Sustainable Water Management in Horticulture: Problems, Premises, and Promises
Abstract
:1. Introduction
2. Horticulture and Water Resources
2.1. Crop Water Requirements
2.2. Impact of Horticulture on Water Resources
3. New Opportunities for Improving Water Management in Horticulture
3.1. Nature-Based Solutions to Improve Water Management
3.2. Use of Unconventional Water Resources
3.3. Emerging Technologies and Tools for Water Management
3.3.1. Irrigation Technologies and Methods
3.3.2. The Potential of IoT and Artificial Intelligence in Supporting Water Management
3.4. Other Methods
3.4.1. Drought-Tolerant Cultivars and Nanotechnology
3.4.2. Managing Excess Water Due to Flooding
4. Concluding Remarks and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaldate, R.; Singh, S.; Guleria, G.; Soni, A.; Aikwad, D.; Kumar, N.; Meshram, S.; Rana, M. Current approaches in horticultural crops to mitigate the effect of drought stress. Stress Toler. Hortic. Crop. 2021, 13, 213–240. [Google Scholar] [CrossRef]
- Webb, L.; Darbyshire, R.; Goodwin, I. Climate Change: Horticulture. Encycl. Agric. Food Syst. 2014, 2, 266–283. [Google Scholar] [CrossRef]
- Staritz, C.; Reis, J.G. Global Value Chains, Economic Upgrading, and Gender. Case Studies of the Horticulture, Tourism, and Call Center Industries. The World Bank. 2013. Available online: https://documents1.worldbank.org/curated/en/912761468337873624/pdf/832330WP0GVC0G0Box0382076B00PUBLIC0.pdf (accessed on 18 March 2024).
- USAID. Global Horticulture Assessment. USAID. 2005. Available online: https://pdf.usaid.gov/pdf_docs/pnadh769.pdf (accessed on 18 March 2024).
- Touil, S.; Richa, A.; Fizir, M.; García, K.; Gómez, A. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrig. Drain. 2022, 71, 1396–1416. [Google Scholar] [CrossRef]
- Kour, D.; Khan, S.; Kaur, T.; Kour, H.; Singh, G.; Yadav, A.; Yadav, A. Drought adaptive microbes as bioinoculants for the horticultural crops. Heliyon 2022, 8, e09493. [Google Scholar] [CrossRef]
- USDAID; ISHS. Global Horticulture Assessment; International Society for Horticultural Science: Leuven, Belgium, 2005; ISBN 9066053674. [Google Scholar]
- Manzoor, M.; Xu, Y.; Iv, Z.; Xu, J.; Shah, I.; Sabir, I.; Wang, Y.; Sun, W.; Liu, X.; Wang, L.; et al. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. J. Environ. Mang. 2024, 357, 120759. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- Wilson, M.M.; Michieka, R.W.; Mwendwa, S.M. Assessing the influence of horticultural farming on selected water quality parameters in Maumau stream, a tributary of Nairobi River, Kenya. Heliyon 2021, 7, e08593. [Google Scholar] [CrossRef]
- FAO. Agricultural Production Statistics 2000–2021. FAOSTAT Analytical Brief 60. 2022. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/58971ed8-c831-4ee6-ab0a-e47ea66a7e6a/content (accessed on 22 April 2024).
- FAO. FAO’s Global Information System on Water and Agriculture 2024. 2023. Available online: https://www.fao.org/aquastat/ (accessed on 22 April 2024).
- Hayat, F.; Khanum, F.; Li, J.; Iqbal, S.; Khan, U.; Javed, H.U.; Razzaq, M.K.; Altaf, M.A.; Peng, Y.; Ma, X.; et al. Nanoparticles and their potential role in plant adaptation to abiotic stress in horticultural crops: A review. Sci. Hortic. 2023, 321, 112285. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, L.; Ma, J.; Li, X.; Chen, R. Mata-Analysis of the effect of subsurface irrigation on crop yield and water productivity. Sustainability 2023, 15, 15716. [Google Scholar] [CrossRef]
- Bogdan, A.M.; Kulshreshtha, S.N. Canadian horticultural growers’ perceptions of beneficial management practices for improved on-farm water management. J. Rural Stud. 2021, 87, 77–87. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- FAO. Water for Sustainable Food and Agriculture: A Report Produced for the G20 Presidency of Germany [WWW Document] Food Agric. Organ. 2017. Available online: http://www.fao.org/3/a-i7959e.pdf8.7.18 (accessed on 18 March 2024).
- WWAP. The United Nations World Water Development Report 4 Vol 1: Managing Water under Uncertainty and Risk. UNESCO, Paris. 2012. Available online: http://unesdoc.unesco.org/images/0021/002156/215644e.pdf (accessed on 18 March 2024).
- Huang, X.; Zhang, J.A.; Liu, R.P.; Guo, Y.J.; Hanzo, L. Airplane-aided integrated networking for 6G wireless: Will it work? IEEE Veh. Technol. Mag. 2019, 14, 84–91. [Google Scholar] [CrossRef]
- Mwinuka, P.R.; Mourice, S.K.; Mbungu, W.B.; Mbilinyi, B.P.; Tumbo, S.D.; Schmitter, P. UAV-based multispectral vegetation indices for assessing the interactive effects of water and nitrogen in irrigated horticultural crops production under tropical sub-humid conditions: A case of African eggplant. Agric. Water Manag. 2022, 266, 107516. [Google Scholar] [CrossRef]
- Bierer, A.M. Development of an open-source soil water potential management system for horticultural applications, “Open_Irr”. HardwareX 2023, 15, e00458. [Google Scholar] [CrossRef]
- Singh, R.; Singh, R.; Gehlot, A.; Akram, S.; Priyadarshi, N.; Twala, B. Horticulture 4.0: Adoption of Industry 4.0 Tecnologies in Horticulture for meeting Sustainable Farming. Appl. Sci. 2022, 12, 12557. [Google Scholar] [CrossRef]
- Bhinde, H.; Shukla, A. A Review of Sustainable Agricultural Practices for Water Conservation and Efficient Farming. Anveshak Int. J. Manag. 2019, 8, 9–18. [Google Scholar] [CrossRef]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on Drip Irrigation: Impact on Crop Yield, Quality, and Water Productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- Lakhiar, I.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Fuentes-Penailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. J. Sens. Actuator Netw. 2024, 13, 39. [Google Scholar] [CrossRef]
- Tang, P.; Liang, Q.; Li, H.; Pang, Y. Application of Internet-of-Things Wireless Communication Technology in Agricultural Irrigation Management: A Review. Sustainability 2024, 16, 3575. [Google Scholar] [CrossRef]
- Ahmed, Z.; Gui, D.; Murtaza, G.; Yunfei, L.; Ali, S. An Overview of Smart Irrigation Management for Improving Water Productivity under Climate Change in Drylands. Agronomy 2023, 13, 2113. [Google Scholar] [CrossRef]
- Alharbi, S.; Felemban, A.; Abdelrahim, A.; Al-Dakhil, M. Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas. Water 2024, 16, 1842. [Google Scholar] [CrossRef]
- Pan, Q.; Lu, Y.; Hu, H.; Hu, Y. Review and research prospects on sprinkler irrigation frost protection for horticultural crops. Sci. Hortic. 2024, 326, 112775. [Google Scholar] [CrossRef]
- Russo, T.; Alfredo, K.; Fisher, J. Sustainable Water Management in Urban, Agricultural, and Natural Systems. Water 2014, 6, 3934–3956. [Google Scholar] [CrossRef]
