Apple Growing in Norway—Ecologic Factors, Current Fertilization Practices and Fruit Quality: A Case Study
Abstract
:1. Introduction
2. Climate Change and Apple Production in Norway
3. Apple Cultivars and Apple Rootstocks in Norway
4. Special Features of Orchard Soils in Norway
5. Fertilization Practice in Apple Production
5.1. Fertilization Application
5.2. Fertigation of Apple Orchards
5.3. Nutrient Application by Foliar Nutrition
6. Apple Fruit Mineral Content and Its Quality
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bairam, E.; Sahli, A.; Sahli, H. Analysing global climatic change and its impact on fruit tree phenology using ClimaTree tool: Example of Anna apple tree under Tunisian conditions. In Proceedings of the 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Shanghai, China, 31 October–3 November 2012. [Google Scholar]
- Legave, J.M.; Farrera, I.; Almeras, T.; Calleia, M. Selecting models of apple flowering time and understanding how global warming has had an impact on this trait. J. Hortic. Sci. Biotechnol. 2008, 83, 76–84. [Google Scholar] [CrossRef]
- Krogstad, T.; Zivanovic, V.; Simic, A.; Fotiric Aksic, M.; Licina, V.; Meland, M. Nitrogen Mineralization of Apple Orchard Soils in Regions of Western and South-Eastern Norway. Agronomy 2023, 13, 2570. [Google Scholar] [CrossRef]
- Grytten, O. The Economic History of Norway. EH.Net Encyclopedia. 2008. Available online: http://eh.net/encyclopedia/the-economic-history-of-norway/ (accessed on 19 September 2023).
- Statistics Norway. Hagebruksavlingar. Avling av Frukt, Hagebær og Grønsaker (Tonn) 2010–2017. 2018. Available online: https://www.ssb.no/statbank/list/hagebruk (accessed on 1 September 2023).
- Agricultural Area Used for Apple Production in Norway from 2010 to 2016 (in Hectares). 2018. Available online: https://www.statista.com/statistics/713391/agricultural-area-used-for-appleproduction-in-norway/ (accessed on 10 September 2023).
- Sthapit, B. Emerging Theory and Practice: Community Seed Banks, Seed System Resilience and Food Security. In Proceedings of the National Workshop, Pokhara, Nepal, 14–15 June 2012. [Google Scholar]
- FiBL Statistics. 2020. Available online: https://statistics.fibl.org/world/selected-crops-world.html (accessed on 25 August 2021).
- Hjeltnes, S.H. Gamle Sorter av Frukt og Bær. 2008. Available online: http://www.skogoglandskap.no/filearchive/norske_klonarkiv_i_frukt.pdf (accessed on 3 September 2023).
- Meland, M.; Gjerde, G. The effect of hand thinning on return bloom of ‘Summerred’ and ‘Aroma’ apples. Acta Hortic. 1993, 349, 219–222. [Google Scholar] [CrossRef]
- Meland, M. Thinning apples and pears in a Nordic climate.III. The effect of NAA, ethephon and lime sulfur on fruit set, yield and return bloom of three apple cultivars. Acta Hortic. 1997, 463, 517–525. [Google Scholar]
- Meland, M. Effects of different crop loads and thinning times on yield, fruit quality, and return bloom in Malus domestica Borkh. ‘Elstar’. J. Hortic. Sci. Biotechnol. 2009, 84, 117–121. [Google Scholar] [CrossRef]
- Meland, M.; Maas, F.M.; Kaiser, C. Effects of fertigation on yield, fruit quality and return bloom of young apple trees. Acta Hortic. 2016, 1139, 445–450. [Google Scholar] [CrossRef]
- Maas, F.M. Control of fruit set in apple by ATS requires accurate timing of ATS application. Acta Hortic. 2016, 1138, 45–51. [Google Scholar] [CrossRef]
- Maas, F.M.; Meland, M. Thinning response of ‘Summerred’ apple to Brevis® in a northern climate. Acta Hortic. 2016, 1138, 53–60. [Google Scholar] [CrossRef]
- Meland, M.; Aksic, M.F.; Frøynes, O.; Konjic, A.; Lasic, L.; Pojskic, N.; Gasi, F. Genetic identity and diversity of apple accessions within a candidate collection for the Norwegian national clonal germplasm repository. Horticulturae 2022, 8, 630. [Google Scholar] [CrossRef]
- Måge, F. Avling og avlingsvariasjoner i norsk epleproduksjon. Nor. Frukt. Og. Bær 2010, 5, 10–12. [Google Scholar]
- Asif, M.H.; Pathak, N.; Solomos, T.; Trivedi, P.K. Effect of low oxygen, temperature and 1-methylcyclopropene on the expression of genes regulating ethylene biosynthesis and perception during ripening in apple. S. Afr. J. Bot. 2009, 75, 137–144. [Google Scholar] [CrossRef]
- Casique, R.R. Phenology and Effect of Climate on Apple Cultivars (Malus domestica Borkh.) in Norway. Master’s Thesis, NMBU, Ås, Norway, 2015; pp. 1–71. [Google Scholar]
- Fujisawa, M.; Kobayashi, K. Apple (Malus pumila var. domestica) phenology is advancing due to rising air temperature in northern Japan. Glob. Chang. Biol. 2010, 16, 2651–2660. [Google Scholar] [CrossRef]
- Davey, M.W.; Auwerkerken, A.; Keulemans, J. Relationship of apple vitamin C and antioxidant contents to harvest date and postharvest pathogen infection. J. Sci. Food Agric. 2007, 87, 802–813. [Google Scholar] [CrossRef]
- Fischer, G.; Ramírez, F.; Casierra-Posada, F. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 2016, 34, 190–199. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaumc, K.C.; Skjelvåg, A.O.; Seguine, B.; Peltonen-Sainiof, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Europ. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; et al. Simulation of spring barley yield in different climatic zones of Northern and Central Europe. A comparison of nine crop models. Field Crops Res. 2012, 133, 23–36. [Google Scholar] [CrossRef]
- Bindi, M.; Olesen, J.E. The responses of agriculture in Europe to climate change. Reg. Environ. Change 2011, 11, 151–158. [Google Scholar] [CrossRef]
- Uleberg, E.; Hanssen-Bauer, I.; Van Oort, B.; Dalmannsdottir, S. Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation. Clim. Chang. 2014, 122, 27–39. [Google Scholar]
- Karlsen, S.R.; Høgda, K.A.; Wielgolaski, F.E.; Tolvanen, A.; Tømmervik, H.; Poikolainen, J.; Kubin, E. Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Clim. Res. 2009, 39, 275–286. [Google Scholar] [CrossRef]
- Kvalvik, I.; Dalmannsdottir, S.; Dannevig, H.; Hovelsrud, G.; LARS Rønning, L.; Uleberg, E. Climate change vulnerability and adaptive capacity in the agricultural sector in Northern Norway. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61 (Suppl. S1), 27–37. [Google Scholar] [CrossRef]
- Wenng, H.; Krogstad, T.; Bechmann, M.; Skarbøvik, E. Climate effects on land management and stream nitrogen concentrations in small agricultural catchments in Norway. Ambio 2020, 49, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Climate Change Could Lead to More Norwegian Fruit. Available online: http://sciencenordic.com/climate-change-could-lead-more-norwegian-fruit (accessed on 23 October 2023).
- Rivero, R.; Sønsteby, A.; Heide, O.M.; Måge, F.; Remberg, S.F. Flowering phenology and the interrelations between phenological stages in apple trees (Malus domestica Borkh.) as influenced by the Nordic climate. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 292–302. [Google Scholar]
- Unterberger, C.; Brunner, L.; Nabernegg, S.; Steininger, K.W.; Steiner, A.K. Spring frost risk for regional apple production under a warmer climate. PLoS ONE 2018, 13, e0200201. [Google Scholar] [CrossRef] [PubMed]
- Davini, P.; D’Andrea, F. Northern hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements. J. Clim. 2016, 29, 8823–8840. [Google Scholar] [CrossRef]
- D’Andrea, F.; Tibaldi, S.; Blackburn, M.; Boer, G.; Déqué, M.; Dix, M.R.; Dugas, B.; Ferrenti, L.; Iwasaki, T.; Kitoh, A.; et al. Northern hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim. Dyn. 1998, 14, 385–407. [Google Scholar] [CrossRef]
- Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC, 2013; Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Skaugen, T.E.; Tveito, O.E. Heating degree-days-Present conditions and scenario for the period 2021–2050. In DNMI Report 01/02 KLIMA; Norwegian Metrological Institute: Oslo, Norway, 2002; p. 13. [Google Scholar]
- Vukovic Vimic, A.; Vujadinovic Mandic, M.; Fotiric Akšic, M.; Vukicevic, K.; Meland, M. Climate Potential for Apple Growing in Norway—Part 1: Zoning of Areas with Heat Conditions Favorable for Apple Growing under Observed Climate Change. Atmosphere 2023, 14, 993. [Google Scholar] [CrossRef]
- Vujadinović Mandić, M.; Vuković Vimić, A.; Fotirić Akšić, M.; Meland, M. Climate Potential for Apple Growing in Norway—Part 2: Assessment of Suitability of Heat Conditions under Future Climate Change. Atmosphere 2023, 14, 937. [Google Scholar] [CrossRef]
- Sekse, L. Plum production in Norway. Acta Hortic. 2007, 734, 23–28. [Google Scholar] [CrossRef]
- Durif, C.M.F.; Gjøsaeter, J.; Vøllestad, L.A. Influence of oceanic factors on Anguilla anguilla (L.) over the twentieth century in coastal habitats of the Skagerrak, southern Norway. Proc. Biol. Sci. 2011, 278, 464–473. [Google Scholar] [CrossRef]
- Fotiric Aksic, M.; Mutić, J.; Tešić, Z.Ž.; Meland, M. Evaluation of fruit mineral contents of two apple cultivars grown in organic and integrated production systems. Acta Hortic. 2020, 1281, 59–65. [Google Scholar] [CrossRef]
- Hanssen-Bauer, I.; Hygen, H.O.; Skaugen, T.E. Climatic Basis for Vulnerability Studies of the Agricultural Sector in Selected Municipalities in Northern Norway; Met. No Report; Norwegian Meteorological Institute: Oslo, Norway, 2010. [Google Scholar]
- Inglesias, A.; Quiroga, S.; Diz, A. Looking into the future of agriculture in a changing climate. Eur. Rev. Agric. Econ. 2011, 38, 427–444. [Google Scholar] [CrossRef]
- Hanssen-Bauer, I.; Førland, E.J.; Haddeland, I.; Hisdal, H.; Mayer, S.; Nesje, A.; Nilsen, J.E.Ø.; Sandven, S.; Sandø, A.B.; Sorteberg, A.; et al. Climate in Norway 2100-a knowledge base for climate adaptation. NCCS Rep. 2017, 1, 2017. [Google Scholar]
- Ketzler, G.; Römer, W.; Beylich, A.A. The Climate of Norway. In Landscapes and Landforms of Norway; Beylich, A.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 7–29. [Google Scholar]
- NGRC—NIBIO Report (2022): The state of plant genetic resources for food and agriculture in Norway Third national report to FAO 2014–2020. NIBIO Rep. 2022, 119, 1–84.
- Tollefsrud, M.M.; Sønstebø, J.H.; Åsen, P.A. Registrering og genetisk karakterisering av villeple I Norge. Rapp. Fra Nor. Genressurssenter/Skog Og Landsk. 2014, 18, 2014. [Google Scholar]
- Sæther, N.A.H.; Caroline, A.; Fjellstad, K.B.; Rasmussen, M.; Wallin, H.G. Nøkkeltall fra Norsk Genressurssenter 2019; NIBIO Report; Norwegian Meteorological Institute: Oslo, Norway, 2020; Volume 107. [Google Scholar]
- Fjellstad, K.B.; Skrøppa, T. State of Forest Genetic Resources in Norway; NIBIO Report; Norwegian Meteorological Institute: Oslo, Norway, 2020; Volume 17. [Google Scholar]
- Andersen, R. Plant Genetic Diversity in Agriculture and Farmers’ Rights in Norway; FNI Report; Fridtjof Nansens Institutt: Lysaker, Norway, 2012; p. 119. [Google Scholar]
- Gasi, F.; Kanlić, K.; Stroil, B.K.; Pojskić, N.; Asdal, Å.; Rasmussen, M.; Kaiser, C.; Meland, M. Redundancies and genetic structure among ex situ apple collections in Norway examined with microsatellite markers. HortScience 2016, 51, 1458–1462. [Google Scholar] [CrossRef]
- Kanlić, K.; Kalamujić, B.; Pojskić, N.; Grahić, J.; Gaši, F.; Asdal, Å.; Meland, M. Genetic structure and differentiation among North and South European apple germplasm. Acta Hortic. 2017, 1172, 195–200. [Google Scholar] [CrossRef]
- Sæther, N.A.H.; Caroline, A.; Fjellstad, K.B.; Rasmussen, M.; Wallin, H.G. Nøkkeltall fra Norsk Genressurssenter 2020; NIBIO-Rapp.; Norwegian Meteorological Institute: Oslo, Norway, 2021; Volume 7. [Google Scholar]
- Meland, M.; Kaiser, C. Ethephon as a Blossom and Fruitlet Thinner Affects Crop Load, Fruit Weight, Fruit Quality, and Return Bloom of ‘Summerred’ Apple (Malus domestica) Borkh. HortScience 2011, 46, 432–438. [Google Scholar] [CrossRef]
- Røen, D. Apple breeding in Norway. Acta Hortic. 1998, 484, 153–156. [Google Scholar] [CrossRef]
- Autio, E.; Sapienza, H.J.; Almeida, J.G. Effects of age at entry, knowledge intensity, and imitability of international growth. Acad. Manag. J. 2000, 43, 909–924. [Google Scholar] [CrossRef]
- Reig, G.; Lordan, J.; Sazo, M.M.; Hoying, S.A.; Fargione, M.J.; Reginato, G.H.; Donahue, D.J.; Francescatto, P.; Fazio, G.; Robinson, T.L. Effect of tree type and rootstock on the long-term performance of ‘Gala’, ‘Fuji’ and ‘Honeycrisp’ apple trees trained to Tall Spindle under New York State climatic conditions. Sci. Hortic. 2019, 246, 506–517. [Google Scholar] [CrossRef]
- Webster, A.D.; Wertheim, S.J. Apple rootstocks. In Apple: Botany, Production and Uses; Ferre, D.C., Warrington, I.J., Eds.; CABI Publishing: Cambridge, UK, 2003; pp. 91–124. [Google Scholar]
- McMichael, B.L.; Burke, J.J. Soil temperature and root growth. HortScience 1998, 33, 947–951. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; King, J.S.; Burton, A.J.; Brown, E.S. Responses of tree fine roots to temperature. New Phytol. 2000, 147, 105–115. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates Inc.: Sunderland, UK, 2010; pp. 157–195. [Google Scholar]
- Moran, R.E.; Peterson, B.J.; Fazio, G.; Cline, J. Genotypic variation in apple rootstock low temperature tolerance during spring and fall. J. Am. Soc. Hort. Sci. 2018, 143, 319–332. [Google Scholar] [CrossRef]
- Tahir, I. Fruktodling och eferskördbehandling. In Jordbruksverket Sveriges Lantbruksuniversitet; Visionmedia Syd: Stockholm, Sweden, 2014; p. 28. [Google Scholar]
- Robinson, T.L.; Hoying, S.A.; Fazio, G. Performance on Geneva rootstocks in on-farm trails in New York. Acta Hortic. 2011, 903, 249–256. [Google Scholar] [CrossRef]
- Robinson, T.L.; Fazio, G.; Aldwinckle, H.S. Characteristics and performance of four new apple rootstocks from the Cornell-USDA apple rootstock breeding program. Acta Hortic. 2014, 1058, 651–656. [Google Scholar] [CrossRef]
- WorldData. Available online: https://www.worlddata.info/climatecomparison.php?r1=norway&r2=sweden (accessed on 19 September 2023).
- Faragher, J.D. Temperature regulation of anthocyanin accumulation in apple skin. J. Exp. Bot. 1985, 34, 1291–1298. [Google Scholar] [CrossRef]
- Ladenberger, A.; Andersson, M.; Reimann, C.; Tarvainen, T.; Snöälv, J.; Morris, G.; Sadeghi, M. Geochemical Mapping of Agricultural Soils and Grazing Land (GEMAS) in Norway, Finland and Sweden—Regional Report; SGU-Rapp; The Geological Survey: Uppsala, Sweden, 2013; Volume 17. [Google Scholar]
- Paulsen, K.N. Soil Quality and Fertilizer Application in Norwegian Apple Orchards. Master’s Thesis, NMBU, Ås, Norway, 2019; pp. 1–66. [Google Scholar]
- Bjerke, J.W.; Tømmervik, H.; Zielke, M.; Jørgensen, M. Impacts of snow season on ground-ice accumulation, soil frost and primary productivity in a grassland of sub-arctic Norway. Environ. Res. Lett. 2015, 10, 095007. [Google Scholar] [CrossRef]
- Hastrup, F. Natural Goods on the Fruit Frontier. Cultivating Apples in Norway. In Domestication Gone Wild: Politics and Practices of Multispecies Relations; Swanson, H., Lien, M., Ween, G., Eds.; Duke University Press: Durham, NC, USA, 2018; pp. 159–175. [Google Scholar]
- Höglind, M.; Bakken, A.K.; Jørgensen, M.; Østrem, L. Tolerance to frost and ice encasement in cultivars of timothy and perennial ryegrass during winter. Grass Forage Sci. 2010, 65, 431–445. [Google Scholar] [CrossRef]
- Hovlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.B. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 8th ed.; Prentice Hall: Hoboken, NJ, USA, 2016. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principal of Plant Nutrition; International Potash Institute Worblaufen-Bern: Bern, Switzerland, 2001; pp. 541–552. [Google Scholar]
- Reguir, E.P.; Chakhmouradian, A.R.; Halden, N.M.; Yang, P. Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can. Miner. 2008, 46, 879–900. [Google Scholar] [CrossRef]
- Veronez, A.C.; Salla, R.V.; Baroni, V.D.; Barcarolli, I.F.; Bianchini, A.; Dos Reis Martinez, C.B.; Chippari-Gomes, A.R. Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus. Aquat. Toxicol. 2016, 174, 101–108. [Google Scholar] [CrossRef]
- Kuzin, A.; Solovchenko, A. Essential role of potassium in apple and its implications for management of orchard fertilization. Plants 2021, 10, 2624. [Google Scholar] [CrossRef] [PubMed]
- Lundekvam, H.E.; Romstad, E.; Øygarden, L. Agricultural policies in Norway and effects on soil erosion. Environ. Sci. Policy 2003, 6, 57–67. [Google Scholar] [CrossRef]
- Arnoldussen, A.H. Soil Survey in Norway. Eur. Soil Bur. Res. 2003, 9, 259–262. [Google Scholar]
- Nyborg, Å.; Klakegg, O. Using a soil information system to combat soil erosion from agricultural lands in Norway. In Land Information Systems: Developments for Planning the Sustainable use of Land Resources; Heineke, H.J., Ed.; European Soil Bureau: Ispra, Italy, 1998; Volume 4, pp. 177–179. [Google Scholar]
- Solbakken, E.; Klakegg, O.; Eklo, O.M.; Deelstra, J. Digitale jordsmonndata. Et viktig datagrunnlag for risikovurderinger. (Digital Soil Database. An important tool for risk assessment). Nordisk Jordbrugsforskning. 1999, 2-1999, 278. (In Norwegian) [Google Scholar]
- BPR, Regulation (EU) 528/2012: The Biocidal Products Regulation, Directive 98/8/EC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:167:0001:0123:en:PDF (accessed on 1 September 2023).
- Hanserud, O.S.; Brod, E.; Øgaard, A.F.; Müller, D.B.; Brattebø, H. A multi-regional soil phosphorus balance for exploring secondary fertilizer potential: The case of Norway. Nutr. Cycl. Agroecosyst. 2016, 104, 307–320. [Google Scholar] [CrossRef]
- Forskrift om Gjødslingsplanlegging. Available online: https://lovdata.no/dokument/SF/forskrift/1999-07-01-791 (accessed on 23 October 2023).
- Egner, H.R.; Domingo, W.R. Untersuchungen über die chemische Boden-Analyse als Grundlage für die Beurteilung des Nährstoffzustandes der Boden. Ann. R. Swed. Agric. Coll. 1960, 26, 199–215. [Google Scholar]
- Krogstad, T. Metoder for Jordanalyser; Rapport nr. 6/92; Institutt for Jordfag: Ås, Norway, 1992; pp. 1–32. [Google Scholar]
- Kvåle, A. Fruktdyrking; Landbruksforlaget: Oslo, Norway, 1995. [Google Scholar]
- Vangdal, E. Gjødsling i frukthagar; NIBIO: Ås, Norway, 2017. [Google Scholar]
- Maas, F.; Tore, K.; Fotiric Akšic, M.; Meland, M. Survey of nutrient levels in apple trees and soil in four fruit growing regions in Norway. NIBIO Rep. 2022, 8, 1–39. [Google Scholar]
- Eurofins Agro Testing Norway A/S. 2023. Available online: https://www.eurofins.no/agro-testing/ (accessed on 15 December 2023).
- Ličina, V.; Tore Krogstad, T.; Simić, A.; Fotirić Akšić, M.; Meland, M. Nutrition and fertilizer application to apple trees—A review. Nibio Rep. 2021, 7, 59. [Google Scholar]
- Neilsen, G.H.; Neilsen, D. Nutritional requirements of apple. In Apples: Botany, Production, and Uses; Ferree, D.C., Warrington, I.J., Eds.; CABI Publication: Cambridge, UK, 2003; pp. 267–302. [Google Scholar]
- Zavalonni, C.; Marangoni, B.; Tagliavini, M.; Scudellari, D. Dynamics of uptake of calcium, K and magnesium into apple fruit in a high density planting. Acta Hortic. 2001, 564, 113–121. [Google Scholar] [CrossRef]
- Wicklund, T.; Guyot, S.; Quéré, J.M. Chemical Composition of Apples Cultivated in Norway. Crops 2021, 1, 8–19. [Google Scholar] [CrossRef]
- Chang, C.; Li, C.; Li, C.Y.; Kang, X.Y.; Zou, Y.J.; Ma, F.W. Differences in the efficiency of potassium (K) uptake and use in five apple rootstock genotypes. J. Integr. Agric. 2014, 13, 1934–1942. [Google Scholar] [CrossRef]
- de Sousa, M.; Mota, M.; Oliveira, C.; Ribeiro, H.; Martins, M.; Policarpo, G. Nutrient Content with Different Fertilizer Management and Influence on Yield and Fruit Quality in Apple cv. Gala. Horticulturae 2022, 8, 713. [Google Scholar] [CrossRef]
- Kuzin, A.I.; Kashirskaya, N.Y.; Anna, M.; Kochkina, A.M.; Alexey, V.; Kushner, A.V. Correction of Potassium Fertigation Rate of Apple Tree (Malus domestica Borkh.) in Central Russia during the Growing Season. Plants 2020, 9, 1366. [Google Scholar] [CrossRef]
- Wang, G.Y.; Zhang, X.Z.; Wang, Y.; Xu, X.F.; Han, Z.H. Key minerals influencing apple quality in Chinese orchard identified by nutritional diagnosis of leaf and soil analysis. J. Integr. Agric. 2015, 14, 864–874. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Parchomchuk, P.; Wolk, W.D.; Lau, O.L. Growth and mineral composition of newly planted apple trees following fertigation with N and P. J. Am. Soc. Hortic. Sci. 1993, 118, 50–53. [Google Scholar] [CrossRef]
- Murtic, S. Foliar nutrition in apple production. Afr. J. Biotechnol. 2012, 12, 477. [Google Scholar]
- Kurešová, G.; Menšík, L.; Haberle, J.; Svoboda, P.; Raimanov, I. Influence of foliar micronutrients fertilization on nutritional status of apple trees. Plant Soil Environ. 2019, 65, 320–327. [Google Scholar] [CrossRef]
- Suman, M.; Sangma, P.D.; Singh, D. Role of micronutrients (Fe, Zn, B, Cu, Mg, Mn and Mo) in fruit crops. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3240–3250. [Google Scholar] [CrossRef]
- Weidan, W.; Zhiqiang, H.; Xiaolong, M.; Jianglong, G.; Xiaoqin, F.; Jianfu, G.; Jianqiang, L.; Ming, L.; Yuanhang, Z. Effects of Different Proportions of Organic Fertilizer Replacing Chemical Fertilizer on Soil Nutrients and Fertilizer Utilization in Gray Desert Soil. Agronomy 2024, 14, 228. [Google Scholar]
- Berchie, J.N.; Asumadu, H.; Yeboah, S.; Agyeman, K.; Acheampong, P.P. An Evaluation of the Effects of Yara Fertilizers on the Growth and Yield Performance of Maize (Zea mays L.) and its Economic Implications to Farmers in Ghana. Int. J. Sci. Adv. Technol. 2013, 3, 1–12. [Google Scholar]
- Evergiste, N.; Rwalinda, F.; Saidi, M.; Ismael, N.; Erastus, D.; Theophile, K.; Egide, N.; Eric, M.; Emmanuel, N. Effects of Inorganic and Organic Fertilizers on Irish Potato (Solanum tuberosum L.): Growth, 2024, Yield and Pocessing Quality in Volcanic soil-Musanze district. In Proceedings of the 6th International Anatolian Agriculture, Food, Environment and Biology Congress (Targid 2022), Kütahya, Turkey, 7–9 October 2022; pp. 2–24. [Google Scholar]
- Бaйдa, M. Efficiency of growing various soybeans varieties, depending on the effect of micronutrient fertilizers and growth regulators. Plant Var. Stud. Prot. 2020, 16, 395–401. [Google Scholar]
- Darwis, D.; Nikmatullah, A.; Sarjan, M. The Interaction Effect of Biographical Fertilizer, Organic Fertilizer and Inorganic Fertilizer on the Growth and Results of Red Onion (Allium ascalonicum L.) in Dry Land. Path Sci. 2023, 9, 3001–3007. [Google Scholar] [CrossRef]
- Yara Gjødlingshåndbok. Available online: http://www.yara.no/gjoeedsel/frukt-og-br/eple/ (accessed on 23 October 2023).
- NIBIO Gjødlingshåndbok. Available online: http://www.nibio.no/tema/jord/gjodslingshandbok (accessed on 25 October 2023).
- Dobrzañski, R., Jr.; Rybczyñski, R. Colour change of apple as a result of storage, shelf-life, and bruising. Int. Agrophys. 2002, 16, 261–268. [Google Scholar]
- Bloksma, J.; Northolt, M.; Huber, M.; Jansonius, P.; Zanen, J.M. Parameters for Apple Quality-2 and the Development of the ‘Inner Quality Concept’ 2001–2003; Louis Bolk Instituut: Driebergen, The Netherlands, 2004; pp. 1–76. [Google Scholar]
- Musacci, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- GrøntPordusentenes Samarbeidsråd (2021): Schweigaardsgt. 34F,0191 Oslo. Available online: www.grontprodusentene.no (accessed on 1 January 2024).
- Sachini, R.; Steffens, C.A.; De Martin, M.S.; Schveitzer, B.; Fenili, C.L.; Petri, J.L. Mineral contents in the skin and flesh of fruits of apple cultivars. Rev. Bras. Frutic. Jaboticabal 2020, 42, 1–8. [Google Scholar] [CrossRef]
- Ferre, D.C.; Warrington, I.J. Apples: Botany, Production, and Uses; CABI: Wallingford, UK, 2003. [Google Scholar]
- Calhourn, C.R., Jr. All Southern Apples. A Comprehensive History and Description of Varieties for Collectors, Growers, and Fruit Enthusiasts, 2nd ed.; Chelsea Green Publishing: White River Junction, VT, USA, 2005. [Google Scholar]
- Zhang, Y.; Li, P.; Cheng, L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem. 2010, 123, 1013–1018. [Google Scholar] [CrossRef]
- Maffei, M.E.; Gertsch, J.; Appendino, G. Plant volatiles: Production, function and pharmacology. Nat. Prod. Rep. 2011, 28, 1359–1380. [Google Scholar] [CrossRef]
- Lee, J.; Chan, B.L.S.; Mitchell, A.E. Identification/quantification of free and bound phenolic acids in peel and pulp ofb apples (Malus domestica) using high resolution mass spectrometry (HRMS). Food Chem. 2017, 215, 301–310. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × domestica Borkh.) Cultivars. Front. Nutr. 2022, 9, 941487. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Dabić Zagorac, D.; Gašić, U.; Tosti, T.; Natić, M.; Meland, M. Analysis of Apple Fruit (Malus × domestica Borkh.). Quality Attributes Obtained from Organic and Integrated Production Systems. Sustainability 2022, 14, 5300. [Google Scholar] [CrossRef]
- Chuku, L.C.; Chinaka, N.C. Protein and mineral element levels of some fruit juices (Citrus spp.) in some Niger Delta areas of Nigeria. Int. J. Nutr. Food Sci. Spec. Issue Optim. Qual. Food Process Assess. 2014, 3, 58–60. [Google Scholar]
- Da Silva Porto, P.A.; Laranjinha, J.A.; De Freitas, V.A. Antioxidant protection of low density lipoprotein by procyanidins: Structure/activity relationships. Biochem. Pharmacol. 2003, 66, 947–954. [Google Scholar] [CrossRef]
- Freese, R.; Vaarala, O.; Turpeinen, A.M.; Mutanen, M. No difference in platelet activation or inflammation markers after diets rich or poor in vegetables, berries and apple in healthy subjects. Eur. J. Nutr. 2004, 43, 175–182. [Google Scholar] [CrossRef]
- Gorinstein, S.; Zachwieja, Z.; Folta, M.; Barton, H.; Piotrowicz, J.; Zemser, M.; Weisz, M.; Trakhtenberg, S.; Màrtín-Belloso, O. Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J. Agric. Food Chem. 2001, 49, 952–957. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Yang, J.R.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid Chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.L.; Liu, R.H. Apple peels as a value-added food ingredient. J. Agric Food Chem. 2003, 51, 1676–1683. [Google Scholar] [CrossRef]
- Upshaw, S.C.; Lopez, A.; Williams, H.L. Essential elements in apples and canned applesauce. J. Food Sci. 1978, 43, 449–456. [Google Scholar] [CrossRef]
- Schweitzer, B.; Sachini, R.; Fenili, C.; de Martin, M.S.; Petri, J.L. Teores minerais em diferentes cultivares de maçãs nas safras de 2016/17 e 2017/18. In ZUFFO, A.M. (org.). A Produção do Conhecimento nas Ciências Agrárias e Ambientais; Atena Editora: Ponta Grossa, Brazil, 2019; Volume 5, pp. 114–124. [Google Scholar]
- Bhandari, N. Apple Three Phenology in Relation to Temperature in Sauherad. Master’s Thesis, University College of Southeast, Notodden, Norway, 2018; pp. 1–57. [Google Scholar]
- Kowalczyk, W.; Wrona, D.; Przybyłko, S. Effect of Nitrogen Fertilization of Apple Orchard on Soil Mineral Nitrogen Content, Yielding of the Apple Trees and Nutritional Status of Leaves and Fruits. Agriculture 2022, 12, 2169. [Google Scholar] [CrossRef]
- Szewczuk, A.; Komosa, A.; Gudarowska, E. Effect of soil potassium levels and different potassium fertilizers on yield, macroelement and chloride nutrition status of apple trees in full fruition period. Acta Sci. Pol. Hortorum Cultus 2011, 10, 83–94. [Google Scholar]
- Jadczuk, E.; Pietranek, A.; Dziuban, R. Wpływ nawożenia potasem na wzrost i plonowanie jabłoni. Folia Hort. Supl. 2003, 2, 171–173. [Google Scholar]
- Hilmelrich, D.G.; Walker, S.E. Seasonal trends of calcium, magnesium, and potassium fractions in apple leaf and fruit tissues. J. Am. Soc. Hortic. Sci. 1982, 107, 1078–1080. [Google Scholar]
- Freitas, S.T.; Amarante, C.V.T.; Labavitch, J.M.; Mitcham, E. Cellular approach to understand bitter pit development in apple fruit. Postharvest. Biol. Technol. 2010, 57, 6–13. [Google Scholar] [CrossRef]
- Natić, M.; Dabić Zagorac, D.; Jakanovski, M.; Smailagić, A.; Čolić, S.; Meland, M.; Fotirić Akšić, M. Fruit Quality Attributes of Organically Grown Norwegian Apples Are Affected by Cultivar and Location. Plants 2024, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Hildermann, I.; Messmer, M.; Dubois, D.; Boller, T.; Wiemken, A.; Mäder, P. Nutrient use efficiency and arbuscular mycorrhizal root colonisation of winter wheat cultivars in different farming systems of the DOK long-term trial. J. Sci. Food Agric. 2010, 90, 2027–2038. [Google Scholar] [CrossRef]
Content | Low 1 | Medium 1 | High 1 | Very High 1 | Optimal Values 2 |
---|---|---|---|---|---|
P-AL (mg/100 g) 3 | 0–4 | 5–7 | 8–14 | >14 | 8–12 |
K-AL (mg/100 g) 3 | 0–6 | 7–15 | 16–30 | >30 | 20–30 |
K-HNO3 (mg/100 g) 4 | <30 | 30–79 | 80–119 | >120 | 50–150 |
Mg-AL (mg/100 g) 3 | 0–6 | 3–5 | 6–9 | 6–9 | 10–20 |
Ca-AL (mg/100 g) 3 | <50 | 50–99 | 100–199 | >200 | 100–200 |
P-AL 1 | K-AL | K-HNO3 2 | Mg-AL | Ca-AL | |
---|---|---|---|---|---|
Viken | 13 | 14 | 110 | 12 | 92 |
Sogn | 25 | 22 | 157 | 18 | 168 |
Hardanger | 24 | 19 | 211 | 15 | 146 |
Telemark | 30 | 18 | 89 | 9 | 117 |
Mean | 23 | 18.25 | 141.75 | 13.5 | 130.75 |
Period | Foliar Application | Salts and Products |
---|---|---|
Before blooming | B foliar fertilizer | Bortrac (“Yara Vita”) |
Flowering—beginning of June | Mn+2 foliar fertilizer Mg+2 foliar fertilizer | MgSO4 2–3 sprays after flowering 25 mL Mantrac (“Yara Vita”) |
Mid June–early August (leaf diagnostic mid-August) | Ca+2 foliar fertilizer K+ foliar fertilizer | 400–700 g/ha CaCl2, (total 4–6 times) (“Yara Vita”) 50 mL Aminosol (“Lebosol”) 50–70 mL Zintrac (“Yara Vita”) |
Late August | Ca+2 foliar fertilizer K+ foliar fertilizer | Two sprays of MKP mono-potassium phosphate (mono potassium phosphate) (“Haifa Chemicals”—Israel, or, “Van Iperen International”—Germany) before harvesting (about 7 days) to improve color and firmness |
Urea 5%—for few times or 10–15 kg/ha as total amount Foliar fertilization with boron (and zinc if necessary) | Urea |
N | P | K | ||||
---|---|---|---|---|---|---|
kg/day | kg/ha | kg/day | kg/ha | kg/day | kg/ha | |
Yara | 2–2.5 | 20–30 | 1.5–2.0 | 15–20 | 7–9 | 70–90 |
NIBIO | 3–5 | 30–50 | 1.0–2.0 | 10–20 | 5–7 | 50–70 |
NIBIO/NLR | 4.5–6.5 | 45–65 | 2.0 | 20 | 3.5–10 | 35–100 |
Cultivar | Diameter | Length | Weight | Back Ground Color * | Surface Color ** | DA-Meter | Soluble Solids Content | Titratable Acidity | Vitamin C |
---|---|---|---|---|---|---|---|---|---|
mm | mm | g | L*a*b | L*a*b | IAD | % | mg/L | mg/100 g Fresh Weight | |
‘Red Aroma Orelind’ | 69.8 | 64.4 | 137.7 | 5.1 | 6.65 | 0.965 | 12.5 | 5.83 | 21.1 |
‘Discovery’ | 73.9 | 61.4 | 150.0 | 5.15 | 6.55 | 0.426 | 13.0 | 6.10 | 22.6 |
‘Summerred’ | 71.6 | 60.8 | 141.9 | 5.7 | 5.75 | 0.311 | 12.8 | 5.76 | 20.8 |
Cultivar | As | Ca | Cd | Co | Cr | Cu | Fe | Hg | K | Mg | Mn | N | Ni | P | Pb | S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Red Aroma Orelind’ | Peel | 0.124 | 213.6 | 0.016 | 0.003 | 0.354 | 4.86 | 2.22 | 0.085 | 995.5 | 58.4 | 0.66 | 522.5 | 0.58 | 47.9 | 0.18 | 38.3 |
Flesh | 0.023 | 172.3 | 0.016 | 0.001 | 0.017 | 8.31 | 0.97 | 0.001 | 780.4 | 23.0 | 0.32 | 318.9 | 0.10 | 53.9 | 0.16 | 14.6 | |
‘Discovery’ | Peel | 0.021 | 200.6 | 0.030 | 0.013 | 0.024 | 7.94 | 3.06 | nd | 925.3 | 63.9 | 0.39 | 470.1 | 0.93 | 51.5 | 0.31 | 47.0 |
Flesh | 0.005 | 156.8 | 0.016 | Nd | 0.031 | 4.75 | 1.53 | 0.123 | 938.5 | 33.7 | 0.18 | 317.9 | 0.13 | 72.0 | 0.57 | 26.2 | |
‘Summerred’ | Peel | 0.063 | 163.5 | 0.044 | Nd | 0.022 | 2.41 | 2.34 | 0.002 | 980.9 | 26.7 | 0.24 | 453.2 | 0.55 | 55.5 | 0.09 | 18.8 |
Flesh | 0.041 | 180.3 | 0.019 | 0.005 | 0.069 | 5.19 | 1.04 | 0.031 | 744.3 | 48.1 | 0.390 | 372.1 | 0.73 | 59.7 | 0.18 | 38.8 |
Cultivar | Apple Part | Production | P | K | Ca | Mg | Fe | Ca/K | K/Ca | (K+Mg)/Ca | Mg/Ca |
---|---|---|---|---|---|---|---|---|---|---|---|
‘Red Aroma Orelind’ | skin | organic | 67.1 | 968.7 | 228.3 | 77.0 | 3.6 | 0.2 | 4.2 | 4.6 | 0.3 |
conventional | 47.9 | 995.6 | 213.7 | 58.5 | 2.2 | 0.2 | 4.7 | 4.9 | 0.8 | ||
mesocarp | organic | 55.5 | 780.9 | 163.6 | 26.8 | 1.4 | 0.2 | 4.8 | 4.9 | 0.2 | |
conventional | 54.0 | 680.4 | 172.3 | 23.8 | 1.0 | 0.3 | 3.95 | 4.1 | 0.1 | ||
‘Discovery’ | skin | organic | 70.7 | 1233.0 | 163.5 | 68.8 | 2.5 | 0.1 | 7.54 | 8.0 | 0.4 |
conventional | 51.6 | 925.3 | 200.7 | 63.9 | 3.1 | 0.2 | 4.61 | 4.9 | 0.3 | ||
mesocarp | organic | 59.0 | 1032.6 | 143.9 | 32.7 | 1.25 | 0.1 | 7.18 | 7.4 | 0.2 | |
conventional | 72.1 | 938.5 | 156.9 | 33.7 | 1.53 | 0.2 | 5.98 | 6.2 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ličina, V.; Krogstad, T.; Fotirić Akšić, M.; Meland, M. Apple Growing in Norway—Ecologic Factors, Current Fertilization Practices and Fruit Quality: A Case Study. Horticulturae 2024, 10, 233. https://doi.org/10.3390/horticulturae10030233
Ličina V, Krogstad T, Fotirić Akšić M, Meland M. Apple Growing in Norway—Ecologic Factors, Current Fertilization Practices and Fruit Quality: A Case Study. Horticulturae. 2024; 10(3):233. https://doi.org/10.3390/horticulturae10030233
Chicago/Turabian StyleLičina, Vlado, Tore Krogstad, Milica Fotirić Akšić, and Mekjell Meland. 2024. "Apple Growing in Norway—Ecologic Factors, Current Fertilization Practices and Fruit Quality: A Case Study" Horticulturae 10, no. 3: 233. https://doi.org/10.3390/horticulturae10030233
APA StyleLičina, V., Krogstad, T., Fotirić Akšić, M., & Meland, M. (2024). Apple Growing in Norway—Ecologic Factors, Current Fertilization Practices and Fruit Quality: A Case Study. Horticulturae, 10(3), 233. https://doi.org/10.3390/horticulturae10030233