Water Extracts of Cruciferous Vegetable Seeds Inhibit Enzymic Browning of Fresh-Cut Mid Ribs of Romaine Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material Handling and Storage
2.3. Seed Water Extracts
2.4. Exposure Time
2.5. Determination of SWE Phenolics and Antioxidant Capacity
2.6. Chromatometric Color Measurement
2.7. Visual Evaluation of Browning and Shelf-Life
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phenolics and Antioxidant Capacity of SWE
3.2. Analysis of Variance
3.3. Pearson Linear Correlation and Principal Component Analysis
3.4. VSI and Browning Index
3.5. ΔL and Δa and Δh° Values
3.6. Shelf-Life
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, D.H.; Kim, H.B.; Chung, H.S.; Moon, K.D. Browning Control of Fresh-Cut Lettuce by Phytoncide Treatment. Food Chem. 2014, 159, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Li, L.; Wu, Y.W.; Fan, J.F.; Ouyang, J. Salicylic Acid Inhibits Enzymatic Browning of Fresh-Cut Chinese Chestnut (Castanea mollissima) by Competitively Inhibiting Polyphenol Oxidase. Food Chem. 2015, 171, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Z.; Zeng, S.; Yuan, S.; Yue, X.; Tian, T.; Zhu, X.; Zheng, S.; Xu, X.; Zuo, J.; et al. Browning Mechanism in Stems of Fresh-Cut Lettuce. Food Chem. 2023, 405, 134575. [Google Scholar] [CrossRef]
- Tomas-Barberan, F.A.; Espin, J.C. Phenolic Compounds and Related Enzymes as Determinants of Quality in Fruits and Vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Mayer, A.M. Polyphenol Oxidases in Plants and Fungi: Going Places? A Review. Phytochemistry 2006, 67, 2318–2331. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kim, D.; Park, J. Various Antibrowning Agents and Green Tea Extract During Processing and Storage. J. Food Proc. Preserv. 2003, 27, 213–225. [Google Scholar] [CrossRef]
- Pace, B.; Capotorto, I.; Ventura, M.; Cefola, M. Evaluation of L-Cysteine as Anti-Browning Agent in Fresh-Cut Lettuce Processing. J. Food Proc. Preserv. 2014, 201439, 985–993. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Tzortzakis, N. The Combined and Single Effect of Marjoram Essential Oil, Ascorbic Acid, and Chitosan on Fresh-Cut Lettuce Preservation. Foods 2021, 10, 575. [Google Scholar] [CrossRef] [PubMed]
- Narváez-Cuenca, C.E.; Kuijpers, T.F.M.; Vincken, J.P.; de Waard, P.; Gruppen, H. New Insights into an Ancient Antibrowning Agent: Formation of Sulfophenolics in Sodium Hydrogen Sulfite-Treated Potato Extracts. J. Agric. Food Chem. 2011, 59, 10247–10255. [Google Scholar] [CrossRef]
- McEvily, A.J.; Iyengar, R.; Otwell, W.S. Inhibition of Enzymatic Browning in Foods and Beverages. Crit. Rev. Food Sci. 1992, 32, 253–273. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F. Natural and Synthetic Tyrosinase Inhibitors as Anti-Browning Agents: An Update. Compr. Rev. Food Sci. Food Saf. 2012, 11, 378–398. [Google Scholar] [CrossRef]
- Zhan, L.; Li, Y.; Hu, J.; Pan, L.; Fan, H. Browning Inhibition and Quality Preservation of Fresh-Cut Romaine Lettuce Exposed to High Intensity Light. Innov. Food Sci. Emerg. Technol. 2012, 14, 70–76. [Google Scholar] [CrossRef]
