossRef]
- Ehrenberger, W.; Rüger, S.; Rodríguez-Domínguez, C.M.; Díaz-Espejo, A.; Fernández, J.E.; Moreno, J.; Zimmermann, D.; Sukhorukov, V.L.; Zimmermann, U. Leaf Patch Clamp Pressure Probe Measurements on Olive Leaves in a Nearly Turgorless State. Plant Biol. 2012, 14, 666–674. [Google Scholar] [CrossRef]
- Rüger, S.; Netzer, Y.; Westhoff, M.; Zimmermann, D.; Reuss, R.; Ovadiya, S.; Gessner, P.; Zimmermann, G.; Schwartz, A.; Zimmermann, U. Remote Monitoring of Leaf Turgor Pressure of Grapevines Subjected to Different Irrigation Treatments Using the Leaf Patch Clamp Pressure Probe. Aust. J. Grape Wine Res. 2010, 16, 405–412. [Google Scholar] [CrossRef]
- Westhoff, M.; Zimmermann, D.; Zimmermann, G.; Gessner, P.; Wegner, L.; Bentrup, F.-W.; Zimmermann, U. Distribution and Function of Epistomatal Mucilage Plugs. Protoplasma 2009, 235, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Scalisi, A.; O’Connell, M.G.; Stefanelli, D.; Lo Bianco, R. Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status. Front. Plant Sci. 2019, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Scalisi, A.; O’Connell, M.; Lo Bianco, R.; Stefanelli, D. Continuous Detection of New Plant Water Status Indicators in Stage I of Nectarine Fruit Growth. In Proceedings of the XXX International Horticultural Congress IHC2018: International Symposium on Water and Nutrient Relations and Management of Horticultural Crops, Istanbul, Turkey, 12–16 August 2018; pp. 9–16. [Google Scholar]
- Ballester, C.; Castiella, M.; Zimmermann, U.; Rüger, S.; Martínez Gimeno, M.A.; Intrigliolo, D.S. Usefulness of the ZIM-Probe Technology for Detecting Water Stress in Clementine and Persimmon Trees. In Proceedings of the VIII International Symposium on Irrigation of Horticultural Crops, Lleida, Spain, 8–11 June 2015; pp. 105–112. [Google Scholar]
- Martínez-Gimeno, M.A.; Castiella, M.; Rüger, S.; Intrigliolo, D.S.; Ballester, C. Evaluating the Usefulness of Continuous Leaf Turgor Pressure Measurements for the Assessment of Persimmon Tree Water Status. Irrig. Sci. 2017, 35, 159–167. [Google Scholar] [CrossRef]
- Scalisi, A.; Marino, G.; Marra, F.P.; Caruso, T.; Lo Bianco, R. A Cultivar-Sensitive Approach for the Continuous Monitoring of Olive (Olea europaea L.) Tree Water Status by Fruit and Leaf Sensing. Front. Plant Sci. 2020, 11, 340. [Google Scholar] [CrossRef] [PubMed]
- Massenti, R.; Scalisi, A.; Marra, F.P.; Caruso, T.; Marino, G.; Lo Bianco, R. Physiological and Structural Responses to Prolonged Water Deficit in Young Trees of Two Olive Cultivars. Plants 2022, 11, 1695. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Rodriguez-Dominguez, C.; Perez-Martin, A.; Zimmermann, U.; Rüger, S.; Martín-Palomo, M.; Torres-Ruiz, J.; Cuevas, M.; Sann, C.; Ehrenberger, W. Online-Monitoring of Tree Water Stress in a Hedgerow Olive Orchard Using the Leaf Patch Clamp Pressure Probe. Agric. Water Manag. 2011, 100, 25–35. [Google Scholar] [CrossRef]
- Sghaier, A.; Chehab, H.; Aissaoui, F.; Naggaz, K.; Ouessar, M.; Boujnah, D. Effect of Three Irrigation Frequencies on Physiological-Biological Aspects of Young Olive Trees (Olea europaea L. Cvs’ Koroneiki’and’Picholine’): Vegetative Growth, Leaf Turgor Pressure, and Fluorescence. Pol. J. Environ. Stud. 2019, 28, 23632370. [Google Scholar] [CrossRef]
- Barriga, J.A.; Blanco-Cipollone, F.; Trigo-Córdoba, E.; García-Tejero, I.; Clemente, P.J. Crop-water assessment in Citrus (Citrus sinensis L.) based on continuous measurements of leaf-turgor pressure using machine learning and IoT. Expert Syst. Appl. 2022, 209, 118255. [Google Scholar] [CrossRef]
- Palomo, J.; Romero, R.; Cuevas, M.V.; Alamo, T.; Muñoz de la Peña, D. Water Stress Estimation from Leaf Turgor Pressure in Arbequina Olive Orchards Based on Linear Discriminant Analysis. Exp. Syst. Appl. 2024. preprint submitted. Available online: https://ssrn.com/abstract=4719404 (accessed on 15 May 2024).
- Cecilia, B.; Francesca, A.; Dalila, P.; Carlo, S.; Antonella, G.; Francesco, F.; Marco, R.; Mauro, C. On-Line Monitoring of Plant Water Status: Validation of a Novel Sensor Based on Photon Attenuation of Radiation through the Leaf. Sci. Total Environ. 2022, 817, 152881. [Google Scholar] [CrossRef]
- Kaiser, H. A New Device for Continuous Non-Invasive Measurements of Leaf Water Content Using NIR-Transmission Allowing Dynamic Tracking of Water Budgets. bioRxiv. 2022. preprint submitted. Available online: https://www.biorxiv.org/content/10.1101/2022.05.06.490892v1 (accessed on 15 May 2024). [CrossRef]
- Haworth, M.; Marino, G.; Atzori, G.; Fabbri, A.; Daccache, A.; Killi, D.; Carli, A.; Montesano, V.; Conte, A.; Balestrini, R. Plant Physiological Analysis to Overcome Limitations to Plant Phenotyping. Plants 2023, 12, 4015. [Google Scholar] [CrossRef] [PubMed]
- Meidner, H. An Instrument for the Continuous Determination of Leaf Thickness Changes in the Field. J. Exp. Bot. 1952, 3, 319–325. [Google Scholar] [CrossRef]
- Scoffoni, C.; Vuong, C.; Diep, S.; Cochard, H.; Sack, L. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance. Plant Physiol. 2014, 164, 1772–1788. [Google Scholar] [CrossRef] [PubMed]
- Seelig, H.-D.; Stoner, R.J.; Linden, J.C. Irrigation Control of Cowpea Plants Using the Measurement of Leaf Thickness under Greenhouse Conditions. Irrig. Sci. 2012, 30, 247–257. [Google Scholar] [CrossRef]
- Rozema, J.; van Arp, W.; van Diggelen, J.; Kok, E.; Letschert, J. An Ecophysiological Comparison of Measurements of the Diurnal Rhythm of the Leaf Elongation and Changes of the Leaf Thickness of Salt-Resistant Dicotyledonae and Monocotyledonae. J. Exp. Bot. 1987, 38, 442–453. [Google Scholar] [CrossRef]
- Burquez, A. Leaf Thickness and Water Deficit in Plants: A Tool for Field Studies. J. Exp. Bot. 1987, 38, 109–114. [Google Scholar] [CrossRef]
- Giuliani, R.; Koteyeva, N.; Voznesenskaya, E.; Evans, M.A.; Cousins, A.B.; Edwards, G.E. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza). Plant Physiol. 2013, 162, 1632–1651. [Google Scholar] [CrossRef]
- Afzal, A.; Duiker, S.W.; Watson, J.E. Leaf Thickness to Predict Plant Water Status. Biosyst. Eng. 2017, 156, 148–156. [Google Scholar] [CrossRef]
- Bachmann, F. Studien Über Dickenänderungen von Laubblättern. Jb Wiss. Bot. 1922, 61, 372–429. [Google Scholar]
- Malone, M. Kinetics of Wound-Induced Hydraulic Signals and Variation Potentials in Wheat Seedlings. Planta 1992, 187, 505–510. [Google Scholar] [CrossRef]
- Jinwen, L.; Jingping, Y.; Pinpin, F.; Junlan, S.; Dongsheng, L.; Changshui, G.; Wenyue, C. Responses of Rice Leaf Thickness, SPAD Readings and Chlorophyll a/b Ratios to Different Nitrogen Supply Rates in Paddy Field. Field Crops Res. 2009, 114, 426–432. [Google Scholar] [CrossRef]
- Sharon, Y.; Bravdo, B.-A. Irrigation Control for Citrus According to the Diurnal Cycling of Leaf Thickness. In Proceedings of the International Conference on Water & Irrigation, Tel Aviv, Israel, 13–16 May 1996; pp. 273–283. [Google Scholar]
