Structural and Spatial Shifts in the Viticulture Potential of Main European Wine Regions as an Effect of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Variations of Parameters and Bioclimatic Indices Representative of the Climate of the Studied Wine Regions
3.2. Spatial Shifts of Climate Suitability Classes during the 1991–2010 Compared to 1951–1990 Time Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Statistics Explained. Vineyards in the EU—Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Vineyards_in_the_EU_-_statistics#million_vineyard_holdings_in_the_EU (accessed on 2 February 2024).
- OIV. State of the World Vine and Wine Sector in 2022. Available online: https://www.oiv.int/sites/default/files/documents/OIV_State_of_the_world_Vine_and_Wine_sector_in_2022_2.pdf (accessed on 2 February 2024).
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus Académie Agric. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Coombe, B.G. Influence of Temperature on Composition and Quality of Grapes. Acta Hortic. 1987, 206, 23–36. [Google Scholar] [CrossRef]
- Gladstones, J.S. Viticulture and Environment; Winetitles: Adelaide, Australia, 1992; p. 320. ISBN 1-875130-12-8. [Google Scholar]
- Jones, G.V.; Davis, R.E. Climate Influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Carbonneau, A. Ecophysiologie de la vigne et terroir. In Terroir, Zonazione, Viticoltura. Trattato Internazionale; Phytoline: Centreville, VA, USA, 2003; pp. 61–102. [Google Scholar]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Fraga, H. Climate Change: A New Challenge for the Winemaking Sector. Agronomy 2020, 10, 1465. [Google Scholar] [CrossRef]
- Huglin, P.; Schneider, C. Biologie et Ecologie de la Vigne, 2nd ed.; Technique & Doc: Paris, France, 1998; pp. 273–279. [Google Scholar]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture, 2nd ed.; University of California Press: Berkeley, CA, USA, 1974. [Google Scholar]
- Reynolds, A.G.; Naylor, A.P. Pinot-Noir and Riesling grapevines respond to water-stress duration and soil water-holding capacity. Hortscience 1994, 29, 1505–1510. [Google Scholar] [CrossRef]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Ramos, M.C.; Jones, G.V.; Martinez-Casasnovas, J.A. Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef]
- Jones, G.V. Climate and terroir: Impacts of climate variability and change on wine. In Geoscience Canada; Reprint Series No. 9; Geological Association of Canada: St John’s, NL, Canada, 2006; pp. 203–216. [Google Scholar]
- Smart, R.E.; Dry, P.R. A climatic classification for Australian viticultural regions. Aust. Grapegrow Winemak. 1980, 17, 8–16. [Google Scholar]
- Smart, R.E.; Robinson, J.B.; Due, G.R.; Brien, C.J. Canopy microclimate modification for the cultivar Shiraz. 1. Definition of canopy microclimate. Vitis 1985, 24, 17–31. [Google Scholar]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- Lacey, M.J.; Allen, M.S.; Harris, R.L.N.; Brown, W.V. Methoxypyrazines in Sauvignon blanc grapes and wines. Am. J. Enol. Vitic. 1991, 42, 103–108. [Google Scholar] [CrossRef]
- Sadras, V.O.; Moran, M.A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Nemani, R.R.; White, M.A.; Cayan, D.R.; Jones, G.V.; Running, S.W.; Coughlan, J.C. Asymmetric warming over coastal California and its impact on the premium wine industry. Clim. Res. 2001, 19, 25–34. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, R.M.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [PubMed]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Santos, J.A.; Fraga, H.; Pinto, J.G. Future scenarios for viticultural climatic zoning in Iberia. Acta Hortic. 2012, 931, 55–61. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Roșca, B. Climate change impact on climate suitability for wine production in Romania. Theor. Appl. Climatol. 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Quenol, H.; Sfâcă, L.; Foss, C. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania. Theor. Appl. Climatol. 2018, 131, 1069–1081. [Google Scholar] [CrossRef]
- Patriche, C.V.; Irimia, L.M. Mapping the impact of recent climate change on viticulture potential in Romania. Theor. Appl. Climatol. 2022, 148, 1035–1056. [Google Scholar] [CrossRef]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Chech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2015, 122, 207–218. [Google Scholar] [CrossRef]
- Kovács, E.; Puskas, J.; Pozsgai, A. Positive Effects of Climate Change on the Field of Sopron Wine-Growing Region in Hungary. In Perspectives on Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P.T., Eds.; Springer Atmospheric Sciences; Springer International Publishing: Cham, Switzerland, 2017; pp. 607–613. ISBN 978-3-319-35095-0. [Google Scholar]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Quénol, H.; Grosset, M.; Barbeau, G.; Van Leeuwen, K.; Hofmann, M.; Foss, C.; Irimia, L.; Rochard, J.; Boulanger, J.P.; Tissot, C.; et al. Adaptation of Viticulture to Climate Change: High resolution observations of adaptation scenario for viticulture: The ADVICLIM European Project. Bull. OIV 2014, 87, 395–406. [Google Scholar]
- Drappier, J.; Thibon, C.; Rabot, A.; Geny-Denis, L. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming—Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Bohnert, G.; Martin, B. Impacts of climate change induced drought and adaptation strategies in wine-growing in the Rhine Valley (France, Germany, Switzerland). Total Environ. Res. Themes 2023, 8, 100081. [Google Scholar] [CrossRef]
- Ramos, M.C.; De Toda, F.M. Variability in the potential effects of climate change on phenology and on grape composition of Tempranillo in three zones of the Rioja DOC (Spain). Eur. J. Agron. 2020, 115, 126014. [Google Scholar] [CrossRef]
- Biss, A.J.; Ellis, R.H. Weather potential for high-quality still wine from Chardonnay viticulture in different regions of the UK with climate change. OENO One 2022, 56, 201–220. [Google Scholar] [CrossRef]
- Teodorescu, Ş.; Popa, A.; Sandu, G. Oenoclimatul României; Editura Ştiinţifică şi Enciclopedică: Bucharest, Romania, 1987. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- European Environment Agency. Main Climates of Europe. Available online: https://www.eea.europa.eu/data-and-maps/figures/climate (accessed on 2 February 2024).
- Grieser, J.; Gommes, R.; Bernardi, M. NewLocClim- the Local Climate Estimator of FAO. Geophys. Res. Abstr. 2006, 8, 08305. [Google Scholar]
- ESRI. Available online: https://www.esri.com/en-us/arcgis/ (accessed on 4 February 2024).
- SAGA-GIS. System for Automated Geoscientific Analyses. Available online: https://www.saga-gis.org/ (accessed on 18 February 2024).
- Irimia, L.M.; Patriche, C.V.; Quenol, H. Analysis of viticultural potential and delineation of homogeneous viticultural zones in a temperate climate region of Romania. OENO One 2014, 48, 145–167. [Google Scholar] [CrossRef]
- Ţârdea, C.; Dejeu, L. Viticultura; Ed. Didactică şi Pedagogică: Bucureşti, Romania, 1994; p. 121. [Google Scholar]
- Spellman, G. Wine, weather and climate. Weather 1999, 54, 230–239. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Hofmann, M.; Volosciuk, C.; Dubrovský, M.; Maraun, D.; Schultz, H.R. Downscaling of climate change scenarios for a high-resolution, site-specific assessment of drought stress risk for two viticultural regions with heterogeneous landscapes. Earth Syst. Dyn. 2022, 13, 911–934. [Google Scholar] [CrossRef]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Tişcovschi, A.; Dumitraşcu, M. Recent spatio-temporal changes of land sensitivity to degradation in Romania due to climate change and human activities: An approach based on multiple environmental quality indicators. Ecol. Indic. 2020, 118, 106755. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Murariu, O.C. The impact of climate change on viticultural potential and wine grape varieties of a temperate wine growing region. Appl. Ecol. Environ. Res. 2018, 16, 2663–2680. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Santos, J.A.; Fraga, H.; Pinto, J.G. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res. 2010, 43, 163–177. [Google Scholar] [CrossRef]
- Jones, G.V.; Edwards, E.J.; Bonada, M.; Sadras, V.O.; Krstic, M.P.; Herderich, M.J. Climate change and its consequences for viticulture. In Managing Wine Quality, 2nd ed.; Reynolds, A.G., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2022; pp. 727–778. ISBN 9780081020678. [Google Scholar] [CrossRef]
- Xyrafis, E.G.; Fraga, H.; Nakas, C.T.; Koundouras, S. A study on the effects of climate change on viticulture on Santorini Island. OENO One 2022, 56, 259–273. [Google Scholar] [CrossRef]
- Laget, F.; Tondut, J.L.; Deloire, A.; Kelly, M. Climate trends in a specific Mediterranean viticultural area between 1950 and 2006. J. Int. Sci. Vigne Vin. 2008, 42, 113–123. [Google Scholar] [CrossRef]
- Koźmiński, C.; Mąkosza, A.; Michalska, B.; Nidzgorska-Lencewicz, J. Thermal Conditions for Viticulture in Poland. Sustainability 2020, 12, 5665. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Kurtural, S.K. Global warming and wine quality: Are we close to the tipping point? OENO One 2021, 55, 353–361. [Google Scholar] [CrossRef]
- Neethling, E.; Barbeau, G.; Bonnefoy, C.; Quénol, H. Change in Climate and Berry Composition for Grapevine Varieties Cultivated in the Loire Valley. Clim. Res. 2012, 53, 89–101. [Google Scholar] [CrossRef]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine Phenology and Climate Change: Relationships and Trends in the Veneto Region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Nesbitt, A.; Kemp, B.; Steele, C.; Lovett, A.; Dorling, S. Impact of Recent Climate Change and Weather Variability on the Viability of UK Viticulture—Combining Weather and Climate Records with Producers’ Perspectives. Aust. J. Grape Wine Res. 2016, 22, 324–335. [Google Scholar] [CrossRef]
- Koch, B.; Oehl, F. Climate change favors grapevine production in temperate zones. Agric. Sci. 2018, 9, 247–263. [Google Scholar] [CrossRef]
- Junqueira, P. Climate Change and the Wine Quality in Bordeaux Region. Master’s Thesis, Kedge Business School, Talence, France, 2023. Available online: https://content.meteoblue.com/assets/pdfs/20230630_FR_Kedge-Business-School_Climate-change-and-the-wine-quality-bordeaux-region_Patricio-junqueira.pdf (accessed on 15 January 2024).
- Petitjean, T.; De Rességuier, L.; Van Leeuwen, C.; Quénol, H. Le Changement Climatique à L’échelle des Vignobles: Résultats du Site Pilote de Bordeaux. 2020. Available online: https://hal.science/hal-04210608/ (accessed on 22 January 2024).
- Piña-Rey, A.; González-Fernández, E.; Fernández-González, M.; Lorenzo, M.N.; Rodríguez-Rajo, F.J. Climate Change Impacts Assessment on Wine-Growing Bioclimatic Transition Areas. Agriculture 2020, 10, 605. [Google Scholar] [CrossRef]
- Baducă Câmpeanu, C.; Beleniuc, G.; Simionescu, V.; Panaitescu, L.; Grigorica, L. Climate change effects on ripening process and wine composition in Oltenia’s vineyards from Romania. Acta Hortic. 2012, 931, 47–54. [Google Scholar] [CrossRef]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Fagarazzi, C.; Ferrise, R.; Trombi, G. Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg. Environ. Chang. 2011, 11, 553–567. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Response of viticulture-related climatic indices and zoning to historical and future climate conditions in Greece. Int. J. Climatol. 2017, 38, 2097–2111. [Google Scholar] [CrossRef]
- Ruml, M.; Vuković, A.; Vujadinović, M.; Djurdjević, V.; Ranković-Vasić, Z.; Atanacković, Z.; Sivčev, B.; Marković, N.; Matijašević, S.; Petrović, N. On the use of regional climate models: Implications of climate change for viticulture in Serbia. Agric. For. Meteorol. 2012, 158–159, 53–62. [Google Scholar] [CrossRef]
- Eitzinger, J.; Kubu, G.; Formayer, H.; Gerersdorfer, T. Climatic wine growing potential under future climate scenarios in Austria. In Sustainable Development and Bioclimate: Reviewed Conference Proceedings; Slovak Acad Sciences: Bratislava, Slovakia, 2009; pp. 146–147. [Google Scholar]
- Mesterházy, I.; Mészáros, R.; Pongrácz, R. The effects of climate change on grape production in Hungary. Idojárás 2014, 118, 193–206. [Google Scholar]
- Neumann, P.A.; Matzarakis, A. Viticulture in Southwest Germany under climate change conditions. Clim. Res. 2011, 47, 161–169. [Google Scholar] [CrossRef]
- Fernández-González, M.; Escuredo, O.; Rodriguez Rajo, F.J.; Aira, M.; Jato, V. Prediction of Grape Production by Grapevine Cultivar Godello in North-West Spain. J. Agric. Sci. 2011, 149, 725–736. [Google Scholar] [CrossRef]
- de Rességuier, L.; Séverine, M.; Le Roux, R.; Petitjean, T.; Quénol, H.; van Leeuwen, C. Temperature Variability at Local Scale in the Bordeaux Area. Relations with Environmental Factors and Impact on Vine Phenology. Front. Plant Sci. 2020, 11, 515. [Google Scholar] [CrossRef]
Wine Region | Reference Area | Latitude (°N lat) | Longitude (°) | Reference Area Size (km2) | Reference Area Elevation Range (m, asl) | Climate Type * |
---|---|---|---|---|---|---|
La Rioja | Ausejo-Carbonera | 42.45 | −2.12 | 5210 | 251–1924 | Cfb/subtropical maritime |
Bordeaux | Bordeaux | 44.89 | −0.16 | 5600 | 0–199 | Cfb/temperate maritime |
Loire Valley | Saumur-Champigny | 47.26 | −0.05 | 223 | 17–119 | Cfb/temperate maritime |
Cotnari | Cotnari | 47.34 | 26.95 | 120 | 90–396 | Dfb/temperate continental |
Rhine-Main-Nahe | Rhine-Main-Nahe | 49.98 | 7.90 | 6440 | 60–889 | Cfb/temperate transitional |
Sussex | Rock Lodge | 50.99 | −0.04 | 299 | 0–280 | Cfb/temperate maritime |
Variable | Equation | Months | Class Limits | ||
---|---|---|---|---|---|
Average Growing Season Temperature (AvGST, °C) [15] | where Tmin is minimum daily temperature (°C); Tmax is maximum daily temperature (°C); n is the number of days in the growing season (1 April–31 October). | April–October | Too cool | <13 °C | |
Cool | 13–15 °C | ||||
Intermediate | 15–17 °C | ||||
Warm | 17–19 °C | ||||
Hot | 19–21 °C | ||||
Very hot | 21–24 °C | ||||
Too hot | >24 °C | ||||
Huglin Index (HI, °C units) [3] | where Tmean is mean daily temperature (°C); Tmax is maximum daily temperature (°C); K is the latitude coefficient depending on daylength (latitude). | April–September | HI-3 | Very cool | <1500 |
HI-2 | Cool | 1500–1800 | |||
HI-1 | Temperate | 1800–2100 | |||
HI+1 | Temperate warm | 2100–2400 | |||
HI+2 | Warm | 2400–3000 | |||
HI+3 | Very warm | >3000 | |||
Oenoclimatic Aptitude Index (IAOe, units) [39,45] | IAOe = ASD + Σta − (P − 250) where ASD is the actual sunshine duration (hours), Σta is the sum of active temperatures (sum of daily temperatures >10 °C in the growing season, P are precipitations (mm), 250 is minimum precipitation needed for unirrigated vines (mm), if precipitations are <250 mm, the difference (P − 250) is set to zero. | April–September | restrictive for grape growing | <3793 | |
white table wines, sparkling wines, wines for distillates | 3793–4300 | ||||
quality white wines, red table wines | 4301–4600 | ||||
quality red and white wines | >4600 | ||||
Average Annual Temperature (AAT, °C) [45] | AAT = (Σtm)/12 where tm are the mean monthly temperatures | January–December | restrictive for grape growing | <8.5 | |
white table wines, sparkling wines, wines for distillates | 8.5–9.3 | ||||
quality white wines, red table wines | 9.4–10.0 | ||||
quality red and white wines | 10.1–11.2 | ||||
Growing Season Precipitation (GSP, mm) [45] | GSP = ΣPm where Pm are the mean monthly precipitations from April to September | April–September | white table wines, sparkling wines, wines for distillates | >390 | |
quality white wines, red table wines | <250 | ||||
quality red and white wines | 251–390 |
Wine Region | N Latitude (°) | Time Period | AAT (°C) | GSP (mm) | AvGST (°C) | HI (Units) | IAOe (Units) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg. * | Diff. ** | Avg. | Diff. | Avg. | Diff. | Avg. | Diff. | Avg. | Diff. | |||
La Rioja | 42.45 | 1951–1990 | 10.6 | +0.6 | 243.9 | +16.7 | 15.2 | +0.9 | 1534.8 | 226.2 | 4206.9 | 154.6 |
1991–2010 | 11.2 | 260.6 | 16.1 | 1761.0 | 4361.5 | |||||||
Bordeaux | 44.89 | 1951–1990 | 12.7 | +1.3 | 387.1 | +40.0 | 16.9 | +1.6 | 1830.1 | 286.4 | 4302.6 | 254.8 |
1991–2010 | 14.0 | 427.1 | 18.5 | 2116.5 | 4557.4 | |||||||
Loire Valley | 47.26 | 1951–1990 | 11.3 | +0.9 | 270.8 | +49.3 | 15.6 | +1.0 | 1597.9 | 201.7 | 4097.7 | 133.6 |
1991–2010 | 12.2 | 320.1 | 16.6 | 1799.6 | 4231.3 | |||||||
Cotnari | 47.34 | 1951–1990 | 9.6 | +0.8 | 342.7 | +12.1 | 16.3 | +0.5 | 1860.2 | 164.0 | 4228.6 | 307.4 |
1991–2010 | 10.4 | 354.8 | 16.8 | 2024.2 | 4534.2 | |||||||
Rhine-Main-Nahe | 49.98 | 1951–1990 | 9.4 | +0.9 | 310.9 | −16.8 | 14.8 | +1.1 | 1472.2 | 232.8 | 3662.1 | 218.1 |
1991–2010 | 10.3 | 294.1 | 15.9 | 1705.0 | 3880.2 | |||||||
Sussex | 50.99 | 1951–1990 | 10.5 | +0.8 | 328.3 | +3.4 | 13.8 | +0.8 | 1078.5 | 174.6 | 3696.8 | 143.0 |
1991–2010 | 11.3 | 331.7 | 14.6 | 1253.1 | 3839.8 | |||||||
Averages/Differences | 1951–1990 | 10.8 | +0.8 | 313.9 | +17.4 | 15.4 | +0.9 | 1564.7 | +214.3 | 4032.4 | +201.6 | |
1991–2010 | 11.5 | 331.4 | 16.4 | 1779.0 | 4234.0 |
Highest altitude | HI-3 (very cool) | - | - | 1160.3 | 1266.1 | 309.2 | 471.3 | - | - | 57 | 57 | - | - |
HI-2 (cool) | 150.9 | - | 716.7 | 922.9 | 107.1 | 209.6 | 280 | 360 | - | - | 48.6 | 81.1 | |
HI-1 (temperate) | 54.4 | 99.8 | 448.6 | 641.2 | - | 68.1 | 149 | 180 | - | - | - | 34.8 | |
HI+1 (temp. warm) | - | 39.3 | 313.0 | 406.3 | - | - | - | 106 | - | - | - | - | |
HI+2 (warm) | - | - | - | 277.1 | - | - | - | - | - | - | - | - | |
Lowest altitude | HI+3 (very warm) | - | - | - | - | - | - | - | - | - | - | - | - |
Classes of the Huglin Index (HI) | 1951–1990 | 1991–2010 | 1951–1990 | 1991–2010 | 1951–1990 | 1991–2010 | 1951–1990 | 1991–2010 | 1951–1990 | 1991–2010 | 1951–1990 | 1991–2010 | |
Saint-Émilion (Bordeaux) | Ausejo-Carbonera (La Rioja) | Rhine-Main-Nahe (Rhine Valley) | Cotnari (Cotnari) | Rock Lodge (Sussex) | Saumur Champigny (Loire Valley) | ||||||||
The average altitude (m, asl) at which the Huglin Index classes are found during the two time periods (m, asl) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irimia, L.M.; Patriche, C.V.; Petitjean, T.; Tissot, C.; Santesteban, L.G.; Neethling, E.; Foss, C.; Le Roux, R.; Quénol, H. Structural and Spatial Shifts in the Viticulture Potential of Main European Wine Regions as an Effect of Climate Change. Horticulturae 2024, 10, 413. https://doi.org/10.3390/horticulturae10040413
Irimia LM, Patriche CV, Petitjean T, Tissot C, Santesteban LG, Neethling E, Foss C, Le Roux R, Quénol H. Structural and Spatial Shifts in the Viticulture Potential of Main European Wine Regions as an Effect of Climate Change. Horticulturae. 2024; 10(4):413. https://doi.org/10.3390/horticulturae10040413
Chicago/Turabian StyleIrimia, Liviu Mihai, Cristian Valeriu Patriche, Théo Petitjean, Cyril Tissot, Luis Gonzaga Santesteban, Etienne Neethling, Chris Foss, Renan Le Roux, and Hervé Quénol. 2024. "Structural and Spatial Shifts in the Viticulture Potential of Main European Wine Regions as an Effect of Climate Change" Horticulturae 10, no. 4: 413. https://doi.org/10.3390/horticulturae10040413
APA StyleIrimia, L. M., Patriche, C. V., Petitjean, T., Tissot, C., Santesteban, L. G., Neethling, E., Foss, C., Le Roux, R., & Quénol, H. (2024). Structural and Spatial Shifts in the Viticulture Potential of Main European Wine Regions as an Effect of Climate Change. Horticulturae, 10(4), 413. https://doi.org/10.3390/horticulturae10040413