- Loaiza-Velarde, J.G.; Tomás-Barberán, F.A.; Saltveit, M.E. Effect of Intensity and Duration of Heats Hock Treatments on Wound-Induced Phenolic Metabolism in Iceberg Lettuce. J. Amer. Soc. Hort. Sci. 1997, 122, 873–877. [Google Scholar] [CrossRef]
- Vanden Abeele, C.; Raes, K.; Samperset, I. Effect of Mild Heat Treatment on Browning-Related Parameters in Fresh-Cut Iceberg Lettuce. J. Food Biochem. 2019, 43, e12906. [Google Scholar] [CrossRef] [PubMed]
- Soliva, R.C.; Elez, P.; Sebastian, M.; Martin, O. Evaluation of Browning Effect on Avocado Puree Preserved by Combined Methods. Innov. Food Sci. Emerg. Technol. 2001, 1, 216–268. [Google Scholar] [CrossRef]
- Escalona, V.H.; Verlinden, B.E.; Geysen, S.; Nicolai, B.M. Changes in Respiration of Fresh-Cut Butterhead Lettuce Under Controlled Atmospheres Using Low and Superamospheric Oxygen Conditions with Different Carbon Dioxide Levels. Postharvest Biol. Technol. 2006, 39, 48–55. [Google Scholar] [CrossRef]
- Koukounaras, A.; Siomos, A.S.; Gerasopoulos, D.; Papachristodoulou, M. Active modified Atmosphere Package Induced Collapse of Minimally Processed Romaine Lettuce Leaves. Food Pack. Shelf Life 2019, 22, 100411. [Google Scholar] [CrossRef]
- Chaisakdanugull, C.; Theerakulkait, C.; Wrolstad, R.E. Pineapple Juice and Its Fractions in Enzymatic Browning Inhibition of Banana [Musa (AAA Group) Gros Michel]. J. Agric. Food Chem. 2007, 55, 4252–4257. [Google Scholar] [CrossRef]
- Martín-Diana, A.B.; Rico, D.; Barry-Ryan, C. Green Tea Extract As a Natural Antioxidant to Extend The Shelf-Life of Fresh-Cut Lettuce. Innov. Food Sci. Emerg. Technol. 2008, 9, 593–603. [Google Scholar] [CrossRef]
- Altunkaya, A. Effect of Whey Protein Concentrate on Phenolic Profile and Browning of Fresh-Cut Lettuce (Lactuca Sativa). Food Chem. 2011, 128, 754–760. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, C.Y.; Park, I. Prevention of Enzymatic Browning of Pear by Onion Extract. Food Chem. 2008, 89, 181–184. [Google Scholar] [CrossRef]
- Sukhontha, S.; Kunwadee, K.; Chockchai, T. Inhibitory Effect of Rice Bran Extracts and Its Phenolic Compounds on Polyphenol Oxidase Activity and Browning in Potato and Apple Puree. Food Chem. 2016, 190, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K. Inhibitory Effect of Banana Polyphenol Oxidase During Ripening of Banana by Onion Extract and Maillard Reaction Products. Food Chem. 2007, 102, 146–149. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Lu, Y.; Li, Y.; Li, T.; Zhou, B.; Qiao, L. Effect of purslane (Portulaca oleracea L.) extract on anti-browning of fresh-cut potato slices during storage. Food Chem. 2019, 283, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Supapvanich, S.; Yimpong, A.; Srisuwanwichan, J. Browning Inhibition on Fresh-Cut Apple by the Immersion of Liquid Endosperm from Mature Coconuts. J. Food Sci. Technol. 2020, 57, 4424–4431. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Wang, H.; Shao, J.; Lu, L.; Tian, J.; Liu, X. A Novel Mitigator of Enzymatic Browning—Hawthorn Leaf Extract and its Application in the Preservation of Fresh-Cut Potatoes. Food Qual. Safety 2021, 5, 1399–2399. [Google Scholar] [CrossRef]
- Chen, X.; Ren, L.; Li, M.; Qian, J.; Fan, J.; Du, B. Effects of Clove Essential Oil and Eugenol on Quality and Browning Control of Fresh-Cut Lettuce. Food Chem. 2017, 214, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Złotek, U.; Świeca, M. Effect of Basil Leaves and Wheat Bran Water Extracts on Enzymatic Browning of Shredded Storage Iceberg Lettuce. Int. J. Food Sci. Technol. 2020, 55, 1318–1325. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Wang, Q.; Dong, T. Diacetyl Inhibits the Browning of Fresh-Cut Stem Lettuce by Regulating the Metabolism of Phenylpropane and Antioxidant Ability. Foods 2023, 12, 740. [Google Scholar] [CrossRef]
- Nogales-Delgado, S. Polyphenoloxidase (PPO): Effect, Current Determination and Inhibition Treatments in Fresh-Cut Produce. Appl. Sci. 2021, 11, 7813. [Google Scholar] [CrossRef]
- Peng, H.; Simko, I. Extending Lettuce Shelf Life through Integrated Technologies. Curr. Opin. Biotechnol. 2023, 81, 102951. [Google Scholar] [CrossRef]
- Landi, M.; Degl’Innocenti, E.; Guglielminetti, L.; Guidi, L. Role of Ascorbic Acid in the Inhibition of Polyphenol Oxidase and the Prevention of Browning in Different Browning-Sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) Stored as Fresh-Cut Produce. J. Sci. Food Agric. 2013, 93, 1814–1819. [Google Scholar] [CrossRef]
- Zocca, F.; Lomolino, G.; Lante, A. Antibrowning Potential of Brassicacaea Processing Water. Biores. Technol. 2010, 101, 3791–3795. [Google Scholar] [CrossRef]
- Wessels, B.; Damm, S.; Kunz, B.; Schulze-Kaysers, N. Effect of Selected Plant Extracts on the Inhibition of Enzymatic Browning in Fresh-Cut Apple. J. Applied Bot. Food Qual. 2014, 87, 16–23. [Google Scholar] [CrossRef]
- Bustos, M.C.; Agudelo-Laverde, L.M.; Mazzobre, F.; Buera, M.P. The Relationship between Antibrowning, Anti-Radical and Reducing Capacity of Brassica and Allium Extracts. Int. J. Food Stud. 2014, 3, 82–92. [Google Scholar] [CrossRef]
- Bustos, M.C.; Pérez, G.; León, A.E. Structure and Quality of Pasta Enriched with Functional Ingredients. RSC Adv. 2015, 5, 30780–30792. [Google Scholar] [CrossRef]
- Bustos, M.C.; Mazzobre, M.F.; Buera, M.P. Stabilization of Refrigerated Avocado Pulp: Chemometrics-Assessed Antibrowning Allium and Brassica Extracts as Effective Lipid Oxidation Retardants. Food Bioprocess Technol. 2017, 10, 1142–1153. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1990. [Google Scholar]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Nenadis, N.; Kyriakoudi, A.; Tsimidou, M.Z. Impact of Alkaline or Acid Digestion to Antioxidant Activity, Phenolic Content and Composition of Rice Hull Extracts. LWT—Food Sci. Technol. 2013, 54, 207–215. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for Measuring Antioxidant Activity and Its Application to Monitoring the Antioxidant Capacity of Wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Lancaster, J.E.; Lister, C.E.; Reay, P.F.; Triggs, C.M. Influence of Pigment Composition on Skin Color in a Wide Range of Fruit and Vegetables. J. Am. Soc. Hortic. Sci. 1997, 122, 594–598. [Google Scholar] [CrossRef]
- Niamnuy, C.; Devahastin, S.; Soponronnarit, S.; Raghavan, G.S.V. Kinetics of Astaxanthin Degradation and Color Changes of Dried Shrimp During Storage. J. Food Engin. 2008, 87, 591–600. [Google Scholar] [CrossRef]
- Palou, E.; Lopez-Malo, A.; Barbosa-Canovas, G.V.; Welti-Chanes, J.; Swanson, G.B. Polyphenoloxidase Activity and Colour of Balanced and High Hydrostatic Pressure Treated Banana Puree. J. Food Sci. 1999, 64, 42–45. [Google Scholar] [CrossRef]
- Bolin, H.R.; Huxsoll, C.C. Control of Minimally Process Carrot (Daucus carota) Surface Discoloration Caused by Abrasion Peeling. J. Food Sci. 1991, 56, 416–418. [Google Scholar] [CrossRef]
- Volden, J.; Borge, G.I.A.; Bengtsson, G.B.; Hansen, M.; Thygesen, I.E.; Wicklund, T. Effect of Thermal Treatment on Glucosinolates and Antioxidant-Related Parameters in Red Cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chem. 2008, 109, 595–605. [Google Scholar] [CrossRef]
- Volden, J.; Borge, G.I.A.; Hansen, M.; Wicklund, T.; Bengtsson, G.B. Processing (Blanching, Boiling, Steaming) Effects on the Content of Glucosinolates and Antioxidant-Related Parameters in Cauliflower (Brassica oleracea L. ssp. botrytis). LWT—Food Sci. Technol. 2009, 42, 63–73. [Google Scholar] [CrossRef]
- Mishra, B.B.; Gautam, S.; Sharma, A. Free phenolics and polyphenol oxidase (PPO): The Factors Affecting Post-Cut Browning in Eggplant (Solanum melongena). Food Chem. 2013, 139, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Rico, D.; Martín-Diana, A.B.; Barat, J.B.; Barry-Ryan, C. Extending and Measuring the Quality of Fresh-Cut Fruit and Vegetables; A Review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef]
- Saltveit, M.E. Wound Induced Changes in Phenolic Metabolism and Tissue Browning are Altered by Heat Shock. Postharvest Biol. Technol. 2000, 21, 61–69. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martin-Belloso, O. Effect of Natural Antibrowning Agents on Color and Related Enzymes in Fresh-Cut Fuji Apples as an Alternative to the Use of Ascorbic Acid. J. Food Sci. 2008, 73, S267–S272. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Li, D.; Tang, D.; Huang, Z.; Kedbanglai, P.; Ge, Z.; Du, X.; Supapvanich, S. Effects of Simultaneous Ultrasonic and Cysteine Treatment on Antibrowning and Physicochemical Quality of Fresh-Cut Lotus Roots during Cold Storage. Postharvest Biol. Technol. 2020, 168, 111294. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Amodio, M.L.; Colelli, G. Carvacrol-Loaded Chitosan Nanoparticles Maintain Quality of Fresh-Cut Carrots. Innov. Food Sci. Emerg. Technol. 2017, 41, 56–63. [Google Scholar] [CrossRef]
- Kasım, R.; Kasım, M.U. Biochemical Changes and Color Properties of Fresh-Cut Green Bean (Phaseolus vulgaris L. cv. gina) Treated with Calcium Chloride During Storage. Food Sci. Technol. 2015, 35, 266–272. [Google Scholar] [CrossRef]
- Mastrocola, D.; Lerici, C.R. Colorimetric measurements of enzymatic and non enzymatic browning in apple purees. Ital. J. Food Sci. 1991, 3, 219–229. [Google Scholar]
- Rocculi, P.; Galindo, F.; Mendoza, F.; Wadsö, L.; Romani, S.; Dalla Rosa, M.; Sjöholm, I. Effect of the Application of Anti-Browning Substances on the Metabolic Activity and Sugar Composition of Fresh-Cut Potatoes. Postharvest Biol. Technol. 2007, 43, 151–157. [Google Scholar] [CrossRef]
- Lante, A.; Tinello, F.; Nicoletto, M. UV-A Light Treatment for Controlling Enzymatic Browning of Fresh-Cut Fruits. Innov. Food Sci. Emerg. Technol. 2016, 34, 141–147. [Google Scholar] [CrossRef]
- Verkerk, R.; Dekker, M. Glucosinolates. In Bioactive Compounds in Foods; Gilbert, J., Şenyuva, H.Z., Eds.; Blackwell: Hoboken, NJ, USA, 2008. [Google Scholar]
- Volden, J.; Bengtsson, G.B.; Wicklund, T. Glucosinolates, L-Ascorbic Acid, Total Phenols, Anthocyanins, Antioxidant Capacities and Colour in Cauliflower (Brassica oleracea L. ssp. botrytis); Effects of Long-Term Freezer Storage. Food Chem. 2009, 112, 967–976. [Google Scholar] [CrossRef]
Degree of Browning Score | Browning/Acceptability | |
---|---|---|
1 | Absolutely acceptable No sign of browning | |
2 | Accepted Evidence of browning beyond doubt | |
3 | Borderline unacceptable Noticeable browning | |
4 | Unacceptable Obvious time wear—inappropriate | |
5 | Unacceptable Decomposition image |
SWE | % (w/w) | TPC (mg GA/L) | FRAP (mmol TE/L) | DPPH (mg TE/L) | ABTS (mgTE/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sinapis | 10% | 831.3 | ± | 26.7 | F | 0.71 | ± | 0.02 | F | 37.0 | ± | 0.1 | F | 639.7 | ± | 1.5 | E |
20% | 1448.0 | ± | 10.0 | C | 0.89 | ± | 0.00 | D | 41.2 | ± | 0.0 | D | 771.3 | ± | 5.9 | D | |
Wild rocket | 10% | 941.3 | ± | 3.3 | E | 0.76 | ± | 0.02 | E | 39.4 | ± | 0.2 | E | 682.6 | ± | 29.6 | E |
20% | 1498.0 | ± | 40.0 | B | 1.24 | ± | 0.01 | C | 50.1 | ± | 0.1 | B | 1191.5 | ± | 3.0 | B | |
Cabbage | 10% | 1121.3 | ± | 16.7 | D | 1.54 | ± | 0.01 | B | 47.2 | ± | 0.4 | C | 996.2 | ± | 71.0 | C |
20% | 1748.0 | ± | 10.0 | A | 2.25 | ± | 0.03 | A | 59.2 | ± | 0.4 | A | 1647.1 | ± | 20.7 | A | |
ANOVA, p < 0.05: | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||||||||||||
LSD(0.05): | 38.43 | 0.033 | 0.40 | 58.06 |
DF | L* | a* | b* | h° | C | ΔE | ΔL | Δa | Δb | Δh° | ΔC | BI | WI | SI | CI | VSI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ETA SQR (η2) | |||||||||||||||||
SWE (A) | 7 | 0.61 *** | 0.53 *** | 0.18 *** | 0.18 *** | 0.19 *** | 0.18 *** | 0.44 *** | 0.51 *** | 0.19 *** | 0.20 *** | 0.20 *** | 0.39 *** | 0.52 *** | 0.19 *** | 0.43 *** | 0.27 *** |
EXPOSURE (B) | 1 | 0.05 *** | 0.01 * | 0.01 ** | 0.02 ns | 0.01 * | 0.01 ns | 0.01 *** | 0.02 ns | 0.00 *** | 0.02 ns | 0.00 ns | 0.03 ns | 0.05 *** | 0.01 ** | 0.00 ns | 0.02 *** |
STORAGE (C) | 2 | 0.51 *** | 0.46 *** | 0.14 *** | 0.13 *** | 0.08 *** | 0.47 *** | 0.52 *** | 0.43 *** | 0.11 *** | 0.15 *** | 0.49 *** | 0.51 *** | 0.46 *** | 0.08 *** | 0.31 *** | 0.75 *** |
A X B | 4 | 0.18 *** | 0.01 ns | 0.08 *** | 0.06 * | 0.06 *** | 0.03 *** | 0.11 ** | 0.02 ns | 0.01 *** | 0.06 ns | 0.03 ns | 0.14 *** | 0.17 *** | 0.06 ** | 0.00 ns | 0.04 *** |
A X C | 7 | 0.03 ns | 0.01 ns | 0.01 ns | 0.01 ns | 0.01 ns | 0.28 ns | 0.01 ns | 0.01 ns | 0.00 ns | 0.02 ns | 0.01 ns | 0.01 *** | 0.00 ns | 0.01 ns | 0.00 ns | 0.01 *** |
B X C | 14 | 0.28 *** | 0.31 *** | 0.27 *** | 0.10 *** | 0.29 *** | 0.02 *** | 0.28 *** | 0.29 *** | 0.20 *** | 0.11 *** | 0.22 *** | 0.29 *** | 0.22 *** | 0.29 *** | 0.29 *** | 0.13 *** |
A X B X C | 28 | 0.11 *** | 0.02ns | 0.03 ** | 0.07ns | 0.03ns | 0.16 *** | 0.11ns | 0.01ns | 0.02 *** | 0.08ns | 0.04ns | 0.09 *** | 0.09 ** | 0.03ns | 0.02ns | 0.03 *** |
MAIN EFFECTS | MEANS | ||||||||||||||||
SWE (w/w) | Water | 46.52E | −0.71A | 16.55E | 92.0C | 17.0F | 8.08A | −12.44E | −91.4D | 1.24B | −20.1C | 5.93A | 42.4BC | 43.8EE | 170.0F | −154A | 2.73C |
Ε224 | 55.36A | −7.27E | 17.98CD | 112.1A | 19.4CD | 3.67D | 0.02A | 28.2A | 11.4A | −13.5A | 2.76E | 27.4E | 51.3A | 19.4CD | −2381C | 2.20D | |
Sin10% | 51.76B | −0.88A | 17.76D | 93.6C | 18.6E | 7.36A | −9.41D | −90.8D | 13.9A | −14.8B | 5.25AB | 40.1C | 48.3B | 18.5E | −215AB | 2.82BC | |
Sin20% | 47.75D | −1.81B | 18.39CD | 95.2C | 19.0DE | 6.83AB | −9.75D | −81.8D | −6.1C | −15.3B | 5.23AB | 44.7B | 44.3CDE | 19.0DE | −616B | 3.14A | |
Roc10% | 47.2DE | −1.26AB | 19.45A | 105.0B | 20.1AB | 8.15A | −9.28D | −88.5D | 4.3B | −6.0A | 5.92A | 51.0A | 43.5E | 20.1AB | −382AB | 2.93B | |
Roc20% | 52.21B | −6.11D | 18.51BC | 108.5AB | 19.5BCD | 4.46CD | −4.13B | −64.2A | 13.4A | −3.0A | 3.27DE | 33.2D | 48.3B | 19.5BCD | −2187C | 2.15D | |
Cab% | 48.86C | −5.51CD | 19.38A | 106.1B | 20.3A | 5.55BC | −6.91C | −20.7B | 14.6A | −5.1A | 3.89CD | 40.9C | 45.0CDE | 20.3A | −2177C | 2.15 | |
Cab% | 48.89C | −5.11C | 19.08AB | 105.1B | 19.9ABC | 8.20A | −6.82C | −34.4C | 3.3B | −6.0A | 4.33BC | 40.5C | 45.1C | 20.0ABC | −1980C | 2.09D | |
EXPOSURE (min) | 1 | 49.28B | −3.35A | 18.64A | 99.9B | 19.5A | 6.23B | −7.24A | −57.3B | 6.8A | −11.0B | 4.67A | 41.6A | 45.6B | 19.5A | −1218A | 2.62A |
3 | 50.36A | −3.82B | 18.14B | 104.5A | 19.0B | 6.85A | −7.44A | −45.5A | 7.1A | −6.9A | 4.47A | 38.5B | 46.8A | 19.0B | −1305A | 2.43B | |
STORAGE (days) | 0 | 53.78A | −7.17E | 17.41C | 112.2A | 18.8C | 5.51B | 0.00A | 0.0A | 0.0D | 0.0A | 3.75B | 27.3E | 50.0A | 18.8C | −2406D | 1.00E |
3 | 50.88B | −4.95D | 17.72C | 105.5B | 18.5C | 4.90CB | −5.34B | −29.3B | 3.2CD | −6.0B | 3.53BC | 33.9D | 47.5B | 18.5C | −1751C | 1.57D | |
7 | 48.91C | −2.73C | 18.38B | 98.2C | 19.0BC | 4.29C | −9.02C | −63.9C | 6.7BC | −12.5C | 3.10C | 41.7C | 45.4C | 19.0CB | −986B | 2.65C | |
12 | 48.05D | −1.86B | 18.86B | 98.3C | 19.5B | 4.75CB | −10.62D | −76.7D | 10.5B | −12.5C | 3.59BC | 46.3B | 44.4D | 19.5B | −643A | 3.32B | |
14 | 47.47D | −1.19A | 19.58A | 96.8C | 20.2A | 1.32A | −11.73E | −87.2E | 14.5A | −13.9C | 8.89A | 50.9A | 43.6E | 20.2A | −522A | 4.09A |
L* | a* | b* | h° | C | ΔE | ΔL | Δa | Δb | Δh° | ΔC | BI | WI | SI | CI | VSI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | -- | |||||||||||||||
a* | −0.793 ** | -- | ||||||||||||||
b* | −0.197 | 0.024 | -- | |||||||||||||
h° | −0.504 ** | 0.647 ** | −0.244 | -- | ||||||||||||
C | −0.027 | −0.186 | 0.960 ** | −0.111 | -- | |||||||||||
ΔE | −0.392 ** | 0.478 ** | −0.381 ** | 0.048 | −0.480 ** | -- | ||||||||||
ΔL | 0.905 ** | −0.924 ** | −0.191 | −0.589 ** | 0.033 | −0.399 ** | -- | |||||||||
Δa | 0.795 ** | −0.991 ** | −0.075 | −0.636 ** | 0.122 | −0.482 ** | 0.916 ** | -- | ||||||||
Δb | 0.113 | 0.045 | 0.708 ** | −0.114 | 0.713 ** | 0.415 ** | −0.087 | 0.036 | -- | |||||||
Δh° | −0.824 ** | 0.841 ** | −0.050 | 0.440 ** | −0.240 | 0.473 ** | −0.842 ** | −0.844 ** | −0.124 | -- | ||||||
ΔC | −0.521 ** | −0.505 ** | −0.260 | −0.270 ** | 0.378 ** | 0.961 ** | 0.448 ** | −0.514 ** | 0.458 ** | −0.533 * | -- | |||||
BI | −0.868 ** | 0.805 ** | 0.415 ** | 0.644 ** | 0.221 | 0.176 | −0.852 ** | −0.819 ** | 0.153 | 0.767 ** | 0.296 * | -- | ||||
WI | −0.597 ** | 0.111 | 0.273* | 0.003 | 0.177 | −0.135 | −0.265 * | −0.136 | 0.347 | 0.341 * | −0.360 * | 0.397 ** | -- | |||
SI | −0.021 | −0.187 | 0.752 ** | −0.114 | 0.800 ** | 0.500 ** | 0.080 | 0.127 | 0.542 ** | 0.159 | 0.797 ** | 0.363 * | −0.183 | -- | ||
CI | 0.202 | 0.224 | −0.198 | −0.290 * | −0.196 | −0.121 | −0.129 | −0.172 | 0.455 ** | −0.083 | −0.301 * | −0.006 | 0.838 ** | −0.153 | ||
VSI | −0.678 ** | 0.811 ** | 0.318* | 0.258 ** | 0.131 | 0.154 | −0.803 ** | −0.804 ** | 0.242 | 0.746 ** | 0.207 | 0.833 ** | 0.147 ** | 0.184 | 0.191 | -- |
TPC | DPPH | ABTS | FRAP | SELF LIFEVSI | SELF LIFEBI | |
---|---|---|---|---|---|---|
TPC | 1 | |||||
DPPH | 0.839 ** | 1 | ||||
ABTS | 0.838 ** | 0.993 ** | 1 | |||
FRAP | 0.727 ** | 0.958 ** | 0.946 ** | 1 | ||
SELF LIFEVSI | 0.378 | 0.760 ** | 0.751 ** | 0.766 ** | 1 | |
SELF LIFEBI | 0.386 | 0.638 ** | 0.633 ** | 0.545 * | 0.900 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Androudis, E.; Gerasopoulos, A.; Koukounaras, A.; Siomos, A.S.; Gerasopoulos, D. Water Extracts of Cruciferous Vegetable Seeds Inhibit Enzymic Browning of Fresh-Cut Mid Ribs of Romaine Lettuce. Horticulturae 2024, 10, 500. https://doi.org/10.3390/horticulturae10050500
Androudis E, Gerasopoulos A, Koukounaras A, Siomos AS, Gerasopoulos D. Water Extracts of Cruciferous Vegetable Seeds Inhibit Enzymic Browning of Fresh-Cut Mid Ribs of Romaine Lettuce. Horticulturae. 2024; 10(5):500. https://doi.org/10.3390/horticulturae10050500
Chicago/Turabian StyleAndroudis, Efstratios, Athanasios Gerasopoulos, Athanasios Koukounaras, Anastasios S. Siomos, and Dimitrios Gerasopoulos. 2024. "Water Extracts of Cruciferous Vegetable Seeds Inhibit Enzymic Browning of Fresh-Cut Mid Ribs of Romaine Lettuce" Horticulturae 10, no. 5: 500. https://doi.org/10.3390/horticulturae10050500
APA StyleAndroudis, E., Gerasopoulos, A., Koukounaras, A., Siomos, A. S., & Gerasopoulos, D. (2024). Water Extracts of Cruciferous Vegetable Seeds Inhibit Enzymic Browning of Fresh-Cut Mid Ribs of Romaine Lettuce. Horticulturae, 10(5), 500. https://doi.org/10.3390/horticulturae10050500