- Thalheimer, M. A Leaf-Mounted Capacitance Sensor for Continuous Monitoring of Foliar Transpiration and Solar Irradiance as an Indicator of Plant Water Status. J. Agric. Eng. 2023, 54. [Google Scholar] [CrossRef]
- Moreshet, S.; Yocum, C. A Condensation Type Porometer for Field Use. Plant Physiol. 1972, 49, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Miner, G.L.; Ham, J.M.; Kluitenberg, G.J. A Heat-Pulse Method for Measuring Sap Flow in Corn and Sunflower Using 3D-Printed Sensor Bodies and Low-Cost Electronics. Agric. For. Meteorol. 2017, 246, 86–97. [Google Scholar] [CrossRef]
- Afzal, A.; Duiker, S.W.; Watson, J.E.; Luthe, D. Leaf Thickness and Electrical Capacitance as Measures of Plant Water Status. Trans. ASABE 2017, 60, 1063–1074. [Google Scholar] [CrossRef]
- Arve, L.E.; Kruse, O.M.O.; Tanino, K.K.; Olsen, J.E.; Futsæther, C.; Torre, S. Daily Changes in VPD during Leaf Development in High Air Humidity Increase the Stomatal Responsiveness to Darkness and Dry Air. J. Plant Physiol. 2017, 211, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Maroco, J.P.; Pereira, J.S.; Chaves, M.M. Stomatal Responses to Leaf-to-Air Vapour Pressure Deficit in Sahelian Species. Funct. Plant Biol. 1997, 24, 381–387. [Google Scholar] [CrossRef]
- McAdam, S.A.; Brodribb, T.J. The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit. Plant Physiol. 2015, 167, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Clauser, L. Precision Water Management in Apple Orchards: Comparison of Technologies. Master’s Thesis, University of Padua, Padua, Italy, 26 February 2024. [Google Scholar]
- Jackson, R.D.; Idso, S.; Reginato, R.; Pinter, P., Jr. Canopy Temperature as a Crop Water Stress Indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Leinonen, I.; Jones, H.G. Combining Thermal and Visible Imagery for Estimating Canopy Temperature and Identifying Plant Stress. J. Exp. Bot. 2004, 55, 1423–1431. [Google Scholar] [CrossRef]
- Idso, S.; Jackson, R.; Pinter, P., Jr.; Reginato, R.; Hatfield, J. Normalizing the Stress-Degree-Day Parameter for Environmental Variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Yu, L.; Wang, W.; Zhang, X.; Zheng, W. A Review on Leaf Temperature Sensor: Measurement Methods and Application; Springer: Berlin/Heidelberg, Germany, 2016; pp. 216–230. [Google Scholar]
- Kim, B. Assessing Accuracy over Warm-up Time of Lepton 3.5 Thermal Imaging for Measuring Leaf Temperature of Crops. J. Appl. Hortic. 2023, 25, 39–42. [Google Scholar] [CrossRef]
- Kim, B. Feasibility of Lepton 3.5 Using Warm-Up Time for Measuring Leaf Temperature of Crops. 2023. preprint submitted. Available online: https://www.researchsquare.com/article/rs-2707772/v1 (accessed on 15 May 2024). [CrossRef]
- Atherton, J.J.; Rosamond, M.C.; Zeze, D.A. A Leaf-Mounted Thermal Sensor for the Measurement of Water Content. Sens. Actuators Phys. 2012, 187, 67–72. [Google Scholar] [CrossRef]
- Adachi, H.; Uchida, K.; Saitoh, E.; Maekawa, S. Theory of the Spin Seebeck Effect. Rep. Prog. Phys. 2013, 76, 036501. [Google Scholar] [CrossRef]
- Uchida, K.-I.; Takahashi, S.; Harii, K.; Ieda, J.; Koshibae, W.; Ando, K.; Maekawa, S.; Saitoh, E. Observation of the Spin Seebeck Effect. Nature 2008, 455, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Pou, A.; Diago, M.P.; Medrano, H.; Baluja, J.; Tardaguila, J. Validation of Thermal Indices for Water Status Identification in Grapevine. Agric. Water Manag. 2014, 134, 60–72. [Google Scholar] [CrossRef]
- Costa, J.; Egipto, R.; Sánchez-Virosta, A.; Lopes, C.; Chaves, M. Canopy and Soil Thermal Patterns to Support Water and Heat Stress Management in Vineyards. Agric. Water Manag. 2019, 216, 484–496. [Google Scholar] [CrossRef]
- Dhillon, R.S.; Upadhaya, S.K.; Rojo, F.; Roach, J.; Coates, R.W.; Delwiche, M.J. Development of a Continuous Leaf Monitoring System to Predict Plant Water Status. Trans. ASABE 2017, 60, 1445–1455. [Google Scholar] [CrossRef]
- Dhillon, R.; Rojo, F.; Upadhyaya, S.K.; Roach, J.; Coates, R.; Delwiche, M. Prediction of Plant Water Status in Almond and Walnut Trees Using a Continuous Leaf Monitoring System. Precis. Agric. 2019, 20, 723–745. [Google Scholar] [CrossRef]
- Li, X.H.; Li, M.Z.; Li, J.Y.; Gao, Y.Y.; Liu, C.R.; Hao, G.F. Wearable sensor supports in-situ and continuous monitoring of plant health in precision agriculture era. Plant Biotechnol. J. 2024, 1–20. [Google Scholar] [CrossRef]
- Muthumalai, K.; Gokila, N.; Haldorai, Y.; Rajendra Kumar, R.T. Advanced Wearable Sensing Technologies for Sustainable Precision Agriculture—A Review on Chemical Sensors. Adv. Sens. Res. 2024, 3, 2300107. [Google Scholar] [CrossRef]
- Peng, B.; Liu, X.; Yao, Y.; Ping, J.; Ying, Y. A Wearable and Capacitive Sensor for Leaf Moisture Status Monitoring. Biosens. Bioelectron. 2024, 245, 115804. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Anderegg, W.R.; Venturas, M.D.; Trugman, A.T.; Yu, K.; Frankenberg, C. Optimization Theory Explains Nighttime Stomatal Responses. New Phytol. 2021, 230, 1550–1561. [Google Scholar] [CrossRef] [PubMed]
- Im, H.; Lee, S.; Naqi, M.; Lee, C.; Kim, S. Flexible PI-Based Plant Drought Stress Sensor for Real-Time Monitoring System in Smart Farm. Electronics 2018, 7, 114. [Google Scholar] [CrossRef]
- Fernández, J.; Cuevas, M. Irrigation Scheduling from Stem Diameter Variations: A Review. Agric. For. Meteorol. 2010, 150, 135–151. [Google Scholar] [CrossRef]
- Hinckley, T.M.; Bruckerhoff, D.N. The Effects of Drought on Water Relations and Stem Shrinkage of Quercus Alba. Can. J. Bot. 1975, 53, 62–72. [Google Scholar] [CrossRef]
- Čermák, J.; Kučera, J.; Bauerle, W.L.; Phillips, N.; Hinckley, T.M. Tree Water Storage and Its Diurnal Dynamics Related to Sap Flow and Changes in Stem Volume in Old-Growth Douglas-Fir Trees. Tree Physiol. 2007, 27, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Genard, M.; Fishman, S.; Vercambre, G.; Huguet, J.-G.; Bussi, C.; Besset, J.; Habib, R. A Biophysical Analysis of Stem and Root Diameter Variations in Woody Plants. Plant Physiol. 2001, 126, 188–202. [Google Scholar] [CrossRef]
- Herzog, K.M.; Häsler, R.; Thum, R. Diurnal Changes in the Radius of a Subalpine Norway Spruce Stem: Their Relation to the Sap Flow and Their Use to Estimate Transpiration. Trees 1995, 10, 94–101. [Google Scholar] [CrossRef]
- Molz, F.J.; Klepper, B. On the Mechanism of Water-Stress-Induced Stem Deformation. Agron. J. 1973, 65, 304–306. [Google Scholar] [CrossRef]
- Molz, F.J.; Klepper, B.; Browning, V.D. Radial Diffusion of Free Energy in Stem Phloem: An Experimental Study. Agron. J. 1973, 65, 219–222. [Google Scholar] [CrossRef]
- Cochard, H.; Forestier, S.; Améglio, T. A New Validation of the Scholander Pressure Chamber Technique Based on Stem Diameter Variations. J. Exp. Bot. 2001, 52, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Parlange, J.-Y.; Turner, N.C.; Waggoner, P.E. Water Uptake, Diameter Change, and Nonlinear Diffusion in Tree Stems. Plant Physiol. 1975, 55, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.; Thompson, R.; Valdez, L.; Fernández, M. Response of Stem Diameter Variations to Water Stress in Greenhouse-Grown Vegetable Crops. J. Hortic. Sci. Biotechnol. 2006, 81, 483–495. [Google Scholar] [CrossRef]