- Sevik, H.; Cetin, M. Effects of Water Stress on Seed Germination for Select Landscape Plants. Pol. J. Environ. Stud. 2015, 24, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Scharwies, J.D.; Dinneny, J.R. Water transport, perception, and response in plants. J. Plant Res. 2019, 132, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Cheddadi, I.; Landrein, B.; Long, Y. Revisiting the relationship between turgor pressure and plant cell growth. New Phytol. 2023, 238, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G. Stomatal control of photosynthesis and transpiration. J. Exp. Bot. 1998, 49, 387–398. [Google Scholar] [CrossRef]
- Orgaz, F.; Fernández, M.; Bonachela, S.; Gallardo, M.; Fereres, E. Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agric. Water Manag. 2005, 72, 81–96. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, P.; Chang, Y.; Zhang, L.; Hao, Y.; Tang, S.; Xiong, X. The environmental performance of greenhouse versus open-field cherry production systems in China. Sustain. Prod. Consum. 2021, 28, 736–748. [Google Scholar] [CrossRef]
- FAO. The Ecocrop Database; Food and Agriculture Organization of the United Nations, Ed.; FAO: Rome, Italy, 2000. [Google Scholar]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought stress in plants: An overview. In Plant Responses Drought Stress; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–33. [Google Scholar]
- Lanari, N.; Schuler, R.; Kohler, T.; Liniger, H. The Impact of Commercial Horticulture on River Water Resources in the Upper Ewaso Ng’iro River Basin, Kenya. Mt. Res. Dev. 2018, 38, 114–124. [Google Scholar] [CrossRef]
- Qin, Y.; Mueller, N.D.; Siebert, S.; Jackson, R.B.; AghaKouchak, A.; Zimmerman, J.B.; Tong, D.; Hong, C.; Davis, S.J. Flexibility and intensity of global water use. Nat. Sustain. 2019, 2, 515–523. [Google Scholar] [CrossRef]
- Molden, D. Water for Food, Wate for Life: A Comprehensive Assessment of Water Management; Routledge: London, UK, 2007; ISBN 978-1-84407-397-9. [Google Scholar]
- Frimpong, F.; Asante, M.; Peprah, C.; Yeboah, P.; Danquah, E.; Ribeiro, P.F.; Aidoo, A.K.; Agyeman, K.; Asante, M.O.O.; Keteku, A.; et al. Water-smart farming: Review of strategies, technologies, and practices for sustainable agricultural water management in a changing climate in West Africa. Front. Sustain. Food Syst. 2023, 7, 1110179. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S. Identifying climate-induced groundwater depletion in GRACE observations. Sci. Rep. 2019, 9, 4124. [Google Scholar] [CrossRef]
- Eekhout, J.; Delsman, I.; Baartman, J.; Van Eupen, M.; Van Haren, C.; Contreras, S.; Martínez-López, J.; De Vente, J. How future changes in irrigation water supply and demand affect water security in a Mediterranean catchment. Agric. Water Manag. 2024, 297, 108818. [Google Scholar] [CrossRef]
- Harrison, M.; Cullen, B.; Rawnsley, R. Modelling he sensitivity of agricultural systems to climate change and extreme climatic events. Agric. Syst. 2016, 148, 135–148. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Ferreira, C.; Keizer, J.; Santos, L.; Serpa, D.; Silva, V.; Cerqueira, M.; Ferreira, A.; Abrantes, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agric. Ecosyst. Environ. 2018, 256, 184–193. [Google Scholar] [CrossRef]
- Garcia-Caparros, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef]
- Muriithi, F.K.; Yu, D. Understanding the Impact of Intensive Horticulture Land-Use Practices on Surface Water Quality in Central Kenya. Environments 2015, 2, 521–545. [Google Scholar] [CrossRef]
- Atucha, A.; Merwin, I.A.; Brown, M.G.; Gardiazabal, F.; Mena, F.; Adriazola, C.; Lehmann, J. Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant Soil 2013, 368, 393–406. [Google Scholar] [CrossRef]
- Loughlin, T.; Peluso, M.; Aparicio, V.; Marino, D. Contribution of soluble and particulate-matter fractions to the total glyphosate and AMPA load in water bodies associated with horticulture. Sci. Total Environ. 2020, 703, 134717. [Google Scholar] [CrossRef]
- EC. Proposal From the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions for a Directive of the European Parliament and of the Council Establishing a Framework for the Protection of Soil and Amending. Directive 2004/35/EC. Eur. Comm. Bruss. 2006, 232. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32004L0035 (accessed on 18 March 2024).
- Verheijen, F.G.; Jones, R.J.; Rickson, R.J.; Smith, C. Tolerable versus actual soil erosion rates in Europe. Earth-Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef]
- Straffelini, E.; Pijl, A.; Otto, S.; Marchesini, E.; Pitacco, A.; Tarolli, P. A high-resolution physical modelling approach to assess runoff and soil erosion in vineyards under different soil managements. Soil Tillage Res. 2022, 222, 105418. [Google Scholar] [CrossRef]
- Häder, D.-P.; Kumar, H.; Smith, R.; Worrest, R. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 2007, 6, 267–285. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, A.; Wang, X. Managing agricultural phosphorus for water quality: Lessons from the USA and China. J. Environ. Sci. 2014, 26, 1770–1782. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, W.; Ding, J.; Ferreira, C.S.S. Soil erodibility for water and wind erosion and its relationship to vegetation and soil properties in China's drylands. Sci. Total Environ. 2023, 903, 166639. [Google Scholar] [CrossRef]
- Rügner, H.; Schwientek, M.; Milačič, R.; Zuliani, T.; Vidmar, J.; Paunović, M.; Laschou, S.; Kalogianni, E.; Skoulikidis, N.T.; Diamantini, E. Particle bound pollutants in rivers: Results from suspended sediment sampling in Globaqua River Basins. Sci. Total Environ. 2019, 647, 645–652. [Google Scholar] [CrossRef]
- Williams, J. Salinity: A major environmental issue in Australia. Int. J. Environ. Stud. 1999, 56, 507–521. [Google Scholar]
- Qureshi, A.S.; McCornick, P.G.; Qadir, M.; Aslam, Z. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric. Water Manag. 2008, 95, 1–10. [Google Scholar] [CrossRef]
- Bradford, S.A.; Morales, V.L.; Zhang, W.; Harvey, R.W.; Packman, A.I.; Mohanram, A.; Welty, C. Transport and fate of microbial pathogens in agricultural settings. Crit. Rev. Environ. Sci. Technol. 2013, 43, 775–893. [Google Scholar] [CrossRef]
- Melo, A.; Pinto, E.; Aguiar, A.; Mansilha, C.; Pinho, O.; Ferreira, I.M. Impact of intensive horticulture practices on groundwater content of nitrates, sodium, potassium, and pesticides. Environ. Monit. Assess. 2012, 184, 4539–4551. [Google Scholar] [CrossRef]
- Marchi, E.; Zotarelli, L.; Delgado, J.; Rowland, D.; Marchi, G. Use of the Nitrogen Index to assess nitrate leaching and water drainage from plastic-mulched horticultural cropping systems of Florida. Int. Soil Water Conserv. Res. 2016, 4, 237–244. [Google Scholar] [CrossRef]
- Cameira, M.; Pereira, A.; Ahuja, L.; Ma, L. Sustainability and environmental assessment of fertigation in an intensive olive grove under Mediterranean conditions. Agric. Water Manag. 2014, 146, 346–360. [Google Scholar] [CrossRef]
- Manjarres-López, D.P.; Andrades, M.S.; Sánchez-González, S.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.; Herrero-Hernández, E. Assessment of pesticide residues in waters and soils of a vineyard region and its temporal evolution. Env. Poll. 2021, 284, 117463. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Hernández, E.; Simón-Egea, A.B.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Andrades, M.S. Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the Denomination of Origin Jumilla. Environ. Poll. 2020, 264, 114666. [Google Scholar] [CrossRef]
- Gava, O.; Antón, A.; Carmassi, G.; Pardossi, A.; Incrocci, L.; Bartolini, F. Reusing drainage water and substrate to improve the environmental and economic performance of Mediterranean greenhouse cropping. J. Clean. Prod. 2023, 413, 137510. [Google Scholar] [CrossRef]
- Gholami, R.; Hoveizeh, N.; Zahedi, S.; Arji, I. Effect of organic and synthetic mulches on some morpho-physiological and yield parameters of ‘Zard’ olive cultivar subjected to three irrigation levels in field conditions. S. Afr. J. Bot. 2023, 162, 749–760. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.-X.; Liu, X.; Li, H.-T.; Hu, Q.-Y.; Xue, W.-K. By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agric. Water Manag. 2021, 253, 106936. [Google Scholar] [CrossRef]
- Hale, R.; Stewart, A. The effect of mulch on soil temperature and moisture in vegetable crops. HortScience 2008, 43, 473–479. [Google Scholar]
- Bowers, S.; Gossard, J. Mulch effects on soil moisture and evapotranspiration in ornamental plant beds. Landsc. Urban Plan. 2005, 71, 197–205. [Google Scholar] [CrossRef]
- Kuehny, J.S.; Bowers, R. Mulch effects on evapotranspiration and growth of herbs in container production. J. Plant Nutr. 2006, 29, 585–600. [Google Scholar]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.-L.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Berríos, L.R.; Nielsen, K.F. Crop response to irrigation—Vegetables. Irrig. Agric. Crop. 2006, 33, 791–820. [Google Scholar]
- Wavhal, E.; Giri, M. Intelligent Drip irrigation system using linear programming and interpolation methodology. Int. J. Comput. 2014, 2306, 1–11. [Google Scholar]
- Hossain, M.D.; Ryu, K.N. Effects of mulching on yield, quality and soil properties in strawberry. Sci. Hortic. 2009, 124, 282–286. [Google Scholar] [CrossRef]
- Wang, Q.; Klassen, W.; Li, Y. Influence of cover crops and organic mulches on soil properties and the growth of bell pepper. HortTechnology 2009, 19, 58–64. [Google Scholar] [CrossRef]
- Agyarko, K.; Asiedu, E.K.; Tachie-Menson, J. Effect of mulching materials on soil temperature, nutrient concentration, growth and yield of turmeric (Curcuma longa). Int. J. Plant Prod. 2006, 2, 63–75. [Google Scholar]
- Khan, F.A. A review on hydroponic greenhouse cultivation for sustainable agriculture. Int. J. Agric. Environ. Food Sci. 2018, 2, 59–66. [Google Scholar] [CrossRef]
- Kader, M.; Singha, A.; Begum, M.; Jewel, A.; Khan, F.; Khan, N. Mulching as water-saving technique in dryland agriculture: Review article. Bull. Natl. Res. Cent. 2019, 43, 2–6. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed]
- Lamont, W.J. Plastics: Modifying the microclimate for the production of vegetable and small fruit crops. Hort. Technol. 2005, 15, 477–481. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C.; Batal, K.D.; Granberry, D.M. Plastic mulches and row covers on growth and production of bell pepper. Hort. Sci. 2005, 40, 1315–1320. [Google Scholar]
- Materechera, S.A.; Mkhabela, T.S. Influence of inorganic mulches on soil moisture retention and temperature, and growth of cowpea (Vigna unguiculata L. Walp.) in a semi-arid environment. Soil Tillage Res. 2001, 58, 31–40. [Google Scholar]
- Svenson, S.E.; Davies, F.T. Growth of Liriope muscari under different light regimes and mulch colors. J. Environ. Hortic. 1992, 10, 21–24. [Google Scholar]
- Montague, T.; Kjelgren, R.; Rupp, L.; Allen, R. Tree growth and aesthetics for different mulch types in a landscape setting. Arboric. Urban For. 2007, 33, 343–349. [Google Scholar]
- Ren, A.-T.; Zhou, R.; Mo, F.; Liu, S.-T.; Li, J.-Y.; Chen, Y.; Zhao, L.; Xiong, Y.-C. Soil water balance dynamics under plastic mulching in dryland rainfed agroecosystem across the Loess Plateau. Agric. Ecosyst. Environ. 2021, 312, 107354. [Google Scholar] [CrossRef]
- Braun, M.; Mail, M.; Heyse, R.; Amelung, W. Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. Sci. Total Environ. 2021, 760, 143335. [Google Scholar] [CrossRef] [PubMed]
- Ketterings, Q.M.; Bigham, J.M. Soil organic matter: Definition and measurement in agronomy. Soil Sci. Soc. Am. J. 2003, 67, 2020–2028. [Google Scholar] [CrossRef]
- Ronga, D.; Francia, E.; Allesina, G.; Pedrazzi, S.; Pane, C.; Francia, M.; Lovelli, S. Using compost in horticulture: A tool to increase sustainability. Agroecol. Sustain. Food Syst. 2016, 40, 1–23. [Google Scholar]
- Glover, J.D.; Reganold, J.P.; Andrews, P.K. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosyst. Environ. 2000, 80, 29–45. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. Sustain. Agric. 2011, 2, 761–786. [Google Scholar]
- Singh, R.; Sharma, R.R. Effects of various organic soil amendments on growth, yield and quality of strawberry. Biol. Agric. Hortic. 2003, 21, 37–48. [Google Scholar] [CrossRef]
- Carotti, L.; Pistillo, A.; Zauli, I.; Meneghello, D.; Martin, M.; Pennisi, G.; Gianquinto, G.; Orsini, F. Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation. Agric. Water Manag. 2023, 285, 108365. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Corato, U.D. Agricultural waste recycling in horticultural intensive farming systems by on-farmcomposting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular econom. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Gökalp, Z.; Bulut, S. Potential use of biochar in wastewater treatment operations and soil improvement. Curr. Trends Nat. Sci. 2022, 11, 161–169. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.-H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Chiomento, J.; Nardi, F.; Filippi, D.; Trentin, T.; Dornelles, A.; Fornari, M.; Nienow, A.; Calvete, E. Morpho-horticultural performance of strawberry cultivated on substrate with arbuscular mycorrhizal fungi and biochar. Sci. Hortic. 2021, 282, 110053. [Google Scholar] [CrossRef]
- Ortiz-Liébana, N.; Zotti, M.; Barquero, M.; González-Andrés, F. Biochar + AD exerts a biostimulant effect in the yield of horticultural crops and improves bacterial biodiversity and species richness in the rhizosphere. Sci. Hortic. 2023, 321, 112277. [Google Scholar] [CrossRef]
- Álvarez, J.; Pasian, C.; Lal, R.; López, R.; Díaz, M.; Fernández, M. Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban For. Urban Gree. 2018, 34, 175–180. [Google Scholar] [CrossRef]
- Akhtar, S.S. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Sci. Hortic. 2015, 264, 109184. [Google Scholar]
- Genesio, L.; Miglietta, F.; Baronti, S.; Vaccari, F.P. Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agric. Ecosyst. Environ. 2015, 201, 20–25. [Google Scholar] [CrossRef]
- Graber, E.R.; Meller Harel, Y.; Kolton, M.; Cytryn, E.; Silber, A.; Rav David, D.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Rowland, L.; Smith, H.; Taylor, G. The potential to improve culinary herb crop quality with deficit irrigation. Sci. Hortic. 2018, 242, 44–50. [Google Scholar] [CrossRef]
- Arif, M.; Jan, M.T.; Khan, M.Q.; Saeed, M.; Khan, N.U. Biochar improves growth, physiology, and ornamental quality of Calendula (Calendula officinalis L.). J. Plant Nutr. 2017, 40, 272–281. [Google Scholar]
- Barão, L.; Alaoui, A.; Ferreira, C.; Basch, G.; Schwilch, G.; Geissen, V.; Sukkel, W.; Lemesle, J.; Garcia-Orenes, F.; Morugán-Coronado, A. Assessment of promising agricultural management practices. Sci. Total Environ. 2019, 649, 610–619. [Google Scholar] [CrossRef]
- Boulet, A.K.; Alarcão, C.; Ferreira, C.; Kalantari, Z.; Veiga, A.; Campos, L.; Ferreira, A.; Hessel, R. Agro-ecological services delivered by legume cover crops grown in succession with grain corn crops in the Mediterranean region. Open Agric. 2021, 6, 609–626. [Google Scholar] [CrossRef]
- Steenwerth, K.; Belina, K. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2002, 50, 688–699. [Google Scholar] [CrossRef]
- Mohammed, A.; Oloyede, F.M.; Adeniran, O.M. Effect of cover cropping on soil properties and growth performance of basil (Ocimum basilicum) in a derived savanna ecology. Acta Hortic. 2020, 1273, 341–348. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Veiga, A.; Caetano, A.; Gonzalez-Pelayo, O.; Karine-Boulet, A.; Abrantes, N.; Keizer, J.; Ferreira, A.J.D. Assessment of the Impact of Distinct Vineyard Management Practices on Soil Physico-Chemical Properties. Air Soil Water Res. 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Wang, Q.; Klassen, W.; Li, Y. Cover crops and tillage systems influence tomato growth and yield via influencing soil health. HortScience 2004, 39, 1163–1166. [Google Scholar]
- Steinmaus, S.J.; Elmore, C.L.M.; Smith, R.J. Reduced tillage and cover cropping impacts on soil conditions and yields in a California strawberry production system. HortScience 2008, 43, 2089–2094. [Google Scholar]
- Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Singh, R. Water availability in different soils in relation to hydrogel application. Geoderma 2012, 187, 94–101. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, Y.-H. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2SO4 for water retention and a controlled-release water-soluble fertilizer. Sci. Total Environ. 2019, 655, 958–967. [Google Scholar] [CrossRef]
- Iftime, M.M.; Ailiesei, G.L.; Ungureanu, E.; Marin, L. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention. Carbohydr. Polym. 2019, 223, 115040. [Google Scholar] [CrossRef]
- Islam, M.R.; Xue, X.; Mao, S.; Zhao, X.; Eneji, A.E.; Hu, Y. Superabsorbent polymers (SAP) enhance efficient water use and reduce soil erosion in the Loess Plateau of China. Agric. Water Manag. 2011, 98, 1297–1306. [Google Scholar] [CrossRef]
- Naderi, R.; Ahmadi, S.H.; Zarebanadkouki, M.; Meunier, F. Hydrogel application to sandy soil reduces the water stress of lettuce under deficit irrigation. J. Agric. Food Chem. 2016, 64, 8381–8390. [Google Scholar] [CrossRef]
- Zhanga, X.; Kangb, S.; Lia, F.; Zhang, L. Effects of soil hydrogels on soil moisture and performance of rain-fed peach trees. Sci. Hortic. 2007, 116, 164–169. [Google Scholar] [CrossRef]
- Ciampittiello, M.; Marchetto, A.; Boggero, A. Water Resources Management under Climate Change: A Review. Sustainability 2024, 16, 3590. [Google Scholar] [CrossRef]
- Silva WTL da Oliveira FL de Silva MM da Lima, L.A.; Lima, M.A.C. Hydrogels increase the survival and water status of landscape plants under drought conditions. Agric. Water Manag. 2018, 202, 119–126. [Google Scholar] [CrossRef]
- Christou, A.; Beretsou, V.G.; Iakovides, I.C.; Karaolia, P.; Michael, C.; Benmarhnia, T.; Chefetz, B.; Donner, E.; Gawlik, B.M.; Lee, Y.; et al. Sustainable wastewater reuse for agriculture. Nat. Rev. Earth Environ. 2024, 5, 504–521. [Google Scholar] [CrossRef]
- Keilmann-Gondhalekar, D.; Hu, H.-Y.; Chen, Z.; Tayal, S. The Emerging Environmental Economic Implications of the Urban Water-Energy-Food (WEF) Nexus: Water Reclamation with Resource Recovery in China, India, and Europe. Environ. Sci. 2021, 12, 56–61. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Amori, P.; Mierzwa, J.; Bertelt-Hunt, S.; Guo, B.; Saroj, D. Germination and growth of horticultural crops irrigated with reclaimed water after biological treatment and ozonation. J. Clean. Prod. 2022, 336, 130173. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, R.; Kumar, M. Use pf treated sewage or wastewater as na issigation water for agricultural purposes—Environmental, health and economic impacts. Total Environ. Res. Themes 2023, 6, 100051. [Google Scholar] [CrossRef]
- Zheng, Y.; He, J.; Huang, G.; Zhou, Z.; Miao, B. The effects of irrigation and fertilization on the growth and yield of culinary herbs in a controlled environment. Agric. Water Manag. 2013, 123, 20–30. [Google Scholar]
- Oliveira, M.; Nunes, M.; Barreto Crespo, M.T.; Silva, A.F. The environmental contribution to the dissemination of carbapenem and (fluoro)quinolone resistance genes by discharged and reused wastewater effluents: The role of cellular and extracellular DNA. Water Res. 2020, 182, 116011. [Google Scholar] [CrossRef] [PubMed]
- Murrell, K.A.; Teehan, P.D.; Dorman, F.L. Determination of contaminants of emerging concern and their transformation products in treated-wastewater irrigated soil and corn. Chemosphere 2021, 281, 130735. [Google Scholar] [CrossRef] [PubMed]
- Leitão, I.A.; Van Schaik, L.; Iwasaki, S.; Ferreira, A.J.D.; Geissen, V. Accumulation of airborne microplastics on leaves of different tree species in the urban environment. Sci. Total Environ. 2024, 948, 174907. [Google Scholar] [CrossRef]
- Kötke, D.; Gandrass, J.; Bento, C.P.M.; Ferreira, C.S.S.; Ferreira, A.J.D. Occurrence and environmental risk assessment of pharmaceuticals in the Mondego River (Portugal). Helyion 2024, 10, e34825. [Google Scholar] [CrossRef]
- REGULATION (EU) 2020/741, “REGULATION (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Off. J. Eur. Union 2019, 177, 32–55. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741 (accessed on 21 March 2024).
- Emongor, V.E.; Ramolemana, G.M. Treated sewage effluent (water) potential to be used for horticultural production in Botswana. Phys. Chem. Earth 2004, 29, 1101–1108. [Google Scholar] [CrossRef]
- Yalin, D.; Craddock, H.A.; Assouline, S.; Mordechay, E.B.; Ben-Gal, A.; Bernstein, N.; Chaudhry, R.M.; Chefetz, B.; Fatta-Kassinos, D.; Gawlik, B.M.; et al. Mitigating risks and maximizing sustainability of treated wastewater reuse for irrigation. Water Res. X 2023, 21, 100203. [Google Scholar] [CrossRef]
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water. Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Siddique, M.S.; Yu, W. A Critical Review of Recent Progress in Global Water Reuse during 2019–2021 and Perspectives to Overcome Future Water Crisis. Environments 2023, 10, 159. [Google Scholar] [CrossRef]
- Rizzo, L.; Gernjak, W.; Krzeminski, P.; Malato, S.; McArdell, C.S.; Sanchez Perez, J.A.; Schaar, H.; Fatta-Kassinos, D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci. Total Environ. 2020, 710, 136312. [Google Scholar] [CrossRef] [PubMed]
- Bahri, A. Water reuse in Tunisia: Stakes and prospects. Water Sci. Technol. 2002, 45, 25–33. [Google Scholar]
- Jiménez, B. Irrigation in developing countries using wastewater. Int. Rev. Environ. Strateg. 2006, 6, 229–250. [Google Scholar]
- Al-Jayyousi, O.R. Greywater reuse: Towards sustainable water management. Desalination 2003, 156, 181–192. [Google Scholar] [CrossRef]
- Hosney, H.; Tawfik, M.H.; Duker, A.; van der Steen, P. Prospects for treated wastewater reuse in agriculture in low- and middle-income countries: Systematic analysis and decision-making trees for diverse management approaches. Environ. Dev. 2023, 46, 100849. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Nahim-Granados, S.; Martínez-Piernas, A.B.; Rivas-Ibanez, G.; Plaza-Bolanos, P.; Oller, I.; Malato, S.; Pérez, J.A.S.; Agüera, A.; Polo-López, M.I. Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. Water Res. 2021, 203, 117532. [Google Scholar] [CrossRef]
- Abdelraouf, R.E. Reuse of Fish Farm Drainage Water in Irrigation. In Unconventional Water Resources and Agriculture in Egypt. The Handbook of Environmental Chemistry; Negm, A., Ed.; Springer: Cham, Switzerland, 2017; Volume 75. [Google Scholar] [CrossRef]
- Schoor, M.; Arenas-Salazar, A.P.; Parra-Pacheco, B.; García-Trejo, J.F.; Torres-Pacheco, I.; Guevara-González, R.G.; Rico-García, E. Horticultural Irrigation Systems and Aquacultural Water Usage: A Perspective for the Use of Aquaponics to Generate a Sustainable Water Footprint. Agriculture 2024, 14, 925. [Google Scholar] [CrossRef]
- Cordeiro, S.; Ferrario, F.; Pereira, H.Z.; Ferreira, F.; Matos, J.S. Water Reuse, a Sustainable Alternative in the Context of Water Scarcity and Climate Change in the Lisbon Metropolitan Area. Sustainability 2023, 15, 12578. [Google Scholar] [CrossRef]
- Zolghadr-Asli, B.; McIntyre, N.; Djordjevic, S.; Farmani, R.; Pagliero, L. The sustainability of desalination as a remedy to the water crisis in the agriculture sector: An analysis from the climate-water-energy-food nexus perspective. Agric. Water Manag. 2023, 286, 108407. [Google Scholar] [CrossRef]
- Gikas, P.; Angelakis, A.N. Water resources management in Crete and in the Aegean Islands, with emphasis on the utilization of non-conventional water sources. Desalination 2009, 248, 1049–1064. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; Martin-Gorriz, B.; Soto-García, M. Seawater desalination for crop irrigation—A reviewof current experiences and revealed key issues. Desalination 2016, 381, 58–70. [Google Scholar] [CrossRef]
- Gil, J.; González, R.; Sánchez-Molina, J.; Berenguel, M.; Rodríguez, F. Reverse osmosis desalination for greenhouse irrigation: Experimental characterization and economic evaluation based on energy hubs. Desalination 2023, 574, 117281. [Google Scholar] [CrossRef]
- Carr, M.K. Advances in Irrigation Agronomy: Plantation Crops; Cambridge University Press: Cambridge, UK, 2012; Volume 317. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Kang, J.; Hao, X.; Zhou, H.; Ding, R. An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect. Agric. Water Manag. 2021, 255, 107008. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Kašanin-Grubin, M.; Destouni, G.; Soares, P.; Harrison, M.; Kikuchi, R.; Kalantari, Z. Freshwater: Management Principles for Sustainability under the Climate Emergency. In Environmental Sustainability in the Mediterranean Region—Challenges and Solutions; Ferreira, C.S.S., Destouni, G., Kalantari, Z., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2024; in press. [Google Scholar]
- Singh, R.; Singh, B. Effect of different irrigation methods on growth and yield of mint (Mentha arvensis L.). J. Herbs Spices Med. Plants 1992, 1, 45–51. [Google Scholar]
- Devitt, D.A.; Morris, R.L. Water use of landscape plants in an arid environment. HortScience 2007, 42, 68–74. [Google Scholar] [CrossRef]
- Hamilton, A.; Boland, A.; Stevens, D.; Kelly, J.; Radcliffe, J.; Ziehrl, A.; Dillon, P.; Paulin, B. Position of the Australian horticultural industry with respect to the use of reclaimed water. Agric. Water Manag. 2005, 71, 181–209. [Google Scholar] [CrossRef]
- Fereres, E.; Evans, R.G. Irrigation of fruit trees and vines: Principles and practices. Irrig. Agric. Crop. 2006, 33, 781–808. [Google Scholar]
- Strik, B.C.; Buller, G. The impact of early cropping on subsequent growth and yield of highbush blueberry. HortScience 2005, 40, 1998–2001. [Google Scholar] [CrossRef]
- Simonne, E.H.; Hochmuth, G.J.; Dukes, M.D.; Pitts, D.J. Irrigation Management for Vegetable Crops in Florida; University of Florida IFAS Extension: Homestead, FL, USA, 2005. [Google Scholar]
- Simonne, E.H.; Hochmuth, G.J. Irrigation Management for Culinary Herbs; University of Florida IFAS Extension: Homestead, FL, USA, 2011. [Google Scholar]
- McDonald, E.M.; Linde, C. The impact of sprinkler irrigation on the development of foliar diseases in horticultural crops. Australas. Plant Pathol. 2022, 31, 117–123. [Google Scholar]
- Senapti, S.; Santosh, D.; Pholane, L. Techno economic feasibility of drip irrigation for vegetable cultivation. Int. J. Agric. Sci. 2021, 17, 636–643. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, L.; Liu, Y.; Jing, D.; Zhang, L.; Liu, Y.; Li, W.; Wang, X.; Li, T.; Li, J. Optimizing irrigation schedules of greenhouse tomato based on a comprehensive evaluation model. Agric. Water Manag. 2024, 295, 108741. [Google Scholar] [CrossRef]
- Sebastian, K.; Bindu, B.; Rafeekher, M. Performance of papaya variety ‘Surya’under fertigation and foliar nutrition. Plant Sci. Today 2021, 8, 718–726. [Google Scholar] [CrossRef]
- Seema Dahiya, R.; Prakash, R.; Roohi Sheoran, H.S. Drip Irrigation as a Potential Alternative to Traditional Irrigation Method for Saline Water Usage in Vegetable Crops- A Review. Int. J. Econ. Plants 2022, 9, 115–120. [Google Scholar]
- Wen, S.; Cui, N.; Wang, Y.; Gong, D.; Xing, L.; Wu, Z.; Zhang, Y.; Zhao, L.; Fan, J.; Wang, Z. Optimizing deficit drip irrigation to improve yield, quality, and water productivity of apple in Loess Plateau of China. Agric. Water Manag. 2024, 296, 108798. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.-H.; Chen, M.-X.; Zhu, F.-Y.; Song, T. Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review. Agric. Water Manag. 2023, 289, 108523. [Google Scholar] [CrossRef]
- Shahnazari, A.; Liu, F.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Effects of partial root-zone drying on yield, tuber size, and water use efficiency in potato under field conditions. Field Crop. Res. 2007, 100, 117–124. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Nardella, E.; Gagliardi, A.; Gatta, G. Deficit irrigation and partial root-zone drying techniques in processing tomato cultivated under Mediterranean climate conditions. Sustainability 2017, 9, 2197. [Google Scholar] [CrossRef]
- Yactayo, W.; Ramírez, D.A.; Gutiérrez, R.; Mares, V.; Posadas, A.; Quiroz, R. Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agric. Water Manage. 2013, 123, 65–70. [Google Scholar] [CrossRef]
- Consoli, S.; Stagno, F.; Vanella, D.; Boaga, J.; Cassiani, G.; Roccuzzo, G. Partial root-zone drying irrigation in orange orchards, effects on water use and crop production characteristics. Europ. J. Agron. 2017, 82, 190–202. [Google Scholar] [CrossRef]
- Loveys, B.; Stoll, M.; Davies, W. Physiological approaches to enhance water use efficiency in agriculture: Exploiting plant signalling in novel irrigation practice. In Water Use Efficiency in Plant Biology; Wiley: Hoboken, NJ, USA, 2004; pp. 113–141. [Google Scholar]
- Savic, S.; Stikic, R.; Zaric, V.; Vucelic-Radovic, B.; Jovanovic, Z.; Marjanovic, M.; Djordjevic, S.; Petkovic, D. Deficit irrigation technique for reducing water use of tomato under polytunnel conditions. J. Cent. Eur. Agric. 2011, 12, 597–607. [Google Scholar] [CrossRef]
- Faci, J.M.; Blanco, O.; Medina, E.T.; Martínez-Cob, A. Effect of post veraison regulated deficit irrigation in production and berry quality of autumn royal and crimson table grape cultivars. Agric. Water Manage. 2014, 134, 73–83. [Google Scholar] [CrossRef]
- Bourgault, M.; Madramootoo, C.A.; Webber, H.A.; Stulina, G.; Horst, M.G.; Smith, D.L. Effects of deficit irrigation and salinity stress on common bean (Phaseolus vulgaris L.) and mungbean [Vigna radiata (L.) Wilczek] grown in a controlled environment. J. Agron. Crop. Sci. 2010, 196, 262–272. [Google Scholar] [CrossRef]
- Oron, G.; DeMalach, J.; Hoffman, Z.; Cibotaru, R. Subsurface microirrigation with effluent. J. Irrig. Drain. Eng. 1991, 117, 25–36. [Google Scholar] [CrossRef]
- Ayars, J.; Phene, C.; Hutmacher, R.; Davis, K.; Schoneman, R.; Vail, S.; Mead, R. Subsurface drip irrigation of row crops: A review of 15 years of research at the Water Management Research Laboratory. Agric. Water Manag. 1999, 42, 1–27. [Google Scholar] [CrossRef]
- Brown, M.; Bondurant, J.; Brockway, C. Subsurface trickle irrigation management with multiple cropping. Trans. ASAE 1981, 24, 1482–1489. [Google Scholar] [CrossRef]
- Lamm, F.R.; Stone, K.; Dukes, M.; Howell, T.; Robbins, J.; Mecham, B. Emerging technologies for sustainable irrigation: Selected papers from the 2015 ASABE and IA irrigation symposium. Trans. ASABE 2015, 59, 155–161. [Google Scholar] [CrossRef]
- Strock, J.S.; Dell, C.J.; Schmidt, J.P. Drainage water management for water quality protection. J. Soil Water Conserv. 2007, 62, 144A–153A. [Google Scholar] [CrossRef]
- Ayars, J.E.; Christen, E.W.; Hornbuckle, J. Controlled drainage for improved water management in arid regions irrigated agriculture. Agric. Water Manag. 2006, 86, 128–139. [Google Scholar] [CrossRef]
- Feset, S.E.; Strock, J.S.; Sands, G.R.; Birr, A.S. Controlled drainage to improve edge-of-field water quality in southwest Minnesota, USA. In Proceedings of the 9th International Drainage Symposium Held Jointly with CIGR and CSBE/SCGAB Proceedings, Québec City, QC, Canada, 13–16 June 2010; p. 1. [Google Scholar]
- Drury, C.F.; Tan, C.S.; Reynolds, W.D.; Welacky, T.W.; Calder, W.; McLaughlin, N.B. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems. J. Environ. Qual. 2009, 38, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation management of European greenhouse vegetable crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Koukounaras, A. Advanced greenhouse horticulture: New technologies and cultivation practices. Horticulturae 2020, 7, 1. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Bermúdez, F.; Jordán, A. The effects of soil erosion and sediment transport on soil fertility and plant productivity. Agriculture 2017, 7, 119. [Google Scholar]
- Incrocci, L.; Massa, D.; Pardossi, A. New trends in the fertigation management of irrigated vegetable crops. Horticulturae 2017, 3, 37. [Google Scholar] [CrossRef]
- Khan, S.; Purohit, A.; Vadsaria, N. Hydroponics: Current and future state of the art in farming. J. Plant Nutr. 2020, 44, 1515–1538. [Google Scholar] [CrossRef]
- Almaguer-Vargas, G.; Alcántar-González, G.; Osuna-Ceja, M. Production of hydroponic strawberry (Fragaria x ananassa Duch.) in response to electrical conductivity of the nutrient solution. Agrociencia 2008, 42, 641–652. [Google Scholar]
- Lee, S.K.; Lee, J.H. Effect of hydroponic nutrient solution concentration on the growth and yield of cucumber in a plant factory system. Hortic. Environ. Biotechnol. 2015, 56, 33–39. [Google Scholar] [CrossRef]
- Carrubba, A.; Militello, M. Growing peppermint (Mentha piperita L.) in hydroponics: A review. J. Med. Plants Res. 2013, 7, 3021–3029. [Google Scholar]
- Pomoni, D.I.; Koukou, M.K.; Vrachopoulos, M.G.; Vasiliadis, L. A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use. Energies 2023, 16, 1690. [Google Scholar] [CrossRef]
- Zhang, M.; Han, Y.; Li, D.; Xu, S.; Huang, Y. Smart Horticulture as an Emerging Interdisciplinary Field Combining Novel Solutions: Past Development, Current Challenges, and Future Perspectives. Hortic. Plant J. 2023. [Google Scholar] [CrossRef]
- O’Neill, M.P.; Dobrowolski, J.P. Water and agriculture in a changing climate. HortScience 2011, 46, 155–157. [Google Scholar] [CrossRef]
- Xudayev, I.; Fazliev, J.S.; Ayusupova, A. Water saving up-to-date irrigation technologies. IOP Conf. Ser. Earth Environ. Sci. 2021, 868, 12–14. [Google Scholar] [CrossRef]
- Muleke, A.; Harrison, M.T.; Eisner, R.; Voil, P.; Yanotti, M.; Liu, K.; Monjardino, M.; Yin, X.; Wang, W.; Nie, J.; et al. Sustainable intensification with irrigation raises profit despite burgeoning climate emergency. Plants People Planet 2023, 5, 368–385. [Google Scholar] [CrossRef]
- Lephondo, A.; Telukdariea, A.; Muniena, I.; Onkonkwoa, U.; Vermeulena, A. The Outcomes of Smart Irrigation System using Machine Learning to minimize water usage within the Agriculture Sector Itumeleng. Procedia Comput. Sci. 2024, 237, 525–532. [Google Scholar] [CrossRef]
- Ludwig-Ohm, S.; Hildner, P.; Isaak, M.; Dirksmeyer, W.; Schattenberg, J. The contribution of Horticulture 4.0 innovations to more sustainable horticulture. Procedia Comput. Sci. 2023, 217, 465–477. [Google Scholar] [CrossRef]
- Keates, O. Actionable insights for horticulture supply chains through advanced IoT analytics. Procedia Comput. Sci. 2023, 217, 1631–1640. [Google Scholar] [CrossRef]
- Singh, D.; Biswal, A.; Samanta, D.; Singh, V.; Kadry, S.; Khan, A.; Nam, Y. Smart high-yield tomato cultivation: Precision irrigation system using the Internet of Things. Front. Plant Sci. 2023, 14, 1239594. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Kaburuan, E.R.; Jayadi, R. A Design of IoT-based Monitoring System for Intelligence Indoor Micro-Climate Horticulture Farming in Indonesia. Procedia Comput. Sci. 2019, 157, 459–464. [Google Scholar] [CrossRef]
- Chen, Y. The design of intelligent drip irrigation network control system. In Proceedings of the 2011 International Conference on Internet Technology and Applications, Wuhan, China, 16–18 August 2011; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.; Weidang, L.; Gao, Y.; Gong, Y.; Cao, J. 6G-Enabled Smart Agriculture: A Review and Prospect. Electronics 2022, 11, 2845. [Google Scholar] [CrossRef]
- Jiménez, B.; Asano, T. Water Reuse: An International Survey of Current Practice, Issues and Needs; IWA Publishing: London, UK, 2008. [Google Scholar] [CrossRef]
- Zinkernagel, J.; Maestre-Valero, J.F.; Seresti, S.Y.; Intrigliolo, D.S. New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agric. Water Manag. 2020, 242, 106404. [Google Scholar] [CrossRef]
- Yao, S.; Merwin, I.A.; Bird, G.W.; Abawi, G.S.; Thies, J.E. Orchard floor management practices that build soil quality and improve tree performance. HortScience 2005, 40, 2101–2106. [Google Scholar]
- Leão, T.; Costa, B.; Bufon, V.; Aragón, F. Using time domain reflectometry to estimate water content of three soil orders under savanna in Brazil. Geoderma Reg. 2020, 21, e00280. [Google Scholar] [CrossRef]
- Restuccia, R. Quick Guide: Soil Moisture Sensors. 2021. Available online: https://jainsusa.com/blog/quick-guide-soil-moisture-sensors/ (accessed on 18 March 2024).
- Pardossi, A.; Incrocci, L. Traditional and new approaches to irrigation scheduling in vegetable crops. HortTechnology 2011, 21, 309–313. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Li, B. Water and fertilizer integration intelligent control system of tomato based on internet of things. In Proceedings of the Cloud Computing and Security: 4th International Conference, ICCCS 2018, Haikou, China, 8–10 June 2018; Revised Selected Papers, Part VI 4. Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 209–220. [Google Scholar]
- Zhang, L.L.; Kong, G.L. Design of farmland irrigation water quality monitoring and control system based on DSP and ZigBee. Agric. Mech. Res. 2021, 43, 229–232. [Google Scholar]
- Kumar, V.; Sharma, K.; Kedam, N.; Patel, A.; Kate, T.; Rathnayake, U. A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agric. Techn. 2024, 8, 100487. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, T.; Zhang, Q.; Zeng, X.; Zhou, S.; Wu, F.; Liu, Y.; Wang, Y. A stomatal optimization model adopting a conservative strategy in response to soil moisture stress. J. Hydrol. 2023, 617, 128931. [Google Scholar] [CrossRef]
- Mpakairi, K.; Dube, T.; Sibanda, M.; Mutanga, O. Remote sensing crop water productivity and water use for sustainable agriculture during extreme weather events in South Africa. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103833. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, S.; Han, Y.; Li, D.; Yang, S.; Huang, Y. High-throughput horticultural phenomics: The history, recent advances and new prospects. Comput. Electron. Agric. 2023, 213, 108265. [Google Scholar] [CrossRef]
- Khormizi, H.Z.; Malamiri, H.R.G.; Ferreira, C.S.S. Estimation of Evaporation and Drought Stress of Pistachio Plant Using UAV Multispectral Images and a Surface Energy Balance Approach. Horticulturae 2024, 10, 515. [Google Scholar] [CrossRef]
- Ge, Y.; Atefi, A.; Zhang, H.; Miao, C.; Ramamurthy, R.K.; Sigmon, B.; Yang, J.; Schnable, J.C. High-throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: A case study with a maize diversity panel. Plant Methods 2019, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Raheja, A.; Chaichi, M.; Green, R.; Do, D.; Pham, F.; Ansari, M.; Wolf, J.G.; Sherman, T.M.; Espinas, A. Effectiveness of UAV-based remote sensing techniques in determining lettuce nitrogen and water stresses. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018; pp. 1066403–1066415. [Google Scholar] [CrossRef]
- Klem, K.; Zahora, J.; Zemek, F.; Trunda, P.; Tůma, I.; Novotna, K.; Hodanova, P.; Rapantova, B.; Hanus, J.; Vavríkova, J.; et al. Interactive effects of water deficit and nitrogen nutrition on winter wheat. Remote sensing methods for their detection. Agric. Water Manag. 2018, 210, 171–184. [Google Scholar] [CrossRef]
- Barros, T.; Conde, P.; Gonçalves, G.; Premebida, C.; Monteiro, M.; Ferreira, C.S.S.; Nunes, U. Multispectral vineyard segmentation: A deep learning comparison study. Comput. Electron. Agric. 2022, 195, 106782. [Google Scholar] [CrossRef]
- Lu, Z.; Gao, J.; Wang, Q.; Ning, Z.; Tan, X.; Lei, Y.; Zhang, J.; Zou, J.; Wang, L.; Yang, C.; et al. Light energy utilization and measurement methods in crop production. Crop. Environ. 2024, 3, 91–100. [Google Scholar] [CrossRef]
- Brajović, M.; Vujović, S.; Đukanović, S. An overview of smart irrigation software. In Proceedings of the 2015 4th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 14–18 June 2015; pp. 353–356. [Google Scholar] [CrossRef]
- Sutcliffe, C.; Pui, L.; Gush, M.; Griffiths, A. Engagement in sustainable horticulture is associated with greater perceived health benefits amongst gardeners. Urban For. Urban Green. 2024, 98, 128423. [Google Scholar] [CrossRef]
- Katzin, D.; Marcelis, L.; van Henten, E.; van Mourik, S. Heating greenhouses by light: A novel concept for intensive greenhouse production. Biosyst. Eng. 2023, 230, 242–276. [Google Scholar] [CrossRef]
- Ariesen-Verschuur, N.; Verdouw, C.; Tekinerdogan, B. Digital Twins in greenhouse horticulture: A review. Comput. Electron. Agric. 2022, 199, 107183. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, C.; Lin, G. Practical application of an intelligent irrigation system to rice paddies in Taiwan. Agric. Water Manag. 2023, 280, 108216. [Google Scholar] [CrossRef]
- Mason, B.; Rufí-Salís, M.; Parada, F.; Gabarrell, X.; Gruden, C. Intelligent urban irrigation systems: Saving water and maintaining crop yields. Agric. Water Manag. 2019, 226, 105812. [Google Scholar] [CrossRef]
- Dalal, A.; Bourstein, R.; Haish, N.; Shenhar, I.; Wallach, R.; Moshelion, M. Dynamic Physiological Phenotyping of Drought-Stressed Pepper Plants Treated With “Productivity-Enhancing” and “Survivability-Enhancing” Biostimulants. Front. Plant Sci. 2019, 10, 905. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Reynolds, M.; Pinto, F.; Khan, M.; Bhat, M. High-throughput phenotyping for crop improvement in the genomics era. Plant Sci. 2019, 282, 60–72. [Google Scholar] [CrossRef]
- Gupta, A.; Rayeen, F.; Mishra, R.; Tripathi, M.; Pathak, N. Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach. Pant Nano Biol. 2023, 4, 100033. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar] [CrossRef]
- Yang, L.; Xia, L.; Zeng, Y.; Han, Q.; Zhang, S. Grafting enhances plants drought resistance: Current understanding, mechanisms, and future perspectives. Front. Plant Sci. 2022, 13, 1015317. [Google Scholar] [CrossRef]
- Coskun, Ö.F. The Effect of Grafting on Morphological, Physiological and Molecular Changes Induced by Drought Stress in Cucumber. Sustainability 2023, 15, 875. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J. Excessive Water and Drainage Management in Agriculture: Disaster, Facilities Operation and Pollution Control. Water 2022, 14, 2500. [Google Scholar] [CrossRef]
- Antolini, F.; Tate, E.; Dalzell, B.; Young, N.; Johnson, K.; Hawthorne, P. Flood Risk Reduction from Agricultural Best Management Practices. J. Am. Water Resour. Assoc. 2019, 56, 161–179. [Google Scholar] [CrossRef]
- Ahmed, F.; Raffi, M.; Ismail, M.; Juraimi, A.; Rahim, H.; Asfaliza, R.; Latif, M. Waterlogging Tolerance of Crops: Breeding, Mechanism of Tolerance, Molecular Approaches, and Future Prospects. Biomed Res. Int. 2012, 2013, 1–10. [Google Scholar] [CrossRef]
- Najeebullah, M.; Parveen, N.; Chishti, S.; Amin, E.; Shahzadi, F.; Aleem, S. Mitigation of temperature, drought and viral diseases stress in vegetable crops. Int. J. Biosci. 2020, 16, 164–172. [Google Scholar]
- Mustafa, G.; Komatsu, S. Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim. Biophys. Acta Proteins Proteom. 2016, 1864, 932–944. [Google Scholar] [CrossRef] [PubMed]
Horticultural Crops | Family | Crop Name | Optimal Water Requirements (mm) |
---|---|---|---|
Vegetables | Amaranthaceae | Spinach (Spinacia oleracea L.) | 800–1200 |
Beetroot (Beta vulgaris L.) | 600–800 | ||
Amaryllidaceae | Onion (Allium cepa L.) | 350–600 | |
Garlic (Allium sativum L.) | 750–1600 | ||
Apiaceae | Carrot (Daucus carota L.) | 600–1200 | |
Asteraceae | Lettuce (Lactuca sativa L. var. capitata) | 1100–1400 | |
Brassicaceae | Mustard (Brassica juncea (L.) Czern.) | ||
Broccoli (Brassica oleracea L. var. botrytis) | 600–1100 | ||
Cabbage (Brassica oleracea L. var. capitata) | 500–1000 | ||
Cucurbitaceae | Pumpkin (Cucurbita pepo L.) | 600–1500 | |
Fabaceae | Bean (Phaseolus vulgaris L.) | 500–2000 | |
Solanaceae | Pepper (Capsicum annuum L.) | 600–1250 | |
Eggplant (Solanum melongena L.) | 1200–1600 | ||
Tomato (Lycopersicum esculentum Mill.) | 600–1300 | ||
Fruits | Anacardiaceae | Mango (Mangifera indica L.) | 600–1500 |
Cucurbitaceae | Watermelon (Citrullus lanatus (Thunb.) Matsumura & Nakai) | 500–700 | |
Lauraceae | Avocado (Persea americana Mill.) | 500–2000 | |
Rosaceae | Apple (Malus domestica Borkh.) | 700–2500 | |
Pear (Pyrus communis L.) | 600–900 | ||
Rutaceae | Orange (Citrus sinensis (L.) Osbeck) | 1200–2000 | |
Aromatic and medicinal plants | Apiaceae | Parsley (Petroselinum crispum (Mill.) Nym. ex AW Hil) | 900–1500 |
Lamiaceae | Lemon balm (Melissa officinalis L.) | 800–1000 | |
Lamiaceae | Sage (Salvia officinalis L.) | 500–1000 | |
Lamiaceae | Rosemary (Rosmarinus officinalis L.) | 600–1400 | |
Lamiaceae | Oregano (Origanum vulgare L.) | 700–1300 | |
Lamiaceae | Spearmint (Mentha spicata L. var. crispa) | 900–1200 | |
Lamiaceae | Basil (Ocimum basilicum L.) | 1000–1600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, C.S.S.; Soares, P.R.; Guilherme, R.; Vitali, G.; Boulet, A.; Harrison, M.T.; Malamiri, H.; Duarte, A.C.; Kalantari, Z.; Ferreira, A.J.D. Sustainable Water Management in Horticulture: Problems, Premises, and Promises. Horticulturae 2024, 10, 951. https://doi.org/10.3390/horticulturae10090951
Ferreira CSS, Soares PR, Guilherme R, Vitali G, Boulet A, Harrison MT, Malamiri H, Duarte AC, Kalantari Z, Ferreira AJD. Sustainable Water Management in Horticulture: Problems, Premises, and Promises. Horticulturae. 2024; 10(9):951. https://doi.org/10.3390/horticulturae10090951
Chicago/Turabian StyleFerreira, Carla S. S., Pedro R. Soares, Rosa Guilherme, Giuliano Vitali, Anne Boulet, Matthew Tom Harrison, Hamid Malamiri, António C. Duarte, Zahra Kalantari, and António J. D. Ferreira. 2024. "Sustainable Water Management in Horticulture: Problems, Premises, and Promises" Horticulturae 10, no. 9: 951. https://doi.org/10.3390/horticulturae10090951
APA StyleFerreira, C. S. S., Soares, P. R., Guilherme, R., Vitali, G., Boulet, A., Harrison, M. T., Malamiri, H., Duarte, A. C., Kalantari, Z., & Ferreira, A. J. D. (2024). Sustainable Water Management in Horticulture: Problems, Premises, and Promises. Horticulturae, 10(9), 951. https://doi.org/10.3390/horticulturae10090951