Estimation of Evaporation and Drought Stress of Pistachio Plant Using UAV Multispectral Images and a Surface Energy Balance Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection with Drone
2.3. Methodology
2.3.1. The SEBAL Algorithm for the Calculation of Real Evapotranspiration
Net Solar Radiation (Rn)
Ground Heat Flux (G0)
Sensible Heat Flux (H)
Calculation of Instantaneous and Daily Evapotranspiration
2.3.2. Estimation of Reference Evapotranspiration of the Plant
2.3.3. Estimation of Standard Evapotranspiration
3. Results
3.1. Evapotranspiration in the Pistachio Farm
3.2. The Crop Coefficient in the Pistachio Farm
3.3. Drought Stress in the Pistachio Farm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Qiu, J.; Zhang, R.; Huang, S.; Chen, S.; Wang, H.; Luo, J.; Fan, Y. Intercomparison of three two-source energy balance models for partitioning evaporation and transpiration in semiarid climates. Remote Sens. 2018, 10, 1149. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Santos, C.A.C.; Silva, B.B.; Perez-Marin, A.M.; Bezerra, M.V.C.; Bezerra, J.R.C.; Ramana Rao, T.V. Estimation of Soil Moisture in the Root-Zone from Remote Sensing Data. Rev. Bras. Ciênc. Solo 2013, 37, 595–603. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, 1–54. [Google Scholar] [CrossRef]
- Niu, H.; Zhao, T.; Wang, D.; Chen, Y. Estimating evapotranspiration with UAVs in agriculture: A review. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 1. [Google Scholar]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Proc. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Liou, Y.A.; Kar, S.K. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—A review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Zare khormizi, H.; Tavili, A.; Ghafarian Malamiri, H.R. Estimation of Actual Evapotranspiration Using SEBAL Algorithm and Comparison with Improved FAO 56 Standard Evapotranspiration with KC-NDVI Relationship. Iran. J. Remote Sens. GIS 2021, 13, 73–92. [Google Scholar] [CrossRef]
- French, A.N.; Sanchez, C.A.; Wirth, T.; Scott, A.; Shields, J.W.; Bautista, E.; Saber, M.N.; Wisniewski, E.; Gohardoust, M.R. Remote sensing of evapotranspiration for irrigated crops at Yuma, Arizona, USA. Agric. Water Manag. 2023, 290, 108582. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhai, J.; Liang, H.; Zhu, Y.; Wang, Y.; Wang, Q.; Li, X.; Yu, J. Exploring evapotranspiration stress in China: A blending approach employing multi-source remote sensing proxies. J. Hydrol. Reg. Studies 2024, 51, 101653. [Google Scholar] [CrossRef]
- Soni, A.K.; Tripathi, J.N.; Ghosh, K.; Singh, P.; Sateesh, M.; Singh, K.K. Estimation of regional-scale near real time reference evapotranspiration using remote sensing and weather data to improve agriculture advisory. Earth Sci. Inf. 2024, 17, 679–697. [Google Scholar] [CrossRef]
- Zare khormizi, H.; Hosseini, S.Z.; Mokhtari, M.H.; Ghafarian Malamiri, H.R. Reconstruction of MODIS NDVI Time Series using Harmonic AN alysis of Time Series algorithm (HANTS). MJSP 2017, 21, 221–255. [Google Scholar]
- Su, Z. The Surface Energy Balance System (SEBS) for estimetion of turbulent heat fluxes. Hydrol. Earth Syst. Sc. Disc. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Menenti, M.; Choudhury, B.J. Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range. Exchange processes at the land surface for a range of space and time scales. J. Glob. 1993, 212, 561–568. [Google Scholar]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. J. Irrig. Drain. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. SEBALbased sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Ghafarian Malamiri, H.R.; Zare Khormizi, H.; Mortaz, M. Estimation of actual evapotranspiration of pistachio plants using the SEBAL algorithm and Landsat 8 images: A case study of Abarkooh desert margin in Yazd Province. J. Geog. Res. Desert Areas 2021, 8, 51–82. [Google Scholar]
- Sane, M.; Kouchakzadeh, M.; Sharifi, F. Evaluation of SEBAL Algorithm for Estimation of Real Evapotranspiration in Vardij area. Iran. J. Irrig. Drain. 2020, 14, 125–135. [Google Scholar]
- Moqbeli damane, M.; Sanaei nejad, H.; Kafash, M. Evaluation of SEBAL algorithm for actual evapotranspiration estimating by using Landsat 8 images in multiple land use landscape (Case study: Freeman area). J. Clim. Res. 2022, 1401, 165–182. [Google Scholar]
- Bala, A.; Rawat, K.S.; Misra, A.K.; Srivastava, A. Assessment and validation of evapotranspiration using SEBAL algorithm and Lysimeter data of IARI agricultural farm, India. Geocarto Int. 2016, 31, 739–764. [Google Scholar] [CrossRef]
- Rawat, K.S.; Bala, A.; Singh, S.K.; Pal, R.K. Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India. Agric. Water Manag. 2017, 187, 200–209. [Google Scholar] [CrossRef]
- Elnmer, A.; Khadr, M.; Kanae, S.; Tawfik, A. Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta. Agric. Water Manag. 2019, 213, 682–692. [Google Scholar] [CrossRef]
- Laipelt, L.; Kayser, R.H.B.; Fleischmann, A.S.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Fawzy, H.E.D.; Sakr, A.; El-Enany, M.; Moghazy, H.M. Spatiotemporal assessment of actual evapotranspiration using satellite remote sensing technique in the Nile Delta, Egypt. Alex. Eng. J. 2021, 60, 1421–1432. [Google Scholar] [CrossRef]
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; O’Connell, M.; Kim, J. Mapping Very-High-Resolution Evapotranspiration from Unmanned Aerial Vehicle (UAV) Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 211. [Google Scholar] [CrossRef]
- Xia, T.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Gao, F.; McKee, L.; Prueger, J.H.; Geli, H.M.E.; Neale, C.M.U.; Sanchez, L.; et al. Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one-and two-source modeling schemes. Hydrol. Earth Syst. Sc. 2016, 20, 1523–1545. [Google Scholar] [CrossRef]
- Ghafarian Malamiri, H.R.; Zare Khormizie, H. Reconstruction of cloud-free time series satellite observations of land surface temperature (LST) using harmonic analysis of time series algorithm (HANTS). J. GIS RS Nat. Res. 2017, 8, 37–55. [Google Scholar]
- Ghafarian Malamiri, H.R.; Zare, H.; Rousta, I.; Olafsson, H.; Izquierdo Verdiguier, E.; Zhang, H.; Mushore, T.D. Comparison of harmonic analysis of time series (HANTS) and multi-singular spectrum analysis (M-SSA) in reconstruction of long-gap missing data in NDVI time series. Remote Sens. 2020, 12, 2747. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of information about individual trees from high-spatial-resolution UAV-acquired images of an orchard. Remote Sens. 2020, 12, 133. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E.J.P.A. Mapping crop water stress index in a ‘Pinot-noir’vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Niu, X.; Li, G. Maize crop coefficient estimated from UAV-measured multispectral vegetation indices. Sensors 2019, 19, 5250. [Google Scholar] [CrossRef] [PubMed]
- Mateen, A.; Zhu, Q. Weed detection in wheat crop using UAV for precision agriculture. Pak. J. Agric. Sci. 2019, 56, 809–817. [Google Scholar]
- Barros, T.; Conde, C.; Gonçalves, G.; Premebida, C.; Monteiro, M.; Ferreira, C.S.S.; Nunes, U. Multispectral vineyard segmentation: A deep learning comparison study. Comput. Electron. Agric. 2022, 195, 106782. [Google Scholar] [CrossRef]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, A.; Ahmadi, A.; Daccache, A.; Drechsler, K. Actual evapotranspiration from UAV images: A multi-sensor data fusion approach. Remote Sens. 2021, 13, 2315. [Google Scholar] [CrossRef]
- Niu, H.; Zhao, T.; Wei, J.; Wang, D.; Chen, Y. Reliable Tree-level Evapotranspiration Estimation of Pomegranate Trees Using Lysimeter and UAV Multispectral Imagery. In Proceedings of the 2021 IEEE Conference on Technologies for Sustainability (SusTech), Irvine, CA, USA, 22–24 April 2021; pp. 1–6. [Google Scholar]
- Ortega-Farías, S.; Ortega-Salazar, S.; Poblete, T.; Poblete-Echeverría, C.; Zúñiga, M.; Sepúlveda-Reyes, D.; Kilic, A.; Allen, R. Estimation of olive evapotranspiration using multispectral and thermal sensors placed aboard an unmanned aerial vehicle. In Proceedings of the VIII International Symposium on Irrigation of Horticultural Crops, Lleida, Spain, 8–11 June 2015; pp. 1–8. [Google Scholar]
- Tang, J.; Han, W.; Zhang, L. UAV multispectral imagery combined with the FAO-56 dual approach for maize evapotranspiration mapping in the north China Plain. Remote Sens. 2019, 11, 2519. [Google Scholar] [CrossRef]
- Allen, R.G.; Waters, R.; Tasumi, M.; Trezza, R.; Bastiaanssen, W. SEBAL, Surface Energy Balance Algorithms for Land, Idaho Implementation, Version 1.0. Advanced Training and User’s Manual. 2002. Available online: https://posmet.ufv.br/wp-content/uploads/2017/04/MET-479-Waters-et-al-SEBAL.pdf (accessed on 14 May 2024).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd ERTS Symposium, NASA SP-351 I, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Zare khormizi, H.; Ghafarian Malamiri, H.R. Estimation of Crop Coefficient and Pistachio Plant’s (Pistacia vera L.) KC-NDVI Relationship Using Remote Sensing (Case study: Pistachio orchards of Abarkuh desert margin, Yazd province). Desert Manag. 2020, 8, 101–120. [Google Scholar]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comp. Net. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Singh, P.K.; Sharma, A. An intelligent WSN-UAV-based IoT framework for precision agriculture application. Comp. Electr. Eng. 2022, 100, 107912. [Google Scholar] [CrossRef]
- Raptis, E.K.; Englezos, K.; Kypris, O.; Krestenitis, M.; Kapoutsis, A.C.; Ioannidis, K.; Vrochidis, S.; Kosmatopoulos, E.B. CoFly: An automated, AI-based open-source platform for UAV precision agriculture applications. SoftwareX 2023, 23, 101414. [Google Scholar] [CrossRef]
- Rahimzadegan, M.; Janani, A. Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using Landsat 8 satellite imagery. Agric. Water Manag. 2019, 217, 383–390. [Google Scholar] [CrossRef]
- Radiom, S. Estimation of actual evapotranspiration in pistachio orchards using SEBAL algorithm in three irrigation system. J. RS GIS Nat. Res. 2021, 12, 72–90. [Google Scholar]
- Oliveira, T.C.D.; Ferreira, E.; Dantas, A.A.A. Temporal variation of normalized difference vegetation index (NDVI) and calculation of the crop coefficient (KC) from NDVI in areas cultivated with irrigated soybean. Ciência Rural 2016, 46, 1683–1688. [Google Scholar] [CrossRef]
- El-Shirbeny, M.A.; Ali, A.M.; Badr, M.A.; Bauomy, E.M. Assessment of wheat crop coefficient using remote sensing techniques. World J. Agric. Res. 2014, 1, 12–17. [Google Scholar]
- Reyes-Gonzalez, A.; Hay, C.; Kjaersgaard, J.; Neale, C. Use of remote sensing to generate crop coefficient and estimate actual crop evapotranspiration. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; American Society of Agricultural and Biological Engineers: St. Joseph, Michigan, USA, 2015; p. 1. [Google Scholar]
- Dingre, S.K.; Gorantiwar, S.D.; Kadam, S.A. Correlating the field water balance derived crop coefficient (Kc) and canopy reflectance-based NDVI for irrigated sugarcane. Precis. Agric. 2021, 22, 1134–1153. [Google Scholar] [CrossRef]
- Elshikha, D.E.M.; Hunsaker, D.J.; Waller, P.M.; Thorp, K.R.; Dierig, D.; Wang, G.; Cruz, V.M.V.; Katterman, M.E.; Bronson, K.F.; Wall, G.W.; et al. Estimation of direct-seeded guayule cover, crop coefficient, and yield using UAS-based multispectral and RGB data. Agric. Water Manag. 2022, 265, 107540. [Google Scholar] [CrossRef]
- Kamble, B.; Kilic, A.; Hubbard, K. Estimating crop coefficients using remote sensing-based vegetation index. Remote Sens. 2013, 5, 1588–1602. [Google Scholar] [CrossRef]
Band Name | Band Center | Bandwidth | No Column × Row | Pixel Size at the Height of 60 m (cm) |
---|---|---|---|---|
Blue | 475 nm | 32 nm | 2064 × 1544 | 2.6 |
Green | 560 nm | 27 nm | 2064 × 1544 | 2.6 |
Red | 668 nm | 14 nm | 2064 × 1544 | 2.6 |
Red Edge | 717 nm | 12 nm | 2064 × 1544 | 2.6 |
Near Infrared | 842 nm | 57 nm | 2064 × 1544 | 2.6 |
Thermal | 11 μm | 6 μm | 160 × 120 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khormizi, H.Z.; Malamiri, H.R.G.; Ferreira, C.S.S. Estimation of Evaporation and Drought Stress of Pistachio Plant Using UAV Multispectral Images and a Surface Energy Balance Approach. Horticulturae 2024, 10, 515. https://doi.org/10.3390/horticulturae10050515
Khormizi HZ, Malamiri HRG, Ferreira CSS. Estimation of Evaporation and Drought Stress of Pistachio Plant Using UAV Multispectral Images and a Surface Energy Balance Approach. Horticulturae. 2024; 10(5):515. https://doi.org/10.3390/horticulturae10050515
Chicago/Turabian StyleKhormizi, Hadi Zare, Hamid Reza Ghafarian Malamiri, and Carla Sofia Santos Ferreira. 2024. "Estimation of Evaporation and Drought Stress of Pistachio Plant Using UAV Multispectral Images and a Surface Energy Balance Approach" Horticulturae 10, no. 5: 515. https://doi.org/10.3390/horticulturae10050515
APA StyleKhormizi, H. Z., Malamiri, H. R. G., & Ferreira, C. S. S. (2024). Estimation of Evaporation and Drought Stress of Pistachio Plant Using UAV Multispectral Images and a Surface Energy Balance Approach. Horticulturae, 10(5), 515. https://doi.org/10.3390/horticulturae10050515