- Böhmerle, K. Die Pfister’sche Zuwachsuhr. Zentralblatt Für Gesamte Forstwes 1883, 9, 83–93. [Google Scholar]
- Kozlowski, T.; Winget, C. Diurnal and Seasonal Variation in Radii of Tree Stems. Ecology 1964, 45, 149–155. [Google Scholar] [CrossRef]
- Holmes, J.; Shim, S. Diurnal Changes in Stem Diameter of Canary Island Pine Trees (Pinus canariensis, C. Smith) Caused by Soil Water Stress and Varying Microclimate. J. Exp. Bot. 1968, 19, 219–232. [Google Scholar] [CrossRef]
- Valentini, R.; Belelli Marchesini, L.; Gianelle, D.; Sala, G.; Yarovslavtsev, A.; Vasenev, V.; Castaldi, S. New Tree Monitoring Systems: From Industry 4.0 to Nature 4.0. Ann. Silvic. Res. 2019, 43, 84–88. [Google Scholar]
- Hao, G.-Y.; Wheeler, J.; Holbrook, N.; Goldstein, G.; Carrasco, L.; Bucci, S.; Scholz, F.; Campanello, P.; Madanes, N.; Cristiano, P. Water Storage Discharge and Refilling in the Main Stems of Canopy Tree Species Investigated Using Frequency Domain Reflectometry and Electronic Point Dendrometers. In Proceedings of the IX International Workshop on Sap Flow, Gent, Belgium, 4–7 June 2013; pp. 17–24. [Google Scholar]
- Drew, D.M.; Downes, G.M. The Use of Precision Dendrometers in Research on Daily Stem Size and Wood Property Variation: A Review. Dendrochronologia 2009, 27, 159–172. [Google Scholar] [CrossRef]
- Naor, A.; Cohen, S. Sensitivity and Variability of Maximum Trunk Shrinkage, Midday Stem Water Potential, and Transpiration Rate in Response to Withholding Irrigation from Field-Grown Apple Trees. HortScience 2003, 38, 547–551. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Fereres, E.; Mata, M.; Girona, J.; Cohen, M. Sensitivity of Continuous and Discrete Plant and Soil Water Status Monitoring in Peach Trees Subjected to Deficit Irrigation. J. Am. Soc. Hortic. Sci. 1999, 124, 437–444. [Google Scholar] [CrossRef]
- Wheeler, W.D.; Black, B.; Bugbee, B. Assessing water stress in a high-density apple orchard using trunk circumference variation, sap flow index and stem water potential. Front. Plant Sci. 2023, 14, 1214429. [Google Scholar] [CrossRef] [PubMed]
- Conejero, W.; Alarcón, J.; García-Orellana, Y.; Nicolás, E.; Torrecillas, A. Evaluation of Sap Flow and Trunk Diameter Sensors for Irrigation Scheduling in Early Maturing Peach Trees. Tree Physiol. 2007, 27, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Mirás-Avalos, J.M.; Pérez-Sarmiento, F.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Maximum Daily Trunk Shrinkage for Estimating Water Needs and Scheduling Regulated Deficit Irrigation in Peach Trees. Irrig. Sci. 2017, 35, 69–82. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Dodd, I.C.; Domingo, R.; Pérez-Pastor, A. Early Morning Fluctuations in Trunk Diameter Are Highly Sensitive to Water Stress in Nectarine Trees. Irrig. Sci. 2016, 34, 117–128. [Google Scholar] [CrossRef]
- Martín-Palomo, M.; Andreu, L.; Pérez-López, D.; Centeno, A.; Galindo, A.; Moriana, A.; Corell, M. Trunk Growth Rate Frequencies as Water Stress Indicator in Almond Trees. Agric. Water Manag. 2022, 271, 107765. [Google Scholar] [CrossRef]
- Vélez-Sánchez, J.E.; Balaguera-López, H.E.; Rodríguez Hernández, P. The Water Status of Pear (Pyrus communis L.) under Application of Regulated Deficit Irrigation in High Tropical Latitudinal Conditions. J. Saudi Soc. Agric. Sci. 2022, 21, 460–468. [Google Scholar] [CrossRef]
- Blanco, V.; Kalcsits, L. Long-Term Validation of Continuous Measurements of Trunk Water Potential and Trunk Diameter Indicate Different Diurnal Patterns for Pear under Water Limitations. Agric. Water Manag. 2023, 281, 108257. [Google Scholar] [CrossRef]
- Corell, M.; Martín-Palomo, M.J.; Pérez-López, D.; Centeno, A.; Girón, I.; Moreno, F.; Torrecillas, A.; Moriana, A. Approach for Using Trunk Growth Rate (TGR) in the Irrigation Scheduling of Table Olive Orchards. Agric. Water Manag. 2017, 192, 12–20. [Google Scholar] [CrossRef]
- Blanco, V.; Domingo, R.; Pérez-Pastor, A.; Blaya-Ros, P.J.; Torres-Sánchez, R. Soil and Plant Water Indicators for Deficit Irrigation Management of Field-Grown Sweet Cherry Trees. Agric. Water Manag. 2018, 208, 83–94. [Google Scholar] [CrossRef]
- Conesa, M.R.; Dodd, I.C.; Temnani, A.; De la Rosa, J.M.; Pérez-Pastor, A. Physiological Response of Post-Veraison Deficit Irrigation Strategies and Growth Patterns of Table Grapes (Cv. Crimson Seedless). Agric. Water Manag. 2018, 208, 363–372. [Google Scholar] [CrossRef]
- Pagay, V.; Santiago, M.; Sessoms, D.A.; Huber, E.J.; Vincent, O.; Pharkya, A.; Corso, T.N.; Lakso, A.N.; Stroock, A.D. A Microtensiometer Capable of Measuring Water Potentials Below−10 MPa. Lab Chip 2014, 14, 2806–2817. [Google Scholar] [CrossRef] [PubMed]
- Black, W.L.; Santiago, M.; Zhu, S.; Stroock, A.D. Ex Situ and in Situ Measurement of Water Activity with a MEMS Tensiometer. Anal. Chem. 2019, 92, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Pagay, V. Evaluating a Novel Microtensiometer for Continuous Trunk Water Potential Measurements in Field-Grown Irrigated Grapevines. Irrig. Sci. 2022, 40, 45–54. [Google Scholar] [CrossRef]
- Richards, L. Soil Moisture Tensiometer Materials and Construction. Soil Sci. 1942, 53, 241–248. [Google Scholar] [CrossRef]
- Lakso, A.N.; Santiago, M.; Stroock, A.D. Monitoring Stem Water Potential with an Embedded Microtensiometer to Inform Irrigation Scheduling in Fruit Crops. Horticulturae 2022, 8, 1207. [Google Scholar] [CrossRef]
- Zucchini, M.; Guzmán-Delgado, P.; Santos, E.; Synstelien, T.; Marino, G. Preliminary Observations on the Use of Microtensiometers to Continuously Measure Water Potential in a Mature Olive Orchard. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 268–272. [Google Scholar]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Assessment of Trunk Microtensiometer as a Novel Biosensor to Continuously Monitor Plant Water Status in Nectarine Trees. Front. Plant Sci. 2023, 14, 1123045. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.; Kalcsits, L. Microtensiometers Accurately Measure Stem Water Potential in Woody Perennials. Plants 2021, 10, 2780. [Google Scholar] [CrossRef] [PubMed]
- Kisekka, I.; Peddinti, S.R.; Savchik, P.; Yang, L.; Culumber, M.; Bali, K.; Millioron, L.; Edwards, E.; Nocco, M.; Reyes, C.; et al. Multisite Evaluation of Microtensiometer and Osmotic Cell Stem Water Potential Sensors in Almond Orchards. 2024. preprint submitted. Available online: https://ssrn.com/abstract=4713202 (accessed on 15 May 2024). [CrossRef]
- Gonzalez Nieto, L.; Huber, A.; Gao, R.; Biasuz, E.C.; Cheng, L.; Stroock, A.D.; Lakso, A.N.; Robinson, T.L. Trunk Water Potential Measured with Microtensiometers for Managing Water Stress in “Gala” Apple Trees. Plants 2023, 12, 1912. [Google Scholar] [CrossRef]
- Lakso, A.; Zhu, S.; Santiago, M.; Shackel, K.; Volkov, V.; Stroock, A. A Microtensiometer Sensor to Continuously Monitor Stem Water Potentials in Woody Plants Design and Field Testing. In Proceedings of the IX International Symposium on Irrigation of Horticultural Crops, Matera, Italy, 17–20 June 2019; pp. 317–324. [Google Scholar]
- Marra, F.; Marino, G.; Marchese, A.; Caruso, T. Effects of Different Irrigation Regimes on a Super-High-Density Olive Grove Cv.“Arbequina”: Vegetative Growth, Productivity and Polyphenol Content of the Oil. Irrig. Sci. 2016, 34, 313–325. [Google Scholar] [CrossRef]
- Granier, A.; Bréda, N. Modelling Canopy Conductance and Stand Transpiration of an Oak Forest from Sap Flow Measurements. EDP Sci. 1996, 53, 537–546. [Google Scholar] [CrossRef]
- Smith, D.; Allen, S. Measurement of Sap Flow in Plant Stems. J. Exp. Bot. 1996, 47, 1833–1844. [Google Scholar] [CrossRef]
- Poyatos, R.; Granda, V.; Molowny-Horas, R.; Mencuccini, M.; Steppe, K.; Martínez-Vilalta, J. SAPFLUXNET: Towards a Global Database of Sap Flow Measurements. Tree Physiol. 2016, 36, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Flo, V.; Martinez-Vilalta, J.; Steppe, K.; Schuldt, B.; Poyatos, R. A Synthesis of Bias and Uncertainty in Sap Flow Methods. Agric. For. Meteorol. 2019, 271, 362–374. [Google Scholar] [CrossRef]
- Granier, A. Une Nouvelle Méthode Pour La Mesure Du Flux de Sève Brute Dans Le Tronc Des Arbres. EDP Sci. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Do, F.; Rocheteau, A. Influence of Natural Temperature Gradients on Measurements of Xylem Sap Flow with Thermal Dissipation Probes. 1. Field Observations and Possible Remedies. Tree Physiol. 2002, 22, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Swanson, R.H.; Whitfield, D. A Numerical Analysis of Heat Pulse Velocity Theory and Practice. J. Exp. Bot. 1981, 32, 221–239. [Google Scholar] [CrossRef]
- Burgess, S.S.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.; Bleby, T.M. An Improved Heat Pulse Method to Measure Low and Reverse Rates of Sap Flow in Woody Plants. Tree Physiol. 2001, 21, 589–598. [Google Scholar] [CrossRef]
- Cohen, Y.; Fuchs, M.; Green, G. Improvement of the Heat Pulse Method for Determining Sap Flow in Trees. Plant Cell Environ. 1981, 4, 391–397. [Google Scholar] [CrossRef]
- Testi, L.; Villalobos, F.J. New Approach for Measuring Low Sap Velocities in Trees. Agric. For. Meteorol. 2009, 149, 730–734. [Google Scholar] [CrossRef]
- Vandegehuchte, M.W.; Steppe, K. Sapflow+: A Four-needle Heat-pulse Sap Flow Sensor Enabling Nonempirical Sap Flux Density and Water Content Measurements. New Phytol. 2012, 196, 306–317. [Google Scholar] [CrossRef] [PubMed]
- López-Bernal, Á.; Testi, L.; Villalobos, F.J. A Single-probe Heat Pulse Method for Estimating Sap Velocity in Trees. New Phytol. 2017, 216, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Pearsall, K.R.; Williams, L.E.; Castorani, S.; Bleby, T.M.; McElrone, A.J. Evaluating the Potential of a Novel Dual Heat-Pulse Sensor to Measure Volumetric Water Use in Grapevines under a Range of Flow Conditions. Funct. Plant Biol. 2014, 41, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Nadezhdina, N. Revisiting the Heat Field Deformation (HFD) Method for Measuring Sap Flow. IForest-Biogeosci. For. 2018, 11, 118. [Google Scholar] [CrossRef]
- Čermák, J.; Kučera, J.; Nadezhdina, N. Sap Flow Measurements with Some Thermodynamic Methods, Flow Integration within Trees and Scaling up from Sample Trees to Entire Forest Stands. Trees 2004, 18, 529–546. [Google Scholar] [CrossRef]
- Nhean, S.; Isarangkool Na Ayutthaya, S.; Rocheteau, A.; Do, F.C. Multi-Species Test and Calibration of an Improved Transient Thermal Dissipation System of Sap Flow Measurement with a Single Probe. Tree Physiol. 2019, 39, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Granier, A. Evaluation of Transpiration in a Douglas-Fir Stand by Means of Sap Flow Measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Rana, G.; De Lorenzi, F.; Palatella, L.; Martinelli, N.; Ferrara, R.M. Field Scale Recalibration of the Sap Flow Thermal Dissipation Method in a Mediterranean Vineyard. Agric. For. Meteorol. 2019, 269, 169–179. [Google Scholar] [CrossRef]
- Fuchs, S.; Leuschner, C.; Link, R.; Coners, H.; Schuldt, B. Calibration and Comparison of Thermal Dissipation, Heat Ratio and Heat Field Deformation Sap Flow Probes for Diffuse-Porous Trees. Agric. For. Meteorol. 2017, 244, 151–161. [Google Scholar] [CrossRef]
- Hernandez-Santana, V.; Fernandes, R.D.; Perez-Arcoiza, A.; Fernández, J.; Garcia, J.; Diaz-Espejo, A. Relationships between Fruit Growth and Oil Accumulation with Simulated Seasonal Dynamics of Leaf Gas Exchange in the Olive Tree. Agric. For. Meteorol. 2018, 256, 458–469. [Google Scholar] [CrossRef]
- Ferrara, R.M.; Bruno, M.R.; Campi, P.; Camposeo, S.; De Carolis, G.; Gaeta, L.; Martinelli, N.; Mastrorilli, M.; Modugno, A.F.; Mongelli, T.; et al. Water use of a super high-density olive orchard submitted to regulated deficit irrigation in Mediterranean environment over three contrasted years. Irrig. Sci. 2024, 42, 57–73. [Google Scholar] [CrossRef]
- Saitta, D.; Consoli, S.; Ferlito, F.; Torrisi, B.; Allegra, M.; Longo-Minnolo, G.; Ramírez-Cuesta, J.M.; Vanella, D. Adaptation of Citrus Orchards to Deficit Irrigation Strategies. Agric. Water Manag. 2021, 247, 106734. [Google Scholar] [CrossRef]
- Abdelfatah, A.; Aranda, X.; Savé, R.; de Herralde, F.; Biel, C. Evaluation of the Response of Maximum Daily Shrinkage in Young Cherry Trees Submitted to Water Stress Cycles in a Greenhouse. Agric. Water Manag. 2013, 118, 150–158. [Google Scholar] [CrossRef]
- Rawlins, S. Theory for Thermocouple Psychrometers Used to Measure Water Potential in Soil and Plant Samples. Agric. Meteorol. 1966, 3, 293–310. [Google Scholar] [CrossRef]
- Andraski, B.J.; Scanlon, B.R. 3.2. 3 Thermocouple Psychrometry. In Methods of Soil Analysis: Part 4 Physical Methods; John Wiley & Sons: New York, NY, USA, 2002; Volume 5, pp. 609–642. [Google Scholar]
- Pérez, E.M.M.; Barrio, J.J.C.; García, T.S.C.; Seijo, X.X.N. Use of Psychrometers in Field Measurements of Plant Material: Accuracy and Handling Difficulties. Span. J. Agric. Res. 2011, 9, 313–328. [Google Scholar]
- Dixon, M.; Tyree, M. A New Stem Hygrometer, Corrected for Temperature Gradients and Calibrated against the Pressure Bomb. Plant Cell Environ. 1984, 7, 693–697. [Google Scholar] [CrossRef]
- Dainese, R.; de Lopes, B.C.F.L.; Fourcaud, T.; Tarantino, A. Evaluation of Instruments for Monitoring the Soil–Plant Continuum. Geomech. Energy Environ. 2022, 30, 100256. [Google Scholar] [CrossRef]
- Dainese, R.; de Carvalho Faria Lima Lopes, B.; Tedeschi, G.; Lamarque, L.J.; Delzon, S.; Fourcaud, T.; Tarantino, A. Cross-Validation on Saplings of High-Capacity Tensiometer and Thermocouple Psychrometer for Continuous Monitoring of Xylem Water Potential. J. Exp. Bot. 2021, 73, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Kokkotos, E.; Zotos, A.; Patakas, A. The Ecophysiological Response of Olive Trees under Different Fruit Loads. Life 2024, 14, 128. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, C.M.; Brodribb, T.J. Declining Root Water Transport Drives Stomatal Closure in Olive under Moderate Water Stress. New Phytol. 2020, 225, 126–134. [Google Scholar] [CrossRef]
- Prats, K.A.; Fanton, A.C.; Brodersen, C.R.; Furze, M.E. Starch Depletion in the Xylem and Phloem Ray Parenchyma of Grapevine Stems under Drought. AoB Plants 2023, 15, plad062. [Google Scholar] [CrossRef] [PubMed]
- Quick, D.; Espino, S.; Morua, M.; Schenk, H. Effects of Thermal Gradients in Sapwood on Stem Psychrometry. In Proceedings of the International Symposium on Sensing Plant Water Status—Methods and Applications in Horticultural Science, Potsdam, Germany, 5–7 October 2016; pp. 23–30. [Google Scholar]
- Kanakaraja, P.; Sundar, P.S.; Vaishnavi, N.; Reddy, S.G.K.; Manikanta, G.S. IoT Enabled Advanced Forest Fire Detecting and Monitoring on Ubidots Platform. Mater. Today Proc. 2021, 46, 3907–3914. [Google Scholar] [CrossRef]
- Niccoli, F.; Pacheco-Solana, A.; Delzon, S.; Kabala, J.P.; Asgharinia, S.; Castaldi, S.; Valentini, R.; Battipaglia, G. Effects of Wildfire on Growth, Transpiration and Hydraulic Properties of Pinus Pinaster Aiton Forest. Dendrochronologia 2023, 79, 126086. [Google Scholar] [CrossRef]
- Laurin, G.V.; Cotrina-Sanchez, A.; Belelli-Marchesini, L.; Tomelleri, E.; Battipaglia, G.; Cocozza, C.; Niccoli, F.; Kabala, J.P.; Gianelle, D.; Vescovo, L. Comparing Ground Below-Canopy and Satellite Spectral Data for an Improved and Integrated Forest Phenology Monitoring System. Ecol. Indic. 2024, 158, 111328. [Google Scholar] [CrossRef]
- Vasenev, V.I.; Slukovskaya, M.V.; Cheng, Z.; Paltseva, A.A.; Nehls, T.; Korneykova, M.V.; Vasenev, I.I.; Romzaykina, O.N.; Ivashchenko, K.V.; Sarzhanov, D.A. Anthropogenic Soils and Landscapes of European Russia: Summer School from Sea to Sea—A Didactic Prototype. J. Environ. Qual. 2021, 50, 63–77. [Google Scholar] [CrossRef]
- Fernandes, R.D.M.; Cuevas, M.V.; Diaz-Espejo, A.; Hernandez-Santana, V. Effects of Water Stress on Fruit Growth and Water Relations between Fruits and Leaves in a Hedgerow Olive Orchard. Agric. Water Manag. 2018, 210, 32–40. [Google Scholar] [CrossRef]
- Greenspan, M.D.; Schultz, H.R.; Matthews, M.A. Field Evaluation of Water Transport in Grape Berries during Water Deficits. Physiol. Plant. 1996, 97, 55–62. [Google Scholar] [CrossRef]
- Carella, A.; Gianguzzi, G.; Scalisi, A.; Farina, V.; Inglese, P.; Bianco, R.L. Fruit Growth Stage Transitions in Two Mango Cultivars Grown in a Mediterranean Environment. Plants 2021, 10, 1332. [Google Scholar] [CrossRef] [PubMed]
- Morandi, B.; Rieger, M.; Grappadelli, L.C. Vascular Flows and Transpiration Affect Peach (Prunus persica Batsch.) Fruit Daily Growth. J. Exp. Bot. 2007, 58, 3941–3947. [Google Scholar] [CrossRef]
- Léchaudel, M.; Lopez-Lauri, F.; Vidal, V.; Sallanon, H.; Joas, J. Response of the Physiological Parameters of Mango Fruit (Transpiration, Water Relations and Antioxidant System) to Its Light and Temperature Environment. J. Plant Physiol. 2013, 170, 567–576. [Google Scholar] [CrossRef]
- Tukey, L. A Linear Electric Device for Continuous Measurement and Recording of Fruit Enlargement and Contraction. J. Am. Soc. Hortic. Sci. 1964, 84, 653–660. [Google Scholar]
- Higgs, K.; Jones, H. A Microcomputer-Based System for Continuous Measurement and Recording Fruit Diameter in Relation to Environmental Factors. J. Exp. Bot. 1984, 35, 1646–1655. [Google Scholar] [CrossRef]
- Thalheimer, M. A New Optoelectronic Sensor for Monitoring Fruit or Stem Radial Growth. Comput. Electron. Agric. 2016, 123, 149–153. [Google Scholar] [CrossRef]
- Morandi, B.; Manfrini, L.; Zibordi, M.; Noferini, M.; Fiori, G.; Grappadelli, L.C. A Low-Cost Device for Accurate and Continuous Measurements of Fruit Diameter. HortScience 2007, 42, 1380–1382. [Google Scholar] [CrossRef]
- Link, S.; Thiede, M.; Bavel, M. van An Improved Strain-Gauge Device for Continuous Field Measurement of Stem and Fruit Diameter. J. Exp. Bot. 1998, 49, 1583–1587. [Google Scholar] [CrossRef]
- Grilo, F.; Scalisi, A.; Pernice, F.; Morandi, B.; Lo Bianco, R. Recurrent Deficit Irrigation and Fruit Harvest Affect Tree Water Relations and Fruitlet Growth in ‘Valencia’Orange. Eur. J. Hortic. Sci. 2019, 84, 177–187. [Google Scholar] [CrossRef]
- Scalisi, A.; Morandi, B.; Inglese, P.; Bianco, R.L. Cladode Growth Dynamics in Opuntia Ficus-Indica under Drought. Environ. Exp. Bot. 2016, 122, 158–167. [Google Scholar] [CrossRef]
- Scalisi, A.; O’Connell, M.; Turpin, S.; Lo Bianco, R. Diurnal Irrigation Timing Affects Fruit Growth in Late-Ripening Nectarines. In Proceedings of the International Symposium on Precision Management of Orchards and Vineyards, Palermo, Italy, 7–11 October 2019; pp. 61–68. [Google Scholar]
- Peppi, L.M.; Zauli, M.; Manfrini, L.; Grappadelli, L.C.; De Marchi, L.; Traverso, P.A. Low-Cost, High-Resolution and No-Manning Distributed Sensing System for the Continuous Monitoring of Fruit Growth in Precision Farming. Acta IMEKO 2023, 12, 1–11. [Google Scholar] [CrossRef]
- Giovannini, A.; Venturi, M.; Gutiérrez-Gordillo, S.; Manfrini, L.; Corelli-Grappadelli, L.; Morandi, B. Vascular and Transpiration Flows Affecting Apricot (Prunus armeniaca L.) Fruit Growth. Agronomy 2022, 12, 989. [Google Scholar]
- Morandi, B.; Manfrini, L.; Losciale, P.; Zibordi, M.; Corelli Grappadelli, L. Changes in Vascular and Transpiration Flows Affect the Seasonal and Daily Growth of Kiwifruit (Actinidia deliciosa) Berry. Ann. Bot. 2010, 105, 913–923. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Winkler, A.; Knoche, M. Xylem, Phloem, and Transpiration Flows in Developing Sweet Cherry Fruit. Trees 2016, 30, 1821–1830. [Google Scholar] [CrossRef]
- Morandi, B.; Losciale, P.; Manfrini, L.; Zibordi, M.; Anconelli, S.; Pierpaoli, E.; Grappadelli, L.C. Leaf Gas Exchanges and Water Relations Affect the Daily Patterns of Fruit Growth and Vascular Flows in Abbé Fétel Pear (Pyrus communis L.) Trees. Sci. Hortic. 2014, 178, 106–113. [Google Scholar] [CrossRef]
- Carella, A.; Massenti, R.; Lo Bianco, R. Testing Effects of Vapor Pressure Deficit on Fruit Growth: A Comparative Approach Using Peach, Mango, Olive, Orange, and Loquat. Front. Plant Sci. 2023, 14, 1294195. [Google Scholar] [CrossRef] [PubMed]
- Boini, A.; Manfrini, L.; Bortolotti, G.; Corelli-Grappadelli, L.; Morandi, B. Monitoring Fruit Daily Growth Indicates the Onset of Mild Drought Stress in Apple. Sci. Hortic. 2019, 256, 108520. [Google Scholar] [CrossRef]
- Khosravi, A.; Mohammadi, Z.; Saber, A.; Pourzangbar, A.; Neri, D. Anomaly Detection in Real-Time Continuous Fruit-Based Monitoring of Olive via Extensimeter. 2023, p. 4652476. Available online: https://ssrn.com/abstract=4652476 (accessed on 12 May 2024).
- Morandi, B.; Manfrini, L.; Losciale, P.; Zibordi, M.; Corelli-Grappadelli, L. The Positive Effect of Skin Transpiration in Peach Fruit Growth. J. Plant Physiol. 2010, 167, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Alvino, A.; Marino, S. Remote Sensing for Irrigation of Horticultural Crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y. Monitoring Daily Evapotranspiration over Two California Vineyards Using Landsat 8 in a Multi-Sensor Data Fusion Approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
- Messina, G.; Modica, G. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens. 2020, 12, 1491. [Google Scholar] [CrossRef]
- Jones, H.G.; Sirault, X.R. Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem. Agronomy 2014, 4, 380–396. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.; Franz, T.E. The Future of Earth Observation in Hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 3879–3914. [Google Scholar] [CrossRef] [PubMed]
- Lucieer, A.; Malenovský, Z.; Veness, T.; Wallace, L. HyperUAS—Imaging Spectroscopy from a Multirotor Unmanned Aircraft System. J. Field Robot. 2014, 31, 571–590. [Google Scholar] [CrossRef]
- Christiansen, M.P.; Laursen, M.S.; Jørgensen, R.N.; Skovsen, S.; Gislum, R. Designing and Testing a UAV Mapping System for Agricultural Field Surveying. Sensors 2017, 17, 2703. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Shao, G. Optical Remote Sensing. Int. Encycl. Geogr. People Earth Environ. Technol. 2016, 1–12. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Antunez-Quilobrán, J.; Baffico-Hernández, A.; Ávila-Sánchez, C.; Ortega-Farías, S.; Espinoza, S.; Gajardo, J.; Mora, M.; Fuentes, S. Performance Assessment of Thermal Infrared Cameras of Different Resolutions to Estimate Tree Water Status from Two Cherry Cultivars: An Alternative to Midday Stem Water Potential and Stomatal Conductance. Sensors 2020, 20, 3596. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; De Bei, R.; Pech, J.; Tyerman, S. Computational Water Stress Indices Obtained from Thermal Image Analysis of Grapevine Canopies. Irrig. Sci. 2012, 30, 523–536. [Google Scholar] [CrossRef]
- Jones, H.G.; Stoll, M.; Santos, T.; de Sousa, C.; Chaves, M.M.; Grant, O.M. Use of Infrared Thermography for Monitoring Stomatal Closure in the Field: Application to Grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [Google Scholar] [CrossRef]
- Blaya-Ros, P.J.; Blanco, V.; Domingo, R.; Soto-Valles, F.; Torres-Sánchez, R. Feasibility of low-cost thermal imaging for monitoring water stress in young and mature sweet cherry trees. Appl. Sci. 2020, 10, 5461. [Google Scholar] [CrossRef]
- Blanco, V.; Willsea, N.; Campbell, T.; Howe, O.; Kalcsits, L. Combining Thermal Imaging and Soil Water Content Sensors to Assess Tree Water Status in Pear Trees. Front. Plant Sci. 2023, 14, 1197437. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.J.; Fereres, E. Applicability and Limitations of Using the Crop Water Stress Index as an Indicator of Water Deficits in Citrus Orchards. Agric. For. Meteorol. 2014, 198, 94–104. [Google Scholar] [CrossRef]
- Jones, H.G. Use of Infrared Thermometry for Estimation of Stomatal Conductance as a Possible Aid to Irrigation Scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Jackson, R.D.; Kustas, W.P.; Choudhury, B.J. A Reexamination of the Crop Water Stress Index. Irrig. Sci. 1988, 9, 309–317. [Google Scholar] [CrossRef]
- Agam, N.; Cohen, Y.; Berni, J.; Alchanatis, V.; Kool, D.; Dag, A.; Yermiyahu, U.; Ben-Gal, A. An Insight to the Performance of Crop Water Stress Index for Olive Trees. Agric. Water Manag. 2013, 118, 79–86. [Google Scholar] [CrossRef]
- Meron, M.; Tsipris, J.; Charitt, D. Remote Mapping of Crop Water Status to Assess Spatial Variability of Crop Stress. In Precision Agriculture; Academic Publishers: Berlin, Germany, 2003; pp. 405–410. [Google Scholar]
- Möller, M.; Alchanatis, V.; Cohen, Y.; Meron, M.; Tsipris, J.; Naor, A.; Ostrovsky, V.; Sprintsin, M.; Cohen, S. Use of Thermal and Visible Imagery for Estimating Crop Water Status of Irrigated Grapevine. J. Exp. Bot. 2007, 58, 827–838. [Google Scholar] [CrossRef]
- Irmak, S.; Haman, D.Z.; Bastug, R. Determination of Crop Water Stress Index for Irrigation Timing and Yield Estimation of Corn. Agron. J. 2000, 92, 1221–1227. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.; Martínez-Guanter, J.; Pérez-Ruiz, M.; Egea, G. Design and Assessment of New Artificial Reference Surfaces for Real Time Monitoring of Crop Water Stress Index in Maize. Agric. Water Manag. 2020, 240, 106304. [Google Scholar] [CrossRef]
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; O’connell, M.; Kim, J. Dependence of CWSI-Based Plant Water Stress Estimation with Diurnal Acquisition Times in a Nectarine Orchard. Remote Sens. 2021, 13, 2775. [Google Scholar] [CrossRef]
- Araújo-Paredes, C.; Portela, F.; Mendes, S.; Valín, M.I. Using Aerial Thermal Imagery to Evaluate Water Status in Vitis vinifera Cv. Loureiro. Sensors 2022, 22, 8056. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q. Simplified Evaluation of Cotton Water Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sens. 2019, 11, 267. [Google Scholar] [CrossRef]
- Cohen, Y.; Alchanatis, V.; Saranga, Y.; Rosenberg, O.; Sela, E.; Bosak, A. Mapping Water Status Based on Aerial Thermal Imagery: Comparison of Methodologies for Upscaling from a Single Leaf to Commercial Fields. Precis. Agric. 2017, 18, 801–822. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Tozzini, L.; Gucci, R. Using Visible and Thermal Images by an Unmanned Aerial Vehicle to Monitor the Plant Water Status, Canopy Growth and Yield of Olive Trees (Cvs. Frantoio and Leccino) under Different Irrigation Regimes. Agronomy 2022, 12, 1904. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, G.; He, Q.; Zhou, L.; Ji, Y.; Lv, X. Capability of Leaf Water Content and Its Threshold Values in Reflection of Soil–Plant Water Status in Maize during Prolonged Drought. Ecol. Indic. 2021, 124, 107395. [Google Scholar] [CrossRef]
- Käthner, J.; Ben-Gal, A.; Gebbers, R.; Peeters, A.; Herppich, W.B.; Zude-Sasse, M. Evaluating Spatially Resolved Influence of Soil and Tree Water Status on Quality of European Plum Grown in Semi-Humid Climate. Front. Plant Sci. 2017, 8, 1053. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Majeed, Y.; Naranjo, G.D.; Gambacorta, E.M. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Gonzalez-Dugo, V.; Fereres, E.; Ustin, S.L.; Zarco-Tejada, P.J. Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards. Remote Sens. 2016, 8, 39. [Google Scholar] [CrossRef]
- Bai, G.; Ge, Y.; Hussain, W.; Baenziger, P.S.; Graef, G. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput. Electron. Agric. 2016, 128, 181–192. [Google Scholar] [CrossRef]
- Katz, L.; Ben-Gal, A.; Litaor, M.I.; Naor, A.; Peeters, A.; Goldshtein, E.; Lidor, G.; Keisar, O.; Marzuk, S.; Alchanatis, V. How Sensitive Is Thermal Image-Based Orchard. Water Status Estimation to Canopy Extraction Quality? Remote Sens. 2023, 15, 1448. [Google Scholar] [CrossRef]
- Sánchez-Piñero, M.; Martín-Palomo, M.; Andreu, L.; Moriana, A.; Corell, M. Evaluation of a Simplified Methodology to Estimate the CWSI in Olive Orchards. Agric. Water Manag. 2022, 269, 107729. [Google Scholar] [CrossRef]
- Berni, J.; Zarco-Tejada, P.; Sepulcre-Cantó, G.; Fereres, E.; Villalobos, F. Mapping Canopy Conductance and CWSI in Olive Orchards Using High Resolution Thermal Remote Sensing Imagery. Remote Sens. Environ. 2009, 113, 2380–2388. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Agam, N.; Alchanatis, V.; Cohen, Y.; Yermiyahu, U.; Zipori, I.; Presnov, E.; Sprintsin, M.; Dag, A. Evaluating Water Stress in Irrigated Olives: Correlation of Soil Water Status, Tree Water Status, and Thermal Imagery. Irrig. Sci. 2009, 27, 367–376. [Google Scholar] [CrossRef]
- Gutiérrez-Gordillo, S.; de la Gala González-Santiago, J.; Trigo-Córdoba, E.; Rubio-Casal, A.E.; García-Tejero, I.F.; Egea, G. Monitoring of Emerging Water Stress Situations by Thermal and Vegetation Indices in Different Almond Cultivars. Agronomy 2021, 11, 1419. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Ortuño, M.; Gonzalez-Dugo, V.; Zarco-Tejada, P.J.; Parra, M.; Rubio-Asensio, J.S.; Intrigliolo, D.S. Assessment of Peach Trees Water Status and Leaf Gas Exchange Using On-the-Ground versus Airborne-Based Thermal Imagery. Agric. Water Manag. 2022, 267, 107628. [Google Scholar] [CrossRef]
- Mohamed, A.Z.; Osroosh, Y.; Peters, R.T.; Bates, T.; Campbell, C.S.; Ferrer-Alegre, F. Monitoring Water Status in Apple Trees Using a Sensitive Morning Crop Water Stress Index. Irrig. Drain. 2021, 70, 27–41. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Niyogi, D. Assessing Crop Water Stress Index of Citrus Using In-Situ Measurements, Landsat, and Sentinel-2 Data. Int. J. Remote Sens. 2021, 42, 1893–1916. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.; Intrigliolo, D.S.; Fereres, E. Using High Resolution UAV Thermal Imagery to Assess the Variability in the Water Status of Five Fruit Tree Species within a Commercial Orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Mortazavi, M.; Ehsani, R.; Carpin, S.; Toudeshki, A. Predicting Tree Water Status in Pistachio and Almond Orchards Using Supervised Machine Learning. 2023. preprint submitted. Available online: https://ssrn.com/abstract=4511076 (accessed on 12 May 2024). [CrossRef]
- Li, Z.; Wu, H.; Duan, S.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J. Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Polesello, A.; Giangiacomo, R.; Dull, G.G. Application of near Infrared Spectrophotometry to the Nondestructive Analysis of Foods: A Review of Experimental Results. Crit. Rev. Food Sci. Nutr. 1983, 18, 203–230. [Google Scholar] [CrossRef]
- Jorge, J.; Vallbé, M.; Soler, J.A. Detection of Irrigation Inhomogeneities in an Olive Grove Using the NDRE Vegetation Index Obtained from UAV Images. Eur. J. Remote Sens. 2019, 52, 169–177. [Google Scholar] [CrossRef]
- Zúñiga Espinoza, C.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines. Remote Sens. 2017, 9, 961. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford, UK, 2010; Volume 223, pp. 229–242. [Google Scholar]
- Ballester, C.; Zarco-Tejada, P.J.; Nicolás, E.; Alarcón, J.J.; Fereres, E.; Intrigliolo, D.S.; Gonzalez-Dugo, V. Evaluating the Performance of Xanthophyll, Chlorophyll and Structure-Sensitive Spectral Indices to Detect Water Stress in Five Fruit Tree Species. Precis. Agric. 2018, 19, 178–193. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Gucci, R.; Priori, S. Remote and Proximal Sensing Techniques for Site-Specific Irrigation Management in the Olive Orchard. Appl. Sci. 2022, 12, 1309. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farías, S.; Moreno, M.A.; Bardeen, M. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV). Sensors 2017, 17, 2488. [Google Scholar] [CrossRef] [PubMed]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of Vineyard Water Status Variability by Thermal and Multispectral Imagery Using an Unmanned Aerial Vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard Water Status Estimation Using Multispectral Imagery from an UAV Platform and Machine Learning Algorithms for Irrigation Scheduling Management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.; Suarez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A PRI-Based Water Stress Index Combining Structural and Chlorophyll Effects: Assessment Using Diurnal Narrow-Band Airborne Imagery and the CWSI Thermal Index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Rallo, G.; Minacapilli, M.; Ciraolo, G.; Provenzano, G. Detecting Crop Water Status in Mature Olive Groves Using Vegetation Spectral Measurements. Biosyst. Eng. 2014, 128, 52–68. [Google Scholar] [CrossRef]
- Mwinuka, P.R.; Mourice, S.K.; Mbungu, W.B.; Mbilinyi, B.P.; Tumbo, S.D.; Schmitter, P. UAV-based multispectral vegetation indices for assessing the interactive effects of water and nitrogen in irrigated horticultural crops production under tropical sub-humid conditions: A case of African eggplant. Agric. Water Manag. 2022, 266, 107516. [Google Scholar] [CrossRef]
- Tang, Z.; Jin, Y.; Alsina, M.M.; McElrone, A.J.; Bambach, N.; Kustas, W.P. Vine water status mapping with multispectral UAV imagery and machine learning. Irrig. Sci. 2022, 40, 715–730. [Google Scholar] [CrossRef]
- Zhang, L.; Han, W.; Niu, Y.; Chavez, J.L.; Shao, G.; Zhang, H. Evaluating the sensitivity of water stressed maize chlorophyll and structure based on UAV derived vegetation indices. Comput. Electron. Agric. 2021, 185, 106174. [Google Scholar] [CrossRef]
- Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M.L.; Zarco-Tejada, P.J. Monitoring Water Stress and Fruit Quality in an Orange Orchard under Regulated Deficit Irrigation Using Narrow-Band Structural and Physiological Remote Sensing Indices. ISPRS J. Photogramm. Remote Sens. 2012, 71, 47–61. [Google Scholar] [CrossRef]
- Fasiolo, D.T.; Pichierri, A.; Sivilotti, P.; Scalera, L. An analysis of the effects of water regime on grapevine canopy status using a UAV and a mobile robot. Smart Agric. Technol. 2023, 6, 100344. [Google Scholar] [CrossRef]
- Longo-Minnolo, G.; Consoli, S.; Vanella, D.; Guarrera, S.; Manetto, G.; Cerruto, E. Appraising the stem water potential of citrus orchards from UAV-based multispectral imagery. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 120–125. [Google Scholar]
- Cohen, Y.; Gogumalla, P.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Lenski, I.; Michael, Y.; Helman, D. Can Time Series of Multispectral Satellite Images Be Used to Estimate Stem Water Potential in Vineyards? In Precision Agriculture’19; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 1–5. [Google Scholar]
- Lin, Y.; Zhu, Z.; Guo, W.; Sun, Y.; Yang, X.; Kovalskyy, V. Continuous Monitoring of Cotton Stem Water Potential Using Sentinel-2 Imagery. Remote Sens. 2020, 12, 1176. [Google Scholar] [CrossRef]
- Boren, E.J.; Boschetti, L. Landsat-8 and Sentinel-2 Canopy Water Content Estimation in Croplands through Radiative Transfer Model Inversion. Remote Sens. 2020, 12, 2803. [Google Scholar] [CrossRef]
- Jiménez-Bello, M.A.; Martínez Alzamora, F.; Carles Campos Alonso, J.; Amparo Martínez Gimeno, M.; Intrigliolo, D.S. Dynamic Citrus Orchards Irrigation Performance Assessment by a Surface Energy Balance Method Using Landsat Imagery. In Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018; p. 14557. [Google Scholar]
- Van Beek, J.; Tits, L.; Somers, B.; Coppin, P. Stem Water Potential Monitoring in Pear Orchards through WorldView-2 Multispectral Imagery. Remote Sens. 2013, 5, 6647–6666. [Google Scholar] [CrossRef]
- Zhang, C.; Marzougui, A.; Sankaran, S. High-Resolution Satellite Imagery Applications in Crop Phenotyping: An Overview. Comput. Electron. Agric. 2020, 175, 105584. [Google Scholar] [CrossRef]
- Schut, A.; Stephens, D.; Stovold, R.; Adams, M.; Craig, R. Improved Wheat Yield and Production Forecasting with a Moisture Stress Index, AVHRR and MODIS Data. Crop Pasture Sci. 2009, 60, 60–70. [Google Scholar] [CrossRef]
- Satellite Imagery Analytics. Available online: https://www.planet.com/products/planet-imagery/ (accessed on 15 May 2024).
- Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards. Remote Sens. 2018, 10, 1615. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Giannico, V.; Costanza, L.; Alhajj Ali, S.; Camposeo, S.; Lopriore, G.; Pedrero Salcedo, F.; Vivaldi, G.A. Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques. Agronomy 2024, 14, 1. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, M.; Fandiño, M.; González, X.P.; Cancela, J.J. Estimation Water Status of the Vineyard by Calculating Multispectral Index from Satellite Images. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Zhao, T.; Nakano, A.; Iwaski, Y.; Umeda, H. Application of Hyperspectral Imaging for Assessment of Tomato Leaf Water Status in Plant Factories. Appl. Sci. 2020, 10, 4665. [Google Scholar] [CrossRef]
- Pu, R. Hyperspectral Remote Sensing: Fundamentals and Practices; CRC Press: Boca Raton, FL, USA, 2017; Volume 1, pp. 4–5. [Google Scholar]
- Sahoo, R.N.; Ray, S.; Manjunath, K. Hyperspectral Remote Sensing of Agriculture. Curr. Sci. 2015, 108, 848–859. [Google Scholar]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Natesan, S.; Armenakis, C.; Benari, G.; Lee, R. Use of UAV-Borne Spectrometer for Land Cover Classification. Drones 2018, 2, 16. [Google Scholar] [CrossRef]
- Gallo, I.; Boschetti, M.; Rehman, A.U.; Candiani, G. Self-Supervised Convolutional Neural Network Learning in a Hybrid Approach Framework to Estimate Chlorophyll and Nitrogen Content of Maize from Hyperspectral Images. Remote Sens. 2023, 15, 4765. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Riaño, D.; Carlisle, E.; Ustin, S.; Smart, D.R. Evaluation of Hyperspectral Reflectance Indexes to Detect Grapevine Water Status in Vineyards. Am. J. Enol. Vitic. 2007, 58, 302–317. [Google Scholar] [CrossRef]
- Jones, C.L.; Weckler, P.R.; Maness, N.O.; Stone, M.L.; Jayasekara, R. Estimating Water Stress in Plants Using Hyperspectral Sensing. Am. Soc. Agric. Biol. Eng. 2004, 1, 043065. [Google Scholar]
- Da Luz, B.R.; Crowley, J.K. Spectral Reflectance and Emissivity Features of Broad Leaf Plants: Prospects for Remote Sensing in the Thermal Infrared (8.0–14.0 Μm). Remote Sens. Environ. 2007, 109, 393–405. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A. Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling Water Stress in a Shiraz Vineyard Using Hyperspectral Imaging and Machine Learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F.; Orlandi, G.; Gatti, M.; Poni, S. Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery. Front. Plant Sci. 2022, 13, 898722. [Google Scholar] [CrossRef]
- Vasquez, K.; Laroche-Pinel, E.; Partida, G.; Brillante, L. Grapevine water status in a variably irrigated vineyard with NIR hyperspectral imaging from a UAV. In Precision Agriculture’23, 1st ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2023; pp. 345–350. [Google Scholar]
- Gomez-Candon, D.; Labbé, S.; Virlet, N.; Jolivot, A.; Regnard, J.L. High resolution thermal and multispectral UAV imagery for precision assessment of apple tree response to water stress. In Proceedings of the International Conference on Robotics and Associated High-Technologies and Equipment for Agriculture and Forestry RHEA; PGM: Madrid, Spain, 2014; Available online: https://hal.science/hal-01215311 (accessed on 15 May 2024).
- Blanco, V.; Blaya-Ros, P.J.; Castillo, C.; Soto-Vallés, F.; Torres-Sánchez, R.; Domingo, R. Potential of UAS-Based Remote Sensing for Estimating Tree Water Status and Yield in Sweet Cherry Trees. Remote Sens. 2020, 12, 2359. [Google Scholar] [CrossRef]
- Zhao, T.; Doll, D.; Wang, D.; Chen, Y. A New Framework for UAV-Based Remote Sensing Data Processing and Its Application in Almond Water Stress Quantification. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 1794–1799. [Google Scholar]
- Saxton, K.; Rawls, W.; Romberger, J.S.; Papendick, R. Estimating Generalized Soil-water Characteristics from Texture. Soil. Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Manrique, L.; Jones, C.; Dyke, P. Predicting Soil Water Retention Characteristics from Soil Physical and Chemical Properties. Commun. Soil. Sci. Plant Anal. 1991, 22, 1847–1860. [Google Scholar] [CrossRef]
- Scott, R.L.; Huxman, T.E.; Barron-Gafford, G.A.; Darrel Jenerette, G.; Young, J.M.; Hamerlynck, E.P. When Vegetation Change Alters Ecosystem Water Availability. Glob. Chang. Biol. 2014, 20, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- Krstić, Đ.; Vujić, S.; Jaćimović, G.; D’Ottavio, P.; Radanović, Z.; Erić, P.; Ćupina, B. The Effect of Cover Crops on Soil Water Balance in Rain-Fed Conditions. Atmosphere 2018, 9, 492. [Google Scholar] [CrossRef]
- Von Arx, G.; Graf Pannatier, E.; Thimonier, A.; Rebetez, M. Microclimate in Forests with Varying Leaf Area Index and Soil Moisture: Potential Implications for Seedling Establishment in a Changing Climate. J. Ecol. 2013, 101, 1201–1213. [Google Scholar] [CrossRef]
- Matese, A.; Baraldi, R.; Berton, A.; Cesaraccio, C.; Di Gennaro, S.F.; Duce, P.; Facini, O.; Mameli, M.G.; Piga, A.; Zaldei, A. Estimation of Water Stress in Grapevines Using Proximal and Remote Sensing Methods. Remote Sens. 2018, 10, 114. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Testi, L.; Villalobos, F.J.; López-Bernal, A.; Orgaz, F.; Zarco-Tejada, P.J.; Fereres, E. Empirical Validation of the Relationship between the Crop Water Stress Index and Relative Transpiration in Almond Trees. Agric. For. Meteorol. 2020, 292, 108128. [Google Scholar] [CrossRef]
- Pasqualotto, G.; Carraro, V.; Suarez Huerta, E.; Bono Rosselló, N.; Gilcher, M.; Retzlaff, R.; Garone, E.; Cristofori, V.; Anfodillo, T. Tree-Based Sap Flow Monitoring to Validate the Crop Water Stress Index in Hazelnut. In Proceedings of the X International Congress on Hazelnut, Corvallis, OR, USA, 5–9 September 2022; pp. 277–282. [Google Scholar]
Method | Brief Description | References | |
---|---|---|---|
(1) Dissipation | It measures heat dissipation from a heated probe inserted in the sapwood compared to a non-heated reference probe | ||
Thermal dissipation | TD | The upper probe is constantly heated, and the measured temperature difference decreases with increasing sap flow density | [158] |
Transient thermal dissipation | TTD | It works under transient conditions by introducing a relatively short heating and cooling cycle | [159] |
(2) Pulse | It applies heat intermittently and monitor changes in sapwood temperature induced by thermal convection and conduction | ||
Compensation heat pulse | CHP | A heater probe is inserted into the xylem between two temperature sensors. By measuring the time, it takes for the heat pulse to travel via convection to the midpoint, the velocity of the pulse is determined | [160] |
Heat ratio | HR | It employs a brief heat pulse to trace water movement, and by analyzing the heat ratio between two symmetrical temperature sensors, the magnitude and direction of water flow can be determined | [161] |
Cohen’s heat pulse | T-max | It uses a single temperature sensor located downstream of the heater probe. The sap flow rate is calculated from the time it takes the downstream temperature sensor to register the maximum temperature rise | [162] |
Calibrated average gradient | CAG | Useful for calculating low sap velocities from sap flow records obtained with the standard CHP method, but the temperature differences between the readings of the two temperature probes are averaged (ΔTa) over a certain period of time. | [163] |
Sapflow+ | SF+ | It uses a four-needle sensor to measure heat velocity in the entire density range of natural sap flow and allows simultaneous estimation of stem water content | [164] |
Single probe heat pulse | SPHP | It uses a single-probe sensor based on the fundamental conduction−convection principles of heat transport in sapwood | [165] |
Dual heat pulse | Dual | It combines two heat-pulse methods: The HR, effective for low and reverse flows, and CHP, suitable for moderate to high flows, within a single set of sensor probes | [166] |
Ratio heat pulse | TmRatio | It uses the ratio of temperature maxima on downstream and side probes | [88] |
(3) Field | It measures the shape variations of a continuous heat field within the sapwood by utilizing tangential and axial probes | ||
Heat field deformation | HFD | It uses a sensor composed of one needle-like heater inserted in the sapwood and three temperature sensors placed above, below and at the side of the heater | [167] |
(4) Balance | It measures the energy balance through a heated wood section | ||
Stem heat balance | SHB | It involves employing a sensor with a flexible heater, typically several centimeters wide, encircling the stem and protected by layers of insulating and weather-resistant materials | [38] |
Trunk heat balance | THB | It consists of three to five stainless steel metal plates inserted in parallel into the sapwood, spaced two centimeters apart, covering the entire sapwood depth. This configuration allows for the integration of sap flow across the sapwood. | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carella, A.; Bulacio Fischer, P.T.; Massenti, R.; Lo Bianco, R. Continuous Plant-Based and Remote Sensing for Determination of Fruit Tree Water Status. Horticulturae 2024, 10, 516. https://doi.org/10.3390/horticulturae10050516
Carella A, Bulacio Fischer PT, Massenti R, Lo Bianco R. Continuous Plant-Based and Remote Sensing for Determination of Fruit Tree Water Status. Horticulturae. 2024; 10(5):516. https://doi.org/10.3390/horticulturae10050516
Chicago/Turabian StyleCarella, Alessandro, Pedro Tomas Bulacio Fischer, Roberto Massenti, and Riccardo Lo Bianco. 2024. "Continuous Plant-Based and Remote Sensing for Determination of Fruit Tree Water Status" Horticulturae 10, no. 5: 516. https://doi.org/10.3390/horticulturae10050516
APA StyleCarella, A., Bulacio Fischer, P. T., Massenti, R., & Lo Bianco, R. (2024). Continuous Plant-Based and Remote Sensing for Determination of Fruit Tree Water Status. Horticulturae, 10(5), 516. https://doi.org/10.3390/horticulturae10050516