Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review
Abstract
:1. Introduction
2. Soil Amendments, Organic Fertilizers, By-Products, and Bio-Waste-Derived Fertilizers
3. Effects of Organic Fertilizers on Soil Fertility, Organic Matter, and Nutrient Release for Crops
4. Effects of Organic Fertilizers on Control Soil GHG Emissions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bharathiraja, S.; Suriya, J.; Krishnan, M.; Manivasagan, P.; Kim, S.K. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications. Adv. Food Nutr. Res. 2017, 80, 125–148. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Awasthi, M.K.; Dussap, C.-G.; Pandey, A. Assessing the Impact of Industrial Waste on Environment and Mitigation Strategies: A Comprehensive Review. J. Hazard. Mater. 2020, 398, 123019. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.; Williams, G.; Jaiswal, A. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef]
- European Parliament Council. Waste Framework Directive. Off. J. Eur. Union 2008, L 164/19. [Google Scholar]
- United Nations Take Action for the Sustainable Development Goals—United Nations Sustainable Development; UN: New York, NY, USA, 2015.
- Baweja, P.; Kumar, S.; Kumar, G. Fertilizers and Pesticides: Their Impact on Soil Health and Environment. Soil Health 2020, 59, 265–285. [Google Scholar]
- Srivastav, A.L.; Patel, N.; Rani, L.; Kumar, P.; Dutt, I.; Maddodi, B.S.; Chaudhary, V.K. Sustainable Options for Fertilizer Management in Agriculture to Prevent Water Contamination: A Review. Environ. Dev. Sustain. 2024, 26, 8303–8327. [Google Scholar] [CrossRef]
- Kumar, S.; Dhar, S.; Barthakur, S.; Rajawat, M.V.S.; Kochewad, S.A.; Kumar, S.; Kumar, D.; Meena, L.R. Farmyard Manure as K-Fertilizer Modulates Soil Biological Activities and Yield of Wheat Using the Integrated Fertilization Approach. Front. Environ. Sci. 2021, 9, 764489. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Hepperly, P.; Lotter, D.; Ulsh, C.Z.; Seidel, R.; Reider, C. Compost, Manure and Synthetic Fertilizer Influences Crop Yields, Soil Properties, Nitrate Leaching and Crop Nutrient Content. Compost. Sci. Util. 2013, 17, 117–126. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of Animal Manures and Chemical Criteria for Compost Maturity Assessment. A Review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Zavattaro, L.; Bechini, L.; Grignani, C.; van Evert, F.K.; Mallast, J.; Spiegel, H.; Sandén, T.; Pecio, A.; Giráldez Cervera, J.V.; Guzmán, G.; et al. Agronomic Effects of Bovine Manure: A Review of Long-Term European Field Experiments. Eur. J. Agron. 2017, 90, 127–138. [Google Scholar] [CrossRef]
- Font-Palma, C. Methods for the Treatment of Cattle Manure—A Review. C 2019, 5, 27. [Google Scholar] [CrossRef]
- Douglas, C.E. The Long-Term Effects of Manures and Fertilisers on Soil Productivity and Quality: A Review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Wei, Y.S.; Fan, Y.B.; Wang, M.J.; Wang, J.S. Composting and Compost Application in China. Resour. Conserv. Recycl. 2000, 30, 277–300. [Google Scholar] [CrossRef]
- Le Pera, A.; Sellaro, M.; Bencivenni, E. Composting Food Waste or Digestate? Characteristics, Statistical and Life Cycle Assessment Study Based on an Italian Composting Plant. J. Clean. Prod. 2022, 350, 131552. [Google Scholar] [CrossRef]
- Mondello, G.; Salomone, R.; Ioppolo, G.; Saija, G.; Sparacia, S.; Lucchetti, M.C. Comparative LCA of Alternative Scenarios for Waste Treatment: The Case of Food Waste Production by the Mass-Retail Sector. Sustainability 2017, 9, 827. [Google Scholar] [CrossRef]
- Chynoweth, D.P.; Owens, J.M.; Legrand, R. Renewable Methane from Anaerobic Digestion of Biomass. Renew. Energy 2001, 22, 1–8. [Google Scholar] [CrossRef]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing Amendment and Fertilizing Properties of Digestates from Anaerobic Digestion through a Comparative Study with Digested Sludge and Compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef]
- Kuusik, A.; Pachel, K.; Kuusik, A.; Loigu, E. Possible Agricultural Use of Digestate. Proc. Est. Acad. Sci. 2017, 66, 64. [Google Scholar] [CrossRef]
- Rico, C.; Rico, J.L.; Tejero, I.; Muñoz, N.; Gómez, B. Anaerobic Digestion of the Liquid Fraction of Dairy Manure in Pilot Plant for Biogas Production: Residual Methane Yield of Digestate. Waste Manag. 2011, 31, 2167–2173. [Google Scholar] [CrossRef]
- Akhiar, A.; Battimelli, A.; Torrijos, M.; Carrere, H. Comprehensive Characterization of the Liquid Fraction of Digestates from Full-Scale Anaerobic Co-Digestion. Waste Manag. 2017, 59, 118–128. [Google Scholar] [CrossRef]
- Chuda, A.; Jastrząbek, K.; Ziemiński, K. Changes in the Composition of Digestate Liquid Fraction after Ozone and Ultrasonic Post-Treatment. Energies 2022, 15, 9183. [Google Scholar] [CrossRef]
- Fernández-Labrada, M.; López-Mosquera, M.E.; López-Fabal, A. Anaerobic Digestion and Microfiltration of the Liquid Fraction of Pig Slurry: N Mineralization, C-CO2 Emissions and Agricultural Value of the Products. Waste Biomass Valorization 2022, 14, 1667–1681. [Google Scholar] [CrossRef]
- Teglia, C.; Tremier, A.; Martel, J.-L. Characterization of Solid Digestates: Part 1, Review of Existing Indicators to Assess Solid Digestates Agricultural Use. Waste Biomass Valorization 2011, 2, 43–58. [Google Scholar] [CrossRef]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A New Nutrient Source—Review. In Biogas; InTech Open: London, UK, 2012. [Google Scholar]
- Tambone, F.; Adani, F. Nitrogen Mineralization from Digestate in Comparison to Sewage Sludge, Compost and Urea in a Laboratory Incubated Soil Experiment. J. Plant Nutr. Soil Sci. 2017, 180, 355–365. [Google Scholar] [CrossRef]
- IBI-STD-2.1; Standardized Product Definition and Product Testing Guidelines for Biochar: That Is Used in Soil. IBI: Canandaigua, NY, USA, 2015.
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in Agriculture—A Systematic Review of 26 Global Meta-Analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK; Sterling, VA, USA, 2009. [Google Scholar]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and Inorganic Contaminants Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent—A Critical Review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Chang, Y.M.; Tsai, W.T.; Li, M.H. Chemical Characterization of Char Derived from Slow Pyrolysis of Microalgal Residue. J. Anal. Appl. Pyrolysis 2015, 111, 88–93. [Google Scholar] [CrossRef]
- de Figueredo, N.A.; da Costa, L.M.; Melo, L.C.A.; Siebeneichlerd, E.A.; Tronto, J. Characterization of Biochars from Different Sources and Evaluation of Release of Nutrients and Contaminants1. Rev. Ciência Agronômica 2017, 48, 3–403. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for Wastewater Treatment—Conversion Technologies and Applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Rodríguez-Vila, A.; Atuah, L.; Abubakari, A.H.; Atorqui, D.W.; Abdul-Karim, A.; Coole, S.; Hammond, J.; Robinson, S.; Sizmur, T. Effect of Biochar on Micronutrient Availability and Uptake Into Leafy Greens in Two Urban Tropical Soils With Contrasting Soil PH. Front. Sustain. Food Syst. 2022, 6, 164. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.S.; Kim, K.H.; Ok, Y.S.; Kuzyakov, Y. Carbon and Nitrogen Mineralization and Enzyme Activities in Soil Aggregate-Size Classes: Effects of Biochar, Oyster Shells, and Polymers. Chemosphere 2018, 198, 40–48. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Huang, X.; Li, Z.; Tan, X.; Zeng, G.; Zhou, L. Potential Benefits of Biochar in Agricultural Soils: A Review. Pedosphere 2017, 27, 645–661. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar Amendment Improves Crop Production in Problem Soils: A Review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Orejuela-Escobar, L.M.; Landázuri, A.C.; Goodell, B. Second Generation Biorefining in Ecuador: Circular Bioeconomy, Zero Waste Technology, Environment and Sustainable Development: The Nexus. J. Bioresour. Bioprod. 2021, 6, 83–107. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar Stability in Soil: Decomposition during Eight Years and Transformation as Assessed by Compound-Specific 14C Analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Bogaard, A.; Fraser, R.; Heaton, T.H.E.; Wallace, M.; Vaiglova, P.; Charles, M.; Jones, G.; Evershed, R.P.; Styring, A.K.; Andersen, N.H.; et al. Crop Manuring and Intensive Land Management by Europe’s First Farmers. Proc. Natl. Acad. Sci. USA 2013, 110, 12589–12594. [Google Scholar] [CrossRef]
- FAO Statistic Database. Available online: http://www.fao.org/faostat/en/#home (accessed on 16 April 2023).
- Zhang, B.; Tian, H.; Lu, C.; Dangal, S.R.S.; Yang, J.; Pan, S. Global Manure Nitrogen Production and Application in Cropland during 1860-2014: A 5 Arcmin Gridded Global Dataset for Earth System Modeling. Earth Syst. Sci. Data 2017, 9, 667–678. [Google Scholar] [CrossRef]
- Zhang, J.B.; Yang, J.S.; Yao, R.J.; Yu, S.P.; Li, F.R.; Hou, X.J. The Effects of Farmyard Manure and Mulch on Soil Physical Properties in a Reclaimed Coastal Tidal Flat Salt-Affected Soil. J. Integr. Agric. 2014, 13, 1782–1790. [Google Scholar] [CrossRef]
- Hou, X.; Wang, X.; Li, R.; Jia, Z.; Liang, L.; Wang, J.; Nie, J.; Chen, X.; Wang, Z.; Hou, X.; et al. Effects of Different Manure Application Rates on Soil Properties, Nutrient Use, and Crop Yield during Dryland Maize Farming. Soil Res. 2012, 50, 507–514. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of Manure Nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Managing Phosphorus from Animal Manure | Oklahoma State University. Available online: https://extension.okstate.edu/fact-sheets/managing-phosphorus-from-animal-manure.html (accessed on 26 April 2023).
- Sharpley, A.N.; Daniel, T.C.; Edwards, D.R. Phosphorus Movement in the Landscape. J. Prod. Agric. 1993, 6, 492–500. [Google Scholar] [CrossRef]
- Sager, M. Trace and Nutrient Elements in Manure, Dung and Compost Samples in Austria. Soil Biol. Biochem. 2007, 39, 1383–1390. [Google Scholar] [CrossRef]
- Boyd, C.E. Micronutrients and Other Trace Elements. In Water Quality; Springer: Berlin/Heidelberg, Germany, 2000; pp. 219–249. [Google Scholar] [CrossRef]
- Sheppard, S.C.; Sanipelli, B. Trace Elements in Feed, Manure, and Manured Soils. J. Environ. Qual. 2012, 41, 1846–1856. [Google Scholar] [CrossRef]
- Nikoli, T.; Matsi, T. Influence of Liquid Cattle Manure on Micronutrients Content and Uptake by Corn and Their Availability in a Calcareous Soil. Agron. J. 2011, 103, 113–118. [Google Scholar] [CrossRef]
- Miller, J.; Beasley, B.; Drury, C.; Larney, F.; Hao, X. Surface Soil Salinity and Soluble Salts after 15 Applications of Composted or Stockpiled Manure with Straw or Wood-Chips. Compost. Sci. Util. 2016, 25, 36–47. [Google Scholar] [CrossRef]
- Do Carmo, D.L.; Silva, C.A.; de Lima, J.M.; Pinheiro, G.L. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils. Rev. Bras. Cienc. Solo 2016, 40. [Google Scholar] [CrossRef]
- Goldberg, N.; Nachshon, U.; Argaman, E.; Ben-Hur, M. Short Term Effects of Livestock Manures on Soil Structure Stability, Runoff and Soil Erosion in Semi-Arid Soils under Simulated Rainfall. Geosciences 2020, 10, 213. [Google Scholar] [CrossRef]
- Magdoff, F.R.; Amadon, J.F. Yield Trends and Soil Chemical Changes Resulting from N and Manure Application to Continuous Corn1. Agron. J. 1980, 72, 161–164. [Google Scholar] [CrossRef]
- Abdalla, K.; Sun, Y.; Zarebanadkouki, M.; Gaiser, T.; Seidel, S.; Pausch, J. Long-Term Continuous Farmyard Manure Application Increases Soil Carbon When Combined with Mineral Fertilizers Due to Lower Priming Effects. Geoderma 2022, 428, 116216. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Pu, S.; Blagodatskaya, E.; Kuzyakov, Y.; Razavi, B.S. Impact of Manure on Soil Biochemical Properties: A Global Synthesis. Sci. Total Environ. 2020, 745, 141003. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.L.; Hatfield, J.L. Dairy Manure and Synthetic Fertilizer: A Meta-Analysis of Crop Production and Environmental Quality. Agrosyst. Geosci. Environ. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Heinze, S.; Oltmanns, M.; Joergensen, R.G.; Raupp, J. Changes in Microbial Biomass Indices after 10 Years of Farmyard Manure and Vegetal Fertilizer Application to a Sandy Soil under Organic Management. Plant Soil 2011, 343, 221–234. [Google Scholar] [CrossRef]
- Sradnick, A.; Murugan, R.; Oltmanns, M.; Raupp, J.; Joergensen, R.G. Changes in Functional Diversity of the Soil Microbial Community in a Heterogeneous Sandy Soil after Long-Term Fertilization with Cattle Manure and Mineral Fertilizer. Appl. Soil Ecol. 2013, 63, 23–28. [Google Scholar] [CrossRef]
- Zhen, Z.; Liu, H.; Wang, N.; Guo, L.; Meng, J.; Ding, N.; Wu, G.; Jiang, G. Effects of Manure Compost Application on Soil Microbial Community Diversity and Soil Microenvironments in a Temperate Cropland in China. PLoS ONE 2014, 9, e108555. [Google Scholar] [CrossRef] [PubMed]
- Chia, W.Y.; Chew, K.W.; Le, C.F.; Lam, S.S.; Chee, C.S.C.; Ooi, M.S.L.; Show, P.L. Sustainable Utilization of Biowaste Compost for Renewable Energy and Soil Amendments. Environ. Pollut. 2020, 267, 115662. [Google Scholar] [CrossRef]
- Fagnano, M.; Adamo, P.; Zampella, M.; Fiorentino, N. Environmental and Agronomic Impact of Fertilization with Composted Organic Fraction from Municipal Solid Waste: A Case Study in the Region of Naples, Italy. Agric. Ecosyst. Environ. 2011, 141, 100–107. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost Benefits for Agriculture Evaluated by Life Cycle Assessment. A Review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef]
- Bedada, W.; Karltun, E.; Lemenih, M.; Tolera, M. Long-Term Addition of Compost and NP Fertilizer Increases Crop Yield and Improves Soil Quality in Experiments on Smallholder Farms. Agric. Ecosyst. Environ. 2014, 195, 193–201. [Google Scholar] [CrossRef]
- Srivastava, V.; De Araujo, A.S.F.; Vaish, B.; Bartelt-Hunt, S.; Singh, P.; Singh, R.P. Biological Response of Using Municipal Solid Waste Compost in Agriculture as Fertilizer Supplement. Rev. Environ. Sci. Bio/Technol. 2016, 15, 677–696. [Google Scholar] [CrossRef] [PubMed]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. A Review. Agron. Sustain. Dev. 2012, 30, 401–422. [Google Scholar] [CrossRef]
- Favoino, E.; Hogg, D. The Potential Role of Compost in Reducing Greenhouse Gases. Waste Manag. Res. 2008, 26, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Vanden Nest, T.; Vandecasteele, B.; Ruysschaert, G.; Cougnon, M.; Merckx, R.; Reheul, D. Effect of Organic and Mineral Fertilizers on Soil P and C Levels, Crop Yield and P Leaching in a Long Term Trial on a Silt Loam Soil. Agric. Ecosyst. Environ. 2014, 197, 309–317. [Google Scholar] [CrossRef]
- Araújo, A.S.F.; Monteiro, R.T.R. Microbial Biomass and Activity in a Brazilian Soil Amended with Untreated and Composted Textile Sludge. Chemosphere 2006, 64, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- D’Hose, T.; Cougnon, M.; De Vliegher, A.; Vandecasteele, B.; Viaene, N.; Cornelis, W.; Van Bockstaele, E.; Reheul, D. The Positive Relationship between Soil Quality and Crop Production: A Case Study on the Effect of Farm Compost Application. Appl. Soil Ecol. 2014, 75, 189–198. [Google Scholar] [CrossRef]
- Bastida, F.; Kandeler, E.; Hernández, T.; García, C. Long-Term Effect of Municipal Solid Waste Amendment on Microbial Abundance and Humus-Associated Enzyme Activities under Semiarid Conditions. Microb. Ecol. 2008, 55, 651–661. [Google Scholar] [CrossRef]
- Castán, E.; Satti, P.; González-Polo, M.; Iglesias, M.C.; Mazzarino, M.J. Managing the Value of Composts as Organic Amendments and Fertilizers in Sandy Soils. Agric. Ecosyst. Environ. 2016, 224, 29–38. [Google Scholar] [CrossRef]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its Role, Mechanism and Impact on Reducing Soil-Borne Plant Diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef]
- De Bertoldi, M. Production and Utilization of Suppressive Compost: Environmental, Food and Health Benefits. In Microbes at Work: From Wastes to Resources; Springer: Berlin/Heidelberg, Germany, 2010; pp. 153–170. [Google Scholar] [CrossRef]
- Tran, H.T.; Lin, C.; Bui, X.T.; Ngo, H.H.; Cheruiyot, N.K.; Hoang, H.G.; Vu, C.T. Aerobic Composting Remediation of Petroleum Hydrocarbon-Contaminated Soil. Current and Future Perspectives. Sci. Total Environ. 2021, 753, 142250. [Google Scholar] [CrossRef]
- Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Wang, J.; Deng, Y.; Liu, Y.; Peng, B. The Potential Impact on the Biodegradation of Organic Pollutants from Composting Technology for Soil Remediation. Waste Manag. 2018, 72, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Zeng, G.; Wu, H.; Liang, J.; Guo, S.; Huang, L.; Xu, P.; Liu, Y.; Yuan, Y.; He, X.; He, Y. Efficiency of Biochar and Compost (or Composting) Combined Amendments for Reducing Cd, Cu, Zn and Pb Bioavailability, Mobility and Ecological Risk in Wetland Soil. RSC Adv. 2015, 5, 34541–34548. [Google Scholar] [CrossRef]
- Vithanage, M.; Ramanayaka, S.; Hasinthara, S.; Navaratne, A. Compost as a Carrier for Microplastics and Plastic-Bound Toxic Metals into Agroecosystems. Curr. Opin. Environ. Sci. Health 2021, 24, 100297. [Google Scholar] [CrossRef]
- Sharifi, Z.; Renella, G. Assessment of a Particle Size Fractionation as a Technology for Reducing Heavy Metal, Salinity and Impurities from Compost Produced by Municipal Solid Waste. Waste Manag. 2015, 38, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Stoffella, P.J.; Calvert, D.V.; Alva, A.K.; Graetz, D.A. Leaching of Nitrate, Ammonium, and Phosphate From Compost Amended Soil Columns. Compos. Sci. Util. 1997, 5, 63–67. [Google Scholar] [CrossRef]
- Olfati, J.A.; Peyvast, G.; Nosratie-Rad, Z.; Saliqedar, F.; Rezaei, F. Application of Municipal Solid Waste Compost on Lettuce Yield. Int. J. Veg. Sci. 2009, 15, 168–172. [Google Scholar] [CrossRef]
- Plošek, L.; Elbl, J.; Lošák, T.; Kužel, S.; Kintl, A.; Juřička, D.; Kynický, J.; Martensson, A.; Brtnický, M. Leaching of Mineral Nitrogen in the Soil Influenced by Addition of Compost and N-Mineral Fertilizer. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 607–614. [Google Scholar] [CrossRef]
- Maurer, C.; Seiler-Petzold, J.; Schulz, R.; Müller, J. Short-Term Nitrogen Uptake of Barley from Differently Processed Biogas Digestate in Pot Experiments. Energies 2019, 12, 696. [Google Scholar] [CrossRef]
- Cardelli, R.; Giussani, G.; Marchini, F.; Saviozzi, A. Short-Term Effects on Soil of Biogas Digestate, Biochar and Their Combinations. Soil Res. 2018, 56, 623. [Google Scholar] [CrossRef]
- Badagliacca, G.; Petrovičovà, B.; Pathan, S.I.; Roccotelli, A.; Romeo, M.; Monti, M.; Gelsomino, A. Use of Solid Anaerobic Digestate and No-Tillage Practice for Restoring the Fertility Status of Two Mediterranean Orchard Soils with Contrasting Properties. Agric. Ecosyst. Environ. 2020, 300, 107010. [Google Scholar] [CrossRef]
- Beni, C.; Servadio, P.; Marconi, S.; Neri, U.; Aromolo, R.; Diana, G. Anaerobic Digestate Administration: Effect on Soil Physical and Mechanical Behavior. Commun. Soil Sci. Plant Anal. 2012, 43, 821–834. [Google Scholar] [CrossRef]
- Frøseth, R.B.; Bakken, A.K.; Bleken, M.A.; Riley, H.; Pommeresche, R.; Thorup-Kristensen, K.; Hansen, S. Effects of Green Manure Herbage Management and Its Digestate from Biogas Production on Barley Yield, N Recovery, Soil Structure and Earthworm Populations. Eur. J. Agron. 2014, 52, 90–102. [Google Scholar] [CrossRef]
- Abubaker, J.; Cederlund, H.; Arthurson, V.; Pell, M. Bacterial Community Structure and Microbial Activity in Different Soils Amended with Biogas Residues and Cattle Slurry. Appl. Soil Ecol. 2013, 72, 171–180. [Google Scholar] [CrossRef]
- Fernández-Bayo, J.D.; Achmon, Y.; Harrold, D.R.; McCurry, D.G.; Hernandez, K.; Dahlquist-Willard, R.M.; Stapleton, J.J.; VanderGheynst, J.S.; Simmons, C.W. Assessment of Two Solid Anaerobic Digestate Soil Amendments for Effects on Soil Quality and Biosolarization Efficacy. J. Agric. Food Chem. 2017, 65, 3434–3442. [Google Scholar] [CrossRef]
- Pathan, S.I.; Roccotelli, A.; Petrovičovà, B.; Romeo, M.; Badagliacca, G.; Monti, M.; Gelsomino, A. Temporal Dynamics of Total and Active Prokaryotic Communities in Two Mediterranean Orchard Soils Treated with Solid Anaerobic Digestate or Managed under No-Tillage. Biol. Fertil. Soils 2021, 57, 837–861. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Bernal, M.P. Chemical Properties of Anaerobic Digestates Affecting C and N Dynamics in Amended Soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; D’Imporzano, G.; Adani, F. Short-Term Experiments in Using Digestate Products as Substitutes for Mineral (N) Fertilizer: Agronomic Performance, Odours, and Ammonia Emission Impacts. Sci. Total Environ. 2016, 547, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Maucieri, C.; Nicoletto, C.; Caruso, C.; Sambo, P.; Borin, M. Effects of Digestate Solid Fraction Fertilisation on Yield and Soil Carbon Dioxide Emission in a Horticulture Succession. Ital. J. Agron. 2017, 12, 116–123. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Juárez, M.F.D.; Zangerle, M.; Insam, H. Effects of Digestate on Soil Chemical and Microbiological Properties: A Comparative Study with Compost and Vermicompost. J. Hazard. Mater. 2016, 302, 267–274. [Google Scholar] [CrossRef]
- Posmanik, R.; Nejidat, A.; Dahan, O.; Gross, A. Seasonal and Soil-Type Dependent Emissions of Nitrous Oxide from Irrigated Desert Soils Amended with Digested Poultry Manures. Sci. Total Environ. 2017, 593–594, 91–98. [Google Scholar] [CrossRef]
- Dugan, E.A.; Verhoef, A.; Robinson, S.; Sohi, S. Bio-Char from Sawdust, Maize Stover and Charcoal: Impact on Water Holding Capacities (WHC) of Three Soils from Ghana. In Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Kizito, S.; Wu, S.; Kipkemoi Kirui, W.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of Slow Pyrolyzed Wood and Rice Husks Biochar for Adsorption of Ammonium Nitrogen from Piggery Manure Anaerobic Digestate Slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Lustosa Filho, J.F.; Barbosa, C.F.; da Silva Carneiro, J.S.; Melo, L.C.A. Diffusion and Phosphorus Solubility of Biochar-Based Fertilizer: Visualization, Chemical Assessment and Availability to Plants. Soil Tillage Res. 2019, 194, 104298. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Sha, Z.; Li, Q.; Lv, T.; Misselbrook, T.; Liu, X. Response of Ammonia Volatilization to Biochar Addition: A Meta-Analysis. Sci. Total Environ. 2019, 655, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Inyang, M.; Dickenson, E. The Potential Role of Biochar in the Removal of Organic and Microbial Contaminants from Potable and Reuse Water: A Review. Chemosphere 2015, 134, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H. Effects of Slow and Fast Pyrolysis Biochar on Soil C and N Turnover Dynamics. Soil Biol. Biochem. 2012, 46, 73–79. [Google Scholar] [CrossRef]
- Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between Biochar Stability and Soil Organisms: Review and Research Needs. Eur. J. Soil Sci. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Pokharel, P.; Ma, Z.; Chang, S.X. Biochar Increases Soil Microbial Biomass with Changes in Extra- and Intracellular Enzyme Activities: A Global Meta-Analysis. Biochar 2020, 2, 65–79. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Chang, S.X.; Jiang, X.; Song, Y. Biochar Increases Soil Microbial Biomass but Has Variable Effects on Microbial Diversity: A Meta-Analysis. Sci. Total Environ. 2020, 749, 141593. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Wang, P.; Liu, X.; Cheng, K.; Li, L.; Zheng, J.; Zhang, X.; Zheng, J.; Crowley, D.; et al. Changes in Microbial Biomass and the Metabolic Quotient with Biochar Addition to Agricultural Soils: A Meta-Analysis. Agric. Ecosyst. Environ. 2017, 239, 80–89. [Google Scholar] [CrossRef]
- Liao, H.; Zheng, C.; Long, J.; Guzmán, I. Effects of Biochar Amendment on Tomato Rhizosphere Bacterial Communities and Their Utilization of Plant-Derived Carbon in a Calcareous Soil. Geoderma 2021, 396, 115082. [Google Scholar] [CrossRef]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; Andrade, C.A. de Biochar-Based Nitrogen Fertilizers: Greenhouse Gas Emissions, Use Efficiency, and Maize Yield in Tropical Soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef] [PubMed]
- van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of Biochar from Slow Pyrolysis of Papermill Waste on Agronomic Performance and Soil Fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of Soil Organic Carbon Caused by Functional Complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Smith, P.; Reay, D.; Smith, J. Agricultural Methane Emissions and the Potential Formitigation. Philos. Trans. R. Soc. A 2021, 379, 20200451. [Google Scholar] [CrossRef] [PubMed]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia Emissions from Agriculture and Their Contribution to Fine Particulate Matter: A Review of Implications for Human Health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global Agriculture and Nitrous Oxide Emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of Animal Manure, Crop Type, Climate Zone, and Soil Attributes on Greenhouse Gas Emissions from Agricultural Soils—A Global Meta-Analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 Emission in Response to Organic Amendments, Temperature, and Rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef]
- Verdi, L.; Mancini, M.; Ljubojevic, M.; Orlandini, S.; Marta, A.D. Greenhouse Gas and Ammonia Emissions from Soil: The Effect of Organic Matter and Fertilisation Method. Ital. J. Agron. 2018, 13, 260–266. [Google Scholar] [CrossRef]
- Badagliacca, G.; Romeo, M.; Gelsomino, A.; Monti, M. Short-Term Effects of Repeated Application of Solid Digestate on Soil C and N Dynamics and CO2 Emission in a Clay Soil Olive (Olea Europaea L.) Orchard. Clean. Circ. Bioeconomy 2022, 1, 100004. [Google Scholar] [CrossRef]
- Jones, D.L.; Murphy, D.V.; Khalid, M.; Ahmad, W.; Edwards-Jones, G.; DeLuca, T.H. Short-Term Biochar-Induced Increase in Soil CO2 Release Is Both Biotically and Abiotically Mediated. Soil Biol. Biochem. 2011, 43, 1723–1731. [Google Scholar] [CrossRef]
- Smith, J.L.; Collins, H.P.; Bailey, V.L. The Effect of Young Biochar on Soil Respiration. Soil Biol. Biochem. 2010, 42, 2345–2347. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Ryals, R.; Silver, W.L. Effects of Organic Matter Amendments on Net Primary Productivity and Greenhouse Gas Emissions in Annual Grasslands. Ecol. Appl. 2013, 23, 46–59. [Google Scholar] [CrossRef]
- Pezzolla, D.; Bol, R.; Gigliotti, G.; Sawamoto, T.; López, A.L.; Cardenas, L.; Chadwick, D. Greenhouse Gas (GHG) Emissions from Soils Amended with Digestate Derived from Anaerobic Treatment of Food Waste. Rapid Commun. Mass Spectrom. 2012, 26, 2422–2430. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Pain, B.; Bittman, S.; Morgan, J. The Impacts of Manure Application Methods on Emissions of Ammonia, Nitrous Oxide and on Crop Response—A Review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Calleja-Cervantes, M.E.; Fernández-González, A.J.; Irigoyen, I.; Fernández-López, M.; Aparicio-Tejo, P.M.; Menéndez, S. Thirteen Years of Continued Application of Composted Organic Wastes in a Vineyard Modify Soil Quality Characteristics. Soil Biol. Biochem. 2015, 90, 241–254. [Google Scholar] [CrossRef]
- Dietrich, M.; Fongen, M.; Foereid, B. Greenhouse Gas Emissions from Digestate in Soil. Int. J. Recycl. Org. Waste Agric. 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Monti, M.; Badagliacca, G.; Romeo, M.; Gelsomino, A. No-Till and Solid Digestate Amendment Selectively Affect the Potential Denitrification Activity in Two Mediterranean Orchard Soils. Soil Syst. 2021, 5, 31. [Google Scholar] [CrossRef]
- Rubæek, G.H.; Henriksen, K.; Petersen, J.; Rasmussen, B.; Sommer, S.G. Effects of Application Technique and Anaerobic Digestion on Gaseous Nitrogen Loss from Animal Slurry Applied to Ryegrass (Lolium Perenne). J. Agric. Sci. 1996, 126, 481–492. [Google Scholar] [CrossRef]
- Kesenheimer, K.; Augustin, J.; Hegewald, H.; Köbke, S.; Dittert, K.; Räbiger, T.; Quiñones, T.S.; Prochnow, A.; Hartung, J.; Fuß, R.; et al. Nitrification Inhibitors Reduce N2O Emissions Induced by Application of Biogas Digestate to Oilseed Rape. Nutr. Cycl. Agroecosyst. 2021, 120, 99–118. [Google Scholar] [CrossRef]
- Tariq, A.; Larsen, K.S.; Hansen, L.V.; Jensen, L.S.; Bruun, S. Effect of Nitrification Inhibitor (DMPP) on Nitrous Oxide Emissions from Agricultural Fields: Automated and Manual Measurements. Sci. Total Environ. 2022, 847, 157650. [Google Scholar] [CrossRef]
- Rivera, J.E.; Chará, J. CH4 and N2O Emissions From Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in Grazing Systems. Front. Sustain Food Syst. 2021, 5, 1–17. [Google Scholar] [CrossRef]
- Mori, A.; Hojito, M. Effect of Dairy Manure Type and Supplemental Synthetic Fertilizer on Methane and Nitrous Oxide Emissions from a Grassland in Nasu, Japan. Soil Sci. Plant Nutr. 2014, 61, 347–358. [Google Scholar] [CrossRef]
- Min, H.; Huang, X.; Xu, D.; Shao, Q.; Li, Q.; Wang, H.; Ren, L. Determining the Effects of Compost Substitution on Carbon Sequestration, Greenhouse Gas Emission, Soil Microbial Community Changes, and Crop Yield in a Wheat Field. Life 2022, 12, 1382. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.; Inubushi, K. Effect of Biogas Digested Liquid on CH4 and N2O Flux in Paddy Ecosystem. J. Integr. Agric. 2014, 13, 635–640. [Google Scholar] [CrossRef]
- Da Silva Cardoso, A.; Junqueira, J.B.; Reis, R.A.; Ruggieri, A.C. How Do Greenhouse Gas Emissions Vary with Biofertilizer Type and Soil Temperature and Moisture in a Tropical Grassland? Pedosphere 2020, 30, 607–617. [Google Scholar] [CrossRef]
- Adegoke, T.O.; Moon, T.; Ku, H.H. Ammonia Emission from Sandy Loam Soil Amended with Manure Compost and Urea. Appl. Biol. Chem. 2022, 65, 83. [Google Scholar] [CrossRef]
- Webb, J.; Chadwick, D.; Ellis, S. Emissions of Ammonia and Nitrous Oxide Following Incorporation into the Soil of Farmyard Manures Stored at Different Densities. Nutr. Cycl. Agroecosyst. 2004, 70, 67–76. [Google Scholar] [CrossRef]
- Mahanta, D.; Bhattacharyya, R.; Gopinath, K.A.; Tuti, M.D.; Jeevanandan, K.; Chandrashekara, C.; Arunkumar, R.; Mina, B.L.; Pandey, B.M.; Mishra, P.K.; et al. Influence of Farmyard Manure Application and Mineral Fertilization on Yield Sustainability, Carbon Sequestration Potential and Soil Property of Gardenpea-French Bean Cropping System in the Indian Himalayas. Sci. Hortic. 2013, 164, 414–427. [Google Scholar] [CrossRef]
- Martínez, E.; Domingo, F.; Roselló, A.; Serra, J.; Boixadera, J.; Lloveras, J. The Effects of Dairy Cattle Manure and Mineral N Fertilizer on Irrigated Maize and Soil N and Organic C. Eur. J. Agron. 2017, 83, 78–85. [Google Scholar] [CrossRef]
- Alluvione, F.; Bertora, C.; Zavattaro, L.; Grignani, C. Nitrous Oxide and Carbon Dioxide Emissions Following Green Manure and Compost Fertilization in Corn. Soil Sci. Soc. Am. J. 2010, 74, 384. [Google Scholar] [CrossRef]
- Mondini, C.; Cayuela, M.L.; Sinicco, T.; Fornasier, F.; Galvez, A.; Sánchez-Monedero, M.A. Soil C Storage Potential of Exogenous Organic Matter at Regional Level (Italy) under Climate Change Simulated by RothC Model Modified for Amended Soils. Front. Environ. Sci. 2018, 6, 144. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Song, D. Life-Cycle Energy Production and Emissions Mitigation by Comprehensive Biogas-Digestate Utilization. Bioresour. Technol. 2012, 114, 357–364. [Google Scholar] [CrossRef]
- Glaser, B.; Parr, M.; Braun, C.; Kopolo, G. Biochar Is Carbon Negative. Nat. Geosci. 2009, 2, 2. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of Biochar Application to the Environment and Economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, H.; Chu, M.; Zhang, C.; Tang, J.; Chang, S.X.; Mašek, O.; Ok, Y.S. Biochar Affects Greenhouse Gas Emissions in Various Environments: A Critical Review. Land Degrad. Dev. 2022, 33, 3327–3342. [Google Scholar] [CrossRef]
- van den Oever, A.E.M.; Cardellini, G.; Sels, B.F.; Messagie, M. Life Cycle Environmental Impacts of Compressed Biogas Production through Anaerobic Digestion of Manure and Municipal Organic Waste. J. Clean. Prod. 2021, 306, 127156. [Google Scholar] [CrossRef]
- Klinglmair, M.; Thomsen, M. Using Food Waste in Organic Fertilizer: Modelling Biogenic Carbon Sequestration with Associated Nutrient and Micropollutant Loads. Sustainability 2020, 12, 7399. [Google Scholar] [CrossRef]
- Brenzinger, K.; Drost, S.M.; Korthals, G.; Bodelier, P.L.E. Organic Residue Amendments to Modulate Greenhouse Gas Emissions from Agricultural Soils. Front. Microbiol. 2018, 9, 413221. [Google Scholar] [CrossRef] [PubMed]
- Anshori, A.; Sunarminto, B.H.; Haryono, E.; Pramono, A.; Mujiyo. Effect of Organic Fertilizers on CH4and N2O Production from Organic Paddy Field. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 724. [Google Scholar]
- Gong, H.; Li, J.; Liu, Z.; Zhang, Y.; Hou, R.; Ouyang, Z. Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management. Land 2022, 11, 1026. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Chen, J.; Liu, T.Q.; Cao, C.G.; Li, C.F. Effects of Nitrogen Fertilizer Sources and Tillage Practices on Greenhouse Gas Emissions in Paddy Fields of Central China. Atmos. Environ. 2016, 144, 274–281. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badagliacca, G.; Testa, G.; La Malfa, S.G.; Cafaro, V.; Lo Presti, E.; Monti, M. Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review. Horticulturae 2024, 10, 427. https://doi.org/10.3390/horticulturae10050427
Badagliacca G, Testa G, La Malfa SG, Cafaro V, Lo Presti E, Monti M. Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review. Horticulturae. 2024; 10(5):427. https://doi.org/10.3390/horticulturae10050427
Chicago/Turabian StyleBadagliacca, Giuseppe, Giorgio Testa, Stefano Giovanni La Malfa, Valeria Cafaro, Emilio Lo Presti, and Michele Monti. 2024. "Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review" Horticulturae 10, no. 5: 427. https://doi.org/10.3390/horticulturae10050427
APA StyleBadagliacca, G., Testa, G., La Malfa, S. G., Cafaro, V., Lo Presti, E., & Monti, M. (2024). Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review. Horticulturae, 10(5), 427. https://doi.org/10.3390/horticulturae10050427