Transcriptomic and Phytohormone Metabolomics Provide Insight into the Changes in Citrus limon Infected by Citrus yellow vein clearing virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Phytohormones Targeting Metabolomics
2.3. Data Processing and Metabolite Identification
2.4. RNA Sequencing
2.5. Statistical Analyses
3. Results
3.1. Transcriptome and Metabolomics Profiling Changes in Lemon Trees Infected by CYVCV
3.2. Network Analysis of Genes Regulating Hormone Signaling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Chen, H.M.; Cao, M.J.; Wang, X.F.; Jin, X.; Liu, K.H.; Zhou, C.Y. Occurrence, Distribution, and Molecular Characterization of Citrus Yellow Vein Clearing Virus in China. Plant Dis. 2017, 101, 137–143. [Google Scholar] [CrossRef]
- Zhen, S.; Kurth, E.G.; Peremyslov, V.V.; Changyong, Z.; Dolja, V.V. Molecular characterization of a citrus yellow vein clearing virus strain from China. Arch. Virol. 2015, 160, 1811–1813. [Google Scholar] [CrossRef]
- Bin, Y.; Xu, J.; Duan, Y.; Ma, Z.; Zhang, Q.; Wang, C.; Su, Y.; Jiang, Q.; Song, Z.; Zhou, C. The Titer of Citrus Yellow Vein Clearing Virus Is Positively Associated with the Severity of Symptoms in Infected Citrus Seedlings. Plant Dis. 2022, 106, 828–834. [Google Scholar] [CrossRef]
- Bin, Y.; Zhang, Q.; Su, Y.; Wang, C.; Jiang, Q.; Song, Z.; Zhou, C. Transcriptome Analysis of Citrus limon Infected with Citrus Yellow Vein Clearing Virus. BMC Genom. 2023, 24, 65. [Google Scholar] [CrossRef]
- Loconsole, G.; Önelge, N.; Potere, O.; Giampetruzzi, A.; Bozan, O.; Satar, S.; De Stradis, A.; Savino, V.; Yokomi, R.K.; Saponari, M. Identification and Characterization of Citrus Yellow Vein Clearing Virus, A Putative New Member of the Genus Mandarivirus. Phytopathology 2012, 102, 1168–1175. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Hurst, J.; Timko, M.P.; Zhou, C. Recent Advances on Citrus Yellow Vein Clearing Virus in Citrus. Hortic. Plant J. 2020, 6, 216–222. [Google Scholar] [CrossRef]
- Chen, H.M.; Zhou, Y.; Wang, X.F.; Zhou, C.Y.; Li, Z.A. Detection of Citrus Yellow Vein Clearing Virus Based on a Real-Time RT-PCR Approach. Acta Hortic. Sin. 2016, 2, 188–192. [Google Scholar]
- Catara, A.; Azzaro, A.; Davino, M.; Polizzi, G. Yellow Vein Clearing of Lemon in Pakistan. In Proceedings of the International Organization of Citrus Virologists Conference Proceedings, India, New Delhi, 23 November 1992. [Google Scholar] [CrossRef]
- Hashemian, S.M.B.; Aghajanzadeh, S. Occurrence of Citrus Yellow Vein Clearing Virus In Citrus Species In Iran. J. Plant Pathol. 2017, 99, 290. [Google Scholar]
- Yang, X.; Xu, Q.; Liu, Z.; Zhou, C.; Cao, M. First Report of Citrus Virus A Infecting Citrus (Citrus reticulata) in China. Plant Dis. 2023, 107, 2269. [Google Scholar] [CrossRef]
- Chen, H.M.; Li, Z.A.; Wang, X.F.; Zhou, Y.; Tang, K.Z.; Zhou, C.Y.; Zhao, X.Y.; Yue, J.Q. First Report of Citrus Yellow Vein Clearing Virus on Lemon in Yunnan, China. Plant Dis. 2014, 98, 1747. [Google Scholar] [CrossRef]
- Meena, R.P.; Prabha, K.; Baranwal, V.K. Genome Characterization of Citrus Yellow Vein-Clearing Virus: Limited Heterogeneity of Viral Genomes in Mandarivirus-Infecting Different Citrus Species. 3 Biotech 2019, 9, 348. [Google Scholar] [CrossRef]
- Denancé, N.; Sánchez-Vallet, A.; Goffner, D.; Molina, A. Disease Resistance or Growth: The Role of Plant Hormones in Balancing Immune Responses and Fitness Costs. Front. Plant Sci. 2013, 4, 155. [Google Scholar] [CrossRef]
- Islam, W.; Naveed, H.; Zaynab, M.; Huang, Z.; Chen, H.Y.H. Plant Defense against Virus Diseases; Growth Hormones in Highlights. Plant Signal. Behav. 2019, 14, 1596719. [Google Scholar] [CrossRef]
- Ma, K.-W.; Ma, W. Phytohormone Pathways as Targets of Pathogens to Facilitate Infection. Plant Mol. Biol. 2016, 91, 713–725. [Google Scholar] [CrossRef]
- Alazem, M.; Lin, N. Roles of Plant Hormones in the Regulation of Host–Virus Interactions. Mol. Plant Pathol. 2015, 16, 529–540. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, J.-H.; Guo, H.-S. Recent Advances in Understanding Plant Antiviral RNAi and Viral Suppressors of RNAi. Curr. Opin. Virol. 2021, 46, 65–72. [Google Scholar] [CrossRef]
- Nafisi, M.; Fimognari, L.; Sakuragi, Y. Interplays between the Cell Wall and Phytohormones in Interaction between Plants and Necrotrophic Pathogens. Phytochemistry 2015, 112, 63–71. [Google Scholar] [CrossRef]
- Senshu, H.; Ozeki, J.; Komatsu, K.; Hashimoto, M.; Hatada, K.; Aoyama, M.; Kagiwada, S.; Yamaji, Y.; Namba, S. Variability in the Level of RNA Silencing Suppression Caused by Triple Gene Block Protein 1 (TGBp1) from Various Potexviruses during Infection. J. Gen. Virol. 2009, 90, 1014–1024. [Google Scholar] [CrossRef]
- Pandohee, J.; Kyereh, E.; Kulshrestha, S.; Xu, B.; Mahomoodally, M.F. Review of the Recent Developments in Metabolomics-Based Phytochemical Research. Crit. Rev. Food Sci. Nutr. 2023, 63, 3734–3749. [Google Scholar] [CrossRef]
- Dalio, R.J.D.; Litholdo, C.G.; Arena, G.; Magalhães, D.; Machado, M.A. Contribution of Omics and Systems Biology to Plant Biotechnology. In Advances in Plant Omics and Systems Biology Approaches; Springer: Cham, Switzerland, 2021; pp. 171–188. [Google Scholar]
- Aghdam, S.A.; Brown, A.M.V. Deep Learning Approaches for Natural Product Discovery from Plant Endophytic Microbiomes. Environ. Microbiome 2021, 16, 6. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J. MetaboAnalystR: An R Package for Flexible and Reproducible Analysis of Metabolomics Data. Bioinformatics 2018, 34, 4313–4314. [Google Scholar] [CrossRef]
- Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA Using TRIzol (TRI Reagent); Cold Spring Harbor: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Ghosh, D.; Chakraborty, S. Molecular Interplay between Phytohormones and Geminiviruses: A Saga of a Never-Ending Arms Race. J. Exp. Bot. 2021, 72, 2903–2917. [Google Scholar] [CrossRef]
- Collum, T.D.; Culver, J.N. The Impact of Phytohormones on Virus Infection and Disease. Curr. Opin. Virol. 2016, 17, 25–31. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Luo, L.; Hao, J.; Li, J. Characterization of Cmcp Gene as a Pathogenicity Factor of Ceratocystis Manginecans. Front. Microbiol. 2020, 11, 1824. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, Y.; Lin, S.; Wang, Y.; Guo, B.; Song, X.; Ding, S.; Zheng, L.; Feng, R.; Chen, S.; et al. Osa-MiR164a Targets OsNAC60 and Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe Oryzae. Plant J. 2018, 95, 584–597. [Google Scholar] [CrossRef]
- Rakitina, D.V.; Kantidze, O.L.; Leshchiner, A.D.; Solovyev, A.G.; Novikov, V.K.; Morozov, S.Y.; Kalinina, N.O. Coat Proteins of Two Filamentous Plant Viruses Display NTPase Activity in Vitro. FEBS Lett. 2005, 579, 4955–4960. [Google Scholar] [CrossRef]
- Cheng, Z.; Yang, J.; Xia, H.; Qiu, Y.; Wang, Z.; Han, Y.; Xia, X.; Qin, C.-F.; Hu, Y.; Zhou, X. The Nonstructural Protein 2C of a Picorna-Like Virus Displays Nucleic Acid Helix Destabilizing Activity that Can Be Functionally Separated from Its ATPase Activity. J. Virol. 2013, 87, 5205–5218. [Google Scholar] [CrossRef]
- Tu, Y.; Zhang, Z.; Li, D.; Li, H.; Dong, J.; Wang, T. Potato Virus Y HC-Pro Reduces the ATPase Activity of NtMinD, Which Results in Enlarged Chloroplasts in HC-Pro Transgenic Tobacco. PLoS ONE 2015, 10, e0136210. [Google Scholar] [CrossRef]
- Incarbone, M.; Bradamante, G.; Pruckner, F.; Wegscheider, T.; Rozhon, W.; Nguyen, V.; Gutzat, R.; Mérai, Z.; Lendl, T.; MacFarlane, S.; et al. Salicylic Acid and RNA Interference Mediate Antiviral Immunity of Plant Stem Cells. Proc. Natl. Acad. Sci. USA 2023, 120, e2302069120. [Google Scholar] [CrossRef]
- Silva-Martins, G.; Roussin-Léveillée, C.; Bolaji, A.; Veerapen, V.P.; Moffett, P. A Jasmonic Acid–Related Mechanism Affects ARGONAUTE5 Expression and Antiviral Defense against Potato Virus X in Arabidopsis Thaliana. Mol. Plant-Microbe Interact. 2023, 36, 425–433. [Google Scholar] [CrossRef]
- Jay, F.; Wang, Y.; Yu, A.; Taconnat, L.; Pelletier, S.; Colot, V.; Renou, J.-P.; Voinnet, O. Misregulation of AUXIN RESPONSE FACTOR 8 Underlies the Developmental Abnormalities Caused by Three Distinct Viral Silencing Suppressors in Arabidopsis. PLoS Pathog. 2011, 7, e1002035. [Google Scholar] [CrossRef]
- Collum, T.D.; Padmanabhan, M.S.; Hsieh, Y.-C.; Culver, J.N. Tobacco Mosaic Virus-Directed Reprogramming of Auxin/Indole Acetic Acid Protein Transcriptional Responses Enhances Virus Phloem Loading. Proc. Natl. Acad. Sci. USA 2016, 113, E2740–E2749. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y. Current Understanding of the Interplays between Host Hormones and Plant Viral Infections. PLoS Pathog. 2021, 17, e1009242. [Google Scholar] [CrossRef]
- Pan, L.; Miao, H.; Wang, Q.; Walling, L.L.; Liu, S. Virus-induced Phytohormone Dynamics and Their Effects on Plant–Insect Interactions. New Phytol. 2021, 230, 1305–1320. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, F.; Cao, X.; Chen, M.; Ye, G.; Wei, C.; Li, Y. The Rice Dwarf Virus P2 Protein Interacts with Ent -Kaurene Oxidases in Vivo, Leading to Reduced Biosynthesis of Gibberellins and Rice Dwarf Symptoms. Plant Physiol. 2005, 139, 1935–1945. [Google Scholar] [CrossRef]
- Liu, J.; Wu, X.; Fang, Y.; Liu, Y.; Bello, E.O.; Li, Y.; Xiong, R.; Li, Y.; Fu, Z.Q.; Wang, A.; et al. A Plant RNA Virus Inhibits NPR1 Sumoylation and Subverts NPR1-Mediated Plant Immunity. Nat. Commun. 2023, 14, 3580. [Google Scholar] [CrossRef]
- Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiol. 1993, 103, 315–321. [Google Scholar] [CrossRef]
- He, X.; Jiang, J.; Wang, C.; Dehesh, K. ORA59 and EIN3 Interaction Couples Jasmonate-ethylene Synergistic Action to Antagonistic Salicylic Acid Regulation of PDF Expression. J. Integr. Plant Biol. 2017, 59, 275–287. [Google Scholar] [CrossRef]
- He, Y.; Hong, G.; Zhang, H.; Tan, X.; Li, L.; Kong, Y.; Sang, T.; Xie, K.; Wei, J.; Li, J.; et al. The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. Plant Cell 2020, 32, 2806–2822. [Google Scholar] [CrossRef]
- Li, R.; Weldegergis, B.T.; Li, J.; Jung, C.; Qu, J.; Sun, Y.; Qian, H.; Tee, C.; van Loon, J.J.A.; Dicke, M.; et al. Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance. Plant Cell 2014, 26, 4991–5008. [Google Scholar] [CrossRef]
- Xie, K.; Li, L.; Zhang, H.; Wang, R.; Tan, X.; He, Y.; Hong, G.; Li, J.; Ming, F.; Yao, X.; et al. Abscisic Acid Negatively Modulates Plant Defence against Rice Black-streaked Dwarf Virus Infection by Suppressing the Jasmonate Pathway and Regulating Reactive Oxygen Species Levels in Rice. Plant Cell Environ. 2018, 41, 2504–2514. [Google Scholar] [CrossRef]
- Kozieł, E.; Otulak-Kozieł, K.; Bujarski, J.J. Plant Cell Wall as a Key Player During Resistant and Susceptible Plant-Virus Interactions. Front. Microbiol. 2021, 12, 656809. [Google Scholar] [CrossRef]
- Sun, A.; Yu, B.; Zhang, Q.; Peng, Y.; Yang, J.; Sun, Y.; Qin, P.; Jia, T.; Smeekens, S.; Teng, S. MYC2-Activated TRICHOME BIREFRINGENCE-LIKE37 Acetylates Cell Walls and Enhances Herbivore Resistance. Plant Physiol. 2020, 184, 1083–1096. [Google Scholar] [CrossRef]
- Francis, F.; Chen, J.; Yong, L.; Bosquee, E. Aphid Feeding on Plant Lectins Falling Virus Transmission Rates: A Multicase Study. J. Econ. Entomol. 2020, 113, 1635–1639. [Google Scholar] [CrossRef]
- Konozy, E.H.E.; Osman, M.E.M.; Dirar, A.I.; Ghartey-Kwansah, G. Plant Lectins: A New Antimicrobial Frontier. Biomed. Pharmacother. 2022, 155, 113735. [Google Scholar] [CrossRef]
- Acevedo-Garcia, J.; Kusch, S.; Panstruga, R. Magical Mystery Tour: MLO Proteins in Plant Immunity and Beyond. New Phytol. 2014, 204, 273–281. [Google Scholar] [CrossRef]
- Jacott, C.N.; Ridout, C.J.; Murray, J.D. Unmasking Mildew Resistance Locus O. Trends Plant Sci. 2021, 26, 1006–1013. [Google Scholar] [CrossRef]
- Sett, S.; Prasad, A.; Prasad, M. Resistance Genes on the Verge of Plant–Virus Interaction. Trends Plant Sci. 2022, 27, 1242–1252. [Google Scholar] [CrossRef]
- Poque, S.; Pagny, G.; Ouibrahim, L.; Chague, A.; Eyquard, J.-P.; Caballero, M.; Candresse, T.; Caranta, C.; Mariette, S.; Decroocq, V. Allelic Variation at the Rpv1 Locus Controls Partial Resistance to Plum Pox Virus Infection in Arabidopsis Thaliana. BMC Plant Biol. 2015, 15, 159. [Google Scholar] [CrossRef]
- Helderman, T.A.; Deurhof, L.; Bertran, A.; Richard, M.M.S.; Kormelink, R.; Prins, M.; Joosten, M.H.A.J.; van den Burg, H.A. Members of the Ribosomal Protein S6 (RPS6) Family Act as Pro-viral Factor for Tomato Spotted Wilt Orthotospovirus Infectivity in Nicotiana Benthamiana. Mol. Plant Pathol. 2022, 23, 431–446. [Google Scholar] [CrossRef]
- Zippilli, C.; Botta, L.; Bizzarri, B.M.; Nencioni, L.; De Angelis, M.; Protto, V.; Giorgi, G.; Baratto, M.C.; Pogni, R.; Saladino, R. Laccase-Catalyzed 1,4-Dioxane-Mediated Synthesis of Belladine N-Oxides with Anti-Influenza A Virus Activity. Int. J. Mol. Sci. 2021, 22, 1337. [Google Scholar] [CrossRef]
- Lu, Z.; Deng, J.; Wang, H.; Zhao, X.; Luo, Z.; Yu, C.; Zhang, Y. Multifunctional Role of a Fungal Pathogen-secreted Laccase 2 in Evasion of Insect Immune Defense. Environ. Microbiol. 2021, 23, 1256–1274. [Google Scholar] [CrossRef]
- Green, C. Thaumatin: A Natural Flavour Ingredient. In Low-Calories Sweeteners: Present and Future; KARGER: Basel, Switzerland, 1999; pp. 129–132. [Google Scholar]
- de Jesús-Pires, C.; Ferreira-Neto, J.R.C.; Pacifico Bezerra-Neto, J.; Kido, E.A.; de Oliveira Silva, R.L.; Pandolfi, V.; Wanderley-Nogueira, A.C.; Binneck, E.; da Costa, A.F.; Pio-Ribeiro, G.; et al. Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. Curr. Protein Pept. Sci. 2020, 21, 36–51. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, Z.; Lin, X.; Wu, Y.; Niu, X.; Yin, G.; Shao, D.; Xiang, X.; Li, Y.; Yang, C. The Role of MbEGS1 and MbEGS2 in Methyleugenol Biosynthesis by Melaleuca Bracteata. Plants 2023, 12, 1026. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Liang, L.; Chen, X.; Deng, L.; Zou, L.; Dong, M.; Wu, Q.; Qi, T. Transcriptomic and Phytohormone Metabolomics Provide Insight into the Changes in Citrus limon Infected by Citrus yellow vein clearing virus. Horticulturae 2024, 10, 231. https://doi.org/10.3390/horticulturae10030231
Hu X, Liang L, Chen X, Deng L, Zou L, Dong M, Wu Q, Qi T. Transcriptomic and Phytohormone Metabolomics Provide Insight into the Changes in Citrus limon Infected by Citrus yellow vein clearing virus. Horticulturae. 2024; 10(3):231. https://doi.org/10.3390/horticulturae10030231
Chicago/Turabian StyleHu, Xiaohong, Liyun Liang, Xinyi Chen, Liangping Deng, Lijuan Zou, Ming Dong, Qinggui Wu, and Tuo Qi. 2024. "Transcriptomic and Phytohormone Metabolomics Provide Insight into the Changes in Citrus limon Infected by Citrus yellow vein clearing virus" Horticulturae 10, no. 3: 231. https://doi.org/10.3390/horticulturae10030231
APA StyleHu, X., Liang, L., Chen, X., Deng, L., Zou, L., Dong, M., Wu, Q., & Qi, T. (2024). Transcriptomic and Phytohormone Metabolomics Provide Insight into the Changes in Citrus limon Infected by Citrus yellow vein clearing virus. Horticulturae, 10(3), 231. https://doi.org/10.3390/horticulturae